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Abstract. Thrombospondin (TSP)-1 and TSP-2 are matricel-
lular proteins in the extracellular matrix (ECM), which serve
a significant role in the pathological processes of various
cardiovascular diseases (CVDs). The multiple effects of TSP-1
and TSP-2 are due to their ability to interact with various
ligands, such as structural components of the ECM, cytokines,
cellular receptors, growth factors, proteases and other stromal
cell proteins. TSP-1 and TSP-2 regulate the structure and
activity of the aforementioned ligands by interacting directly
or indirectly with them, thereby regulating the activity of
different types of cells in response to environmental stimuli.
The pathological processes of numerous CVDs are associated
with the degradation and remodeling of ECM components,
and with cell migration, dysfunction and apoptosis, which may
be regulated by TSP-1 and TSP-2 through different mecha-
nisms. Therefore, investigating the role of TSP-1 and TSP-2 in
different CVDs and the potential signaling pathways they are
associated with may provide a new perspective on potential
therapies for the treatment of CVDs. In the present review, the
current understanding of the roles TSP-1 and TSP-2 serve in
various CVDs were summarized. In addition, the interacting
ligands and the potential pathways associated with these
thrombospondins in CVDs are also discussed.
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1. Introduction

The extracellular matrix (ECM) serves a significant role
in modulating tissue genesis and remodeling not only by
connecting cells and providing support for them, but also by
regulating connections between the cells, and between the cell
and the matrix, inducing cell adhesion, motility and differen-
tiation. In the cardiovascular system, the ECM participates in
maintaining the structural continuity of the heart and vessels,
providing physical support for cell adhesion, controlling cell
growth and death, and regulating diastolic stiffness, as well as
tissue repair or remodeling to the cardiovascular damage (1).
A number of these functions are performed by a group of
non-structural ECM proteins called matricellular proteins,
which includes thrombospondins (TSPs), tenascins, periostin,
osteopontin, CCN proteins and osteonectin (2).

As a family of matricellular proteins, TSPs may be secreted
by various types of cells. A total of 5 members of the TSP
family (TSP1-5) have been identified so far, and are divided into
two subgroups, subgroup A and subgroup B, according to their
structural differences. Subgroup A contains TSP-1 and TSP-2,
which are trimeric and similar in structure, and subgroup B
consists of TSP-3, TSP-4 and TSP-5, which are pentameric
and smaller compared with those in subgroup A (3). TSP-1
and TSP-2 are the most studied thrombospondins. In the
present review, the structure and the role of TSP-1 and TSP-2
in cardiovascular diseases (CVDs; Table I), and the potential
pathways associated with these TSPs will be discussed.

2. The structure of TSP-1 and TSP-2

TSP-1 have a complex multidomain structure (Fig. 1), which
can interact with various ligands, including ECM struc-
tural components, matricellular proteins, growth factors,
receptors, proteases and cytokines (4). There is a total of
3 identical chains of TSP-1 or TSP-2 that may form a trimer
with a disulfide-bond, which may be critical to some of their
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functions (5). The monomer of TSP-1 and TSP-2 consists of
an N-terminal domain, an interchain disulfide knot, a homolo-
gous procollagen region, 3 type I repeats, 3 type II repeats
[epidermal growth factor (EGF)-like repeats], 7 type III
repeats and a C-terminal domain (3). Each of these domains
specifically regulates the cell function via the interaction with
various molecules. The N-terminal of TSP-1 may interact
with heparin (6,7), heparan sulfate proteoglycan (HSPG) (8),
sulfatides (4,8), TNF-inducible gene 6 protein (9), low-density
lipoprotein receptor related protein (LRP) (7,10), versican (11),
calreticulin (10,12-14), integrin-a3p1 (15-17), -a4p1 (18) and
-a6p1 (19). Type I repeats may interact with matrix metal-
lopeptidase (MMP)-2 (20,21), MMP9 (15,22,23), cluster
of differentiation 36 (CD36) (24-26), lysosome membrane
protein 2 (LIMPII) (27), B1 integrins (28,29), latent trans-
forming growth factor- § (TGF-p) (30-32), and CD148 (33,34).
Type II repeats can interact with EGF receptor (EGFR) (35)
and 1 integrins (28), while type III repeats have been identi-
fied to interact with fibroblast growth factor 2 (FGF2) (36),
calcium (36-38), integrin oIIf3 (39) and integrin avp3 (40,41).
The C-terminal domain interacts with leukocyte surface
antigen CD47 (CD47) (42,43) and calcium (44). Through these
different interactions, TSP-1 modulates the activity of these
ligands, ultimately inducing the cell response to the environ-
mental stimuli under the circumstances of physiological and
pathological processes.

TSP-2 shares the same structure with TSP-1, however
the amino acid sequences are slightly different. The primary
differences in the amino acid sequence are located in
the N-terminal domain. Evidence reveals there is only a
32% amino acid sequence similarity in the N-terminal heparin
binding domain between TSP-1 and TSP-2 (3). Therefore, the
ligands binding TSP-1 and TSP-2 at the N-terminal domain
are different in certain circumstances. For example, a previous
study identified that recombinant human TSP1 may activate
the latent TGF-f, but this phenomenon is not observed in
recombinant mouse TSP-2 (45). Therefore, although TSP-1
and TSP-2 share the same structure, their different amino acid
sequences, especially in the N-terminal domain, is the cause of
their differences in binding ligands.

The interaction between TSP-1 and TSP-2 and their ligands
may also affect each other. For example, TSP-1 and TSP-2 are
known to compete with each other for degradation through
LRP, which contributes to maintaining the levels of TSP-1 and
TSP-2 in certain situations, such as wound healing (46).

3. TSP-1 and TSP-2 in CVDs

Due to their multidomain structure and the ability to interact
with multiple ligands, TSP-1 and TSP-2 are active in various
types of physiological and pathological processes. At present,
there have been multiple studies concerning the role of TSP-1
and TSP-2 in various CVDs (Table I and Fig. 2), suggesting
that they may become potential therapeutic targets.

Myocardial infarction (MI). MI is myocardial ischemic
necrosis caused by a rapid decrease or interruption of coronary
blood supply, which leads to high mortality rates worldwide.
In patients with acute ST-segment elevation MI, the expression
of TSP-1 is significantly increased (47), and the decrease of
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TSP-1 following percutaneous coronary intervention (PCI) is
associated with major adverse cardiac events (48). In rats with
infarcted hearts, TSP-1 was transiently induced and located in
cells at the border area of the infarction, which can be increased
by ischemia/reperfusion (49). In canine and murine models of
reperfusion injury, TSP-1 also exhibited a selective distribu-
tion in the ECM, the microvascular endothelium, and the
mononuclear cells of the infarct border zone. TSP-1-deficient
mice have a severe post-infarction remodeling compared with
that in wild-type mice, although their infarct size was almost
equal, indicating that selective endogenous expression of
TSP-1 in the infarct border zone may limit the expansion of the
granulation tissue and protect the non-infarcted myocardium
from fibrotic remodeling (50).

Following MI, left ventricular (LV) remodeling signifi-
cantly contributes to LV dilation and dysfunction, which
leads to functional damage and poor prognosis. The patho-
logical process of LV remodeling includes scar formation
in the infarcted area, as well as hypertrophy and fibrosis in
the non-infarcted surrounding area. This is primarily due to
the degradation of ECM, the deposition of myofibroblasts,
and the rapid increase in the amount of collagen following
infarction. Previous studies have identified that extracellular
collagen matrix (ECCM) remodeling largely contributes to LV
remodeling, and the decrease of ECCM is associated with the
increase of LV dilation and rupture, indicating that TSP-1 may
participate in the pathology of MI (51). Exposure to hypoxia
markedly induced the expression of TSP-2 in cardiomyocyte
progenitor cells (hCMPCs), and knockdown of TSP-2 resulted
in increased proliferation, migration and MMP activity of
hCMPCs, indicating that TSP-2 may participate in control-
ling the migratory and invasive capacities of hCMPCs under
hypoxic conditions (52). However, little is known regarding the
specific role of TSP-2 in MI.

Conversely, certain functional variants of the TSP-1 and
TSP-2 genes may be associated with MI (53-55). The N700S
polymorphism of TSP-1 is a potential genetic risk factor for
MI (56-58), as it disrupts calcium-binding sites (59). Those
who are homozygous for the minor allele or are heterozygous
(GG and TG genotypes, respectively) have a significantly
increased risk of MI compared with those who are homo-
zygous (TT genotype) for the major allele (54). These data
provide a novel perspective on the TSP-associated therapeutic
approach of MI.

Cardiac hypertrophy and heart failure. Cardiac hypertrophy
is primarily induced by chronic pressure overload, such
as essential hypertension. Pathological features of cardiac
hypertrophy include increased growth of the cardiomyo-
cytes, proliferation of the cardiac fibroblasts and increased
ECM deposition. There have been some reports on the role
of TSP-1 and TSP-2 in cardiac hypertrophy. Compared with
wild type mice, TSP-1-deficient mice exhibited enhanced
early hypertrophy and late dilation when exposed to pressure
overload (60). Despite this, TSP-1 (/) mice exhibited increased
myocardial MMP-3 and -9 activation following pressure over-
load (60). In obese diabetic DB/DB mice, myocardial TSP-1
levels are significantly upregulated in the perivascular and
interstitial space. In comparison with normal DB/DB mice,
DB/DB TSP-1 (/) mice exhibited an enhanced LV dilation,
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Table 1. Continued.

TSP-2

TSP-1

(Refs.)

Effect

(Refs.)

Effect

CVD type

(130)

TSP-2 elevates in acute Kawasaki disease

(125)

TSP-1 regulates the migration and adhesion of mononuclear cells and

contributes to the vascular inflammation in AAA
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(131)

TSP2-knockout leads to decreased fibrosis and increased EC density

during cardiac cell transplantation

(126)

TSP-1-derived peptide RFYVVMWK may enhance the vascular
engraftment during autologous proangiogenic cell therapy

(23)

TSP-1 increases in the aorta and plasma of patients with acute aortic

dissection

CVD, cardiovascular disease; TSP, thrombospondin; MI, myocardial infarction; PCI, percutaneous coronary intervention; HF, heart failure; CHF, congestive heart failure; CAD, coronary artery disease;

WT, wild-type; VSMC, vascular smooth muscle cell; EC, endothelial cell; ECM, extracellular matrix; AAA, abdominal aortic aneurysm; ApoE, apolipoprotein E.

which was associated with mild non-progressive systolic
dysfunction, and TSP-1 could incorporate into the matrix and
inhibit leptin-induced MMP-2 activation (61). These previous
studies suggest that TSP-1 is upregulated in the diabetic heart
and prevents chamber dilation by exerting matrix-preserving
actions on the cardiac fibroblasts.

TSP-2 is also closely associated with cardiac hypertrophy.
Data suggests that older TSP-2 (/) mice are associated with an
enhanced dilated cardiomyopathy characteristic as impaired
systolic function as well as increased cardiac dilatation and
myocardial fibrosis, indicating that TSP-2 deficiency leads
to an age-associated dilated cardiomyopathy (62). Compared
to wild-type mice, TSP-2-knockout mice display increased
mortality accompanied by decreasing cardiac function,
increased cardiomyocyte apoptosis and ECM damage in a
doxorubicin-induced cardiomyopathy mouse model (63). The
absence of TSP-2 also results in decreased systolic function
and enhanced cardiac dilatation in human Coxsackie virus
B3 (CVB3)-induced myocarditis (64). Previous data also
identified that TSP-2 expression is activated uniquely in hyper-
trophic hearts that may develop heart failure, which may be an
early-stage molecular program of heart failure (65).

Abnormal myocardium remodeling leads to myocardial
overload. If not treated promptly, long-term myocardial over-
load may progress into heart failure. From the perspective of
pathology, heart failure is associated with abnormal inflam-
mation, coagulation activation and endothelial dysfunction.
TSP-1 and TSP-2 also participate in some of these changes.
Previous studies have revealed that TSP-1 expression is
decreased in failing hearts, which may be associated with
ventricular dilatation (66,67). Treatment of cardiomyocytes
with a TSP1-derived peptide that activates CD47 leads to
increased cardiomyocyte hypertrophy in a Ca** and calmod-
ulin protein kinase II dependent manner, indicating that TSP-1
may contribute to LV hypertrophy and heart failure (68). Using
aged mouse models with failure-resistant and failure-prone
characteristics, a previous study identified that micro(mi)
RNA-18 and miRNA-19 may modulate TSP-1 expression and
cardiac ECM protein levels in age-associated heart failure;
therefore, decreased miRNA-18/19 and increased TSP-1
levels may contribute to the identification of failure-prone
hearts (69). TSP-1 levels in patients with heart failure may
also be decreased due to oral anticoagulation therapy, which is
used to prevent thromboembolic events (70).

Elevated TSP-2 is primarily associated with poor prog-
nosis in patients with heart failure. Among patients with
coronary heart disease with symptomatic congestive heart
failure (CHF), circulating TSP-2 is increased, which is associ-
ated with increased 3-year CHF-associated death, all-cause
mortality and recurrent hospitalization risk (71). In patients
with preserved ejection fraction heart failure, high serum
levels of TSP-2 are associated with poor prognosis (72,73).
TSP-2 overexpression in wild-type mouse hearts led to
decreased cardiac inflammation and improved cardiac func-
tion after CVB3 infection, suggesting that TSP-2 may mitigate
against cardiac injury, inflammation, and dysfunction during
acute viral myocarditis (64).

Valvular disease. Calcific aortic valve disease (CAVD) is a
progressive disorder manifesting as sclerotic stiffening and
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Figure 1. Structural diagrams of TSP-1 and TSP-2. Ligands demonstrated to interact with each domain are summarized in the boxes. At present, the under-
standing of the interaction of ligands of each domain in TSP-1 is more advanced compared with that of TSP-2, and numerous molecules that interact with
TSP-2 remain to be identified. From the current results, a number of interacting molecules are shared between TSP-1 and TSP-2. However, certain particular
ligands, including TGF-f, may only function when it interacts with TSP-1 instead of TSP-2. TSP, thrombospondin; TSG-6, tumor specific glycoprotein; LRP,
low-density lipoprotein receptor related protein; PDGF, platelet derived growth factor; MMP, matrix metalloproteinase; CD36, cluster of differentiation 36;
TGF-f, transforming growth factor-f; CD148, receptor-type tyrosine-protein phosphatase eta; LIMPII, lysosome membrane protein 2; EGFR, epidermal
growth factor receptor; FGF2, fibroblast growth factor 2; CD47, leukocyte surface antigen CD47; LRP, low-density lipoprotein receptor related protein.

valvular thickening, eventually leading to aortic stenosis. The
pathological process of CAVD is accompanied by inflam-
matory cell infiltration, lipid accumulation, fibrosclerosis,
ECM disorder, angiogenesis and nodular calcification (74). In
fibrotic and stenotic aortic valves, the mRNA levels of TSP-2
are increased 4.9-fold (P=0.037) and 4.8-fold (P=0.001),
respectively (75). TSP-1 can also be detected in the fibrotic and
stenotic valves, but the expression of TSP-1 is not significantly
different, indicating that CAVD was associated with TSP-2
upregulation in aortic cusps (75). However, evidence suggesting
an association between TSP-1 and valvular diseases is limited,
and the specific role of TSP-2 in the pathological process of
valvular disease requires further study.

Cerebral and carotid artery disorder. Cerebral and carotid
artery disease are important subgroups of peripheral vascular
diseases, which have high mortality rates worldwide. TSP-1
and TSP-2 may also serve a role in cerebral and carotid artery
disease. In symptomatic patients with carotid artery diseases,
TSP-1 expression on the surface of circulating platelets is
significantly increased (76). Compared with wild-type mice,
TSP-1 (/) mice exhibit a decreased response to fluvastatin in
inhibiting intimal hyperplasia following carotid artery ligation,
indicating that the statin effect on intimal hyperplasia may be
dependent on TSP-1 (77). A previous study identified that the
expression of TSP-1 is increased following a stroke, and TSP-1
deficiency leads to impaired recovery (78). High expression
levels of TSP-1 and TSP-2 were identified in the ischemic
rat brain following cerebral ischemia/reperfusion, which
may contribute to spontaneous resolution of postischemic
angiogenesis (79). In a spontaneous intracerebral hemorrhage

(ICH) rat model, thrombin treatment induced high expression
of TSP-1 or TSP-2 in the blood vessels around the damaged
brain region. These data provide support the hypothesis that
thrombin positively regulates the expression of TSP-1 and
TSP-2 following ICH, which may be involved in modulating
angiogenesis in injured brains (79-81).

In a rat carotid balloon angioplasty model, intraluminal
delivery of TSP-2 small inhibiting (si)RNA inhibited the
vascular response to the injury (82). TSP-2 is increased and
colocalized to the astrocytes following a stroke, and TSP-2 defi-
ciency leads to an impaired recovery following stroke (78,83).
TSP-2 expression was increased in the ischemic brain, which
may contribute to the spontaneous resolution of post-ischemic
angiogenesis (79). These data suggest that TSP-2 may promote
angiogenesis and recovery following cerebral and carotid
artery injury.

Atherosclerosis. Atherosclerosis is characterized by thick-
ening, hardening and decreased elasticity of the arterial
wall. Lipid levels, endothelial cell injury, inflammation and
the migration of vascular smooth muscle cells (VSMC) are
considered as several fundamental pathological processes of
atherosclerosis. Previous evidence suggested that TSP-1 can
interact with some of the aforementioned factors and further
regulate the pathological process of atherosclerosis through
various mechanisms, while the association between TSP-2
and atherosclerosis requires further investigation. Following
partial carotid ligation, disturbed blood flow induced arterial
stiffening through collagen deposition. Compared with wild
type carotid arteries, TSP-1 knockout animals have signifi-
cantly decreased arterial stiffening, indicating that disturbed
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Figure 2. Current understanding of the effect of TSP-1 and TSP-2 on various CVDs. The red arrows represent suppression, the green arrows represent promo-
tion and the blue arrows represent not acquired. The primary roles TSP-1 and TSP-2 serve in CVDs are considered to be inhibitory, but there are different
hypotheses regarding the contribution of TSP-1 and TSP-2 to certain CVDs, including atherosclerosis and arterial restenosis. However, the association between
TSP-1 and TSP-2 and diseases such as valvular disease requires further study. TSP, thrombospondin; CVD, cardiovascular disease.

flow may promote arterial stiffening through TSP-1 (84).
Conversely, proatherogenic flow conditions may induce
endothelial apoptosis via TSP-1 (40). The absence of TSP-1
accelerates the maturation of the atherosclerotic plaque in
apolipoprotein E (ApoE /) mice, indicating that TSP-1 may
function as an inhibitor of atherosclerosis (85,86). TSP-1
may also interact with lipoproteins. In hypercholesterolemic
atherosclerotic rabbits, the overexpressed TSP-1 secreted by
injured arteries may bind to very-low-density lipoprotein
(VLDL), which may promote its incorporation into nascent
atherosclerotic plaques, simultaneously delivering VLDL
cholesterol into the lesions (87,88). These results indicate
that TSP-1 may serve different roles in different pathological
stages of atherosclerosis. Therefore, it is necessary to further
investigate the specific role of TSP-1 in atherosclerosis.

An important pathological process of atherosclerosis is
the migration of media smooth muscle cells (SMCs) into the
intima and hyperplasia. The expression of TSP-1 has been
demonstrated to increase in VSMC in human atherosclerotic
lesions (89), which may contribute to inflammation and

atherogenesis. Hypoxia induces the migration of the coronary
artery SMCs, which is elicited by TSP-1 (90,91). An additional
study identified that TSP modulates SMCs migration, which
may accelerate atherosclerotic lesion development during
vascular injury or inflammation (92).

TSP-1 may also modulate the interaction between diabetes
and atherosclerosis. Evidence reveals that TSP-1 expression
is increased in large arteries of diabetic animals however, the
protein levels of TSP-1 in microvascular endothelial cells are
decreased when exposed to high glucose levels (89,93,94).
In a hyperglycemic ApoE (/) mouse model, lack of TSP-1
prevented atherogenic lesion formation (95). The expression
of TSP-1 is increased in hypoxic pulmonary hypertension rats,
which may contribute to the pathogenesis of hypoxic pulmo-
nary vascular remodeling (96).

Compared with TSP-1, there is limited research on the
association between TSP-2 and atherosclerosis. In atheroscle-
rotic specimens, TSP-2 mRNA was absent from intraplaque
microvessels and endothelial cells lining the atheromatous
plaque (97). Therefore, the specific mechanism of TSP-2 in
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the pathological process of atherosclerosis requires further
investigation.

Angiogenesis. Angiogenesis is a fundamental physiological
process associated with tissue repair following injury, which
also promotes tumor progression. This process is tightly modu-
lated by various growth factors and the interaction between
cells and the ECM. TSP-1 and TSP-2 have been revealed to
regulate angiogenesis by interacting with specific growth
factors, cells and ECM. Previous evidence indicates that
downregulation of endothelial cell TSP-1 causes an enhance-
ment of in vitro angiogenesis (98). In vitro and in vivo models
indicated that factor XIII, a clotting factor, may also promote
angiogenesis by downregulating TSP-1 and stimulate endothe-
lial cell proliferation and migration (99). In TSP-1-deficient
animals, tumor burden and vasculature increase markedly, and
TSP-1 overexpression resulted in decreased tumor diameter
and fewer tumor capillaries, indicating that TSP-1 may inhibit
tumor angiogenesis (22,100). The inhibitory effect of TSP-1 on
tumors may be accomplished via cross-talk with endothelial
cells (101). The overexpression of TSP1-CD47 signaling in
diabetes is associated with endothelial cell dysfunction, which
leads to impaired angiogenesis (102). In the ischemic retina,
glia-derived TSP-1 may inhibit angiogenic responses (103),
and deficiency of TSP-1 contributes to enhanced neovascular-
ization in the eye (104-108).

Similar to TSP-1, TSP-2 can also inhibit angiogenesis and
tumor growth, even with greater potency compared with that of
TSP-1 (109). In vitro experiments indicated that TSP-2 inhibits
proliferation of microvascular endothelial cells (110,111), and
the absence of TSP-2 is associated with enhanced angiogenesis,
partly due to the altered endothelial cell and ECM interac-
tions (112,113). Decreasing gelatinolytic activity in situ leads
to TSP-2-limited angiogenesis (114). In rheumatoid arthritis,
TSP-2 overexpression also inhibits vascularization (115).

In older mice, the delay of TSP-2 and MMP2 expression in
wounds may promote the impaired rate of wound healing (116).
TSP-2 gene knockout mice exhibited increased blood vessel
density, but no such alteration was observed in TSP-1-deficient
animals (117). This evidence indicates the role of TSP-2 in
anti-angiogenesis.

Arterial restenosis. Restenosis of the arteries following
cardiovascular surgery, such as PCI, is a major problem, which
leads to a poor prognosis. The pathological process of arterial
restenosis is similar to atherosclerosis to a certain extent,
including endothelial injury, migration and proliferating of
VSMCs into the intima. Similar to atherosclerosis, the precise
role of TSP-1 in the pathological process of arterial restenosis
is difficult to define. In the balloon catheter injury rat model,
TSP was markedly increased in the thickening arterial wall,
and the TSP antigen in thickening arterial wall is primary
secreted by VSMCs (118). In rat resistance arteries, TSP-1 was
able to reverse the pathological inward remodeling caused
by spontaneous hypertension, indicating that TSP-1 may act
as an inhibitor of arterial restenosis (119). A previous study
identified that the interaction of TSP-1 and Bl integrin is
associated with platelet-stimulated SMC proliferation (120).
However, there is also evidence revealing that TSP-1 is not a
major component of ECM in human restenotic tissues, even in
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the presence of hypercellularity or ongoing cellular prolifera-
tion (121).

In human aortic SMCs, TSP-2 silencing caused by siRNA
improves cell attachment but does not affect cell proliferation
and migration, suggesting that TSP-2 also participates in the
pathological process of arterial restenosis (122), which repre-
sents a novel hypothesis.

Other CVDs. In addition to the aforementioned major CVDs,
TSP-1 and TSP-2 also serve important roles in a number of
other CVDs. Evidence indicated that TSP-1 may contribute
to the pathogenesis of pulmonary hypertension associated
with hypoxia (123). TSP-1 deficiency contributes markedly to
maladaptive remodeling of the ECM, causing an acceleration
of aortic aneurysm progression (124). During the abdominal
aortic aneurysm development, TSP-1 regulates the adhesion
and migration of mononuclear cells and promotes vascular
inflammation (125). During autologous proangiogenic cell
therapy, TSP-1-derived peptide RFYVVMWK may interact
with priming CD34+ cells and enhance the vascular engraft-
ment (126). TSP-2 (/) mice exhibit a bleeding diathesis even
if they have normal blood coagulation and no thrombocyto-
penia (127), and an altered foreign body reaction characterized
by an enhanced vascularity (128,129). The plasma TSP-2 level
is elevated in acute Kawasaki disease, which may be a novel
predictor for intravenous immunoglobulin resistance (130). In
a TSP-2-knockout mouse model, significantly increased endo-
thelial cell density and reduced fibrosis were observed in the
peri-graft region during the cardiac cell transplantation (131).
These studies suggest that TSP-1 and TSP-2 also function in
other CVDs, such as pulmonary hypertension, aortic aneurysm
progression and acute Kawasaki disease.

4. Signal pathways associated with TSP-1 and TSP-2 in
CVDs

Due to their multidomain structure, TSP-1 and TSP-2 can
specifically bind to numerous types of different ligands.
Therefore, they are involved in various signal pathways
regulating cellular activities and ECM components in CVDs
(Tables II and III). A comprehensive description of these path-
ways may facilitate the understanding of the role TSP-1 and
TSP-2 serve in the pathological processes of multiple CVDs
at the molecular level, which may provide certain potential
therapeutic strategies.

ECM-receptor interaction. Interactions between various cells
and the ECM cause direct or indirect modulation of numerous
cellular activities, such as proliferation, adhesion, migration,
differentiation and apoptosis, which contributes markedly to
numerous CVDs. TSP-1 binds to HSPG with high affinity,
which promotes human melanoma cell migration (132). At the
sites of inflammation, TSP1 binding to tumor-specific glyco-
protein 6 may regulate hyaluronan metabolism, indicating a
critical role of TSP-1 in mediating cellular interactions with
hyaluronan (9). During the vascular smooth muscle inflam-
matory response, TSP-1 and TSP-2 may bind to versican and
negatively modulate the ECM component (11). In certain
circumstances, TSP-1 can bind to LIMPII and promote cell
adhesion (27). Previous data indicated that TSP-1 may bind
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Table II. Continued.

Interacting

(Refs.)

Inhibitors

(Refs.)

Effect

Associated signal pathway

molecules

Domains

(168-172)
(177-179)

Promote atherosclerosis and coronary artery disease
Inhibit left ventricular reverse remodeling in MI

Promote aortic aneurysm

ECM homeostasis

ADAMTS7

(173)
(174-176)
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Promote vascular remolding

ADAMTS7-TSP1 pathway
ECM-receptor interaction

(137)
(125)

Anti-angiogenesis in diabetes myocardium

Unknown

Migration and adhesion of mononuclear cells

HSPG, heparan sulfate proteoglycan; TSG-6, tumor specific glycoprotein; LRP, low-density lipoprotein receptor related protein; PDGF, platelet derived growth factor; MMP, matrix metalloprotein;

LIMPII, lysosomal integral membrane protein II; EGFR, epidermal growth factor receptor; FGF2, fibroblast growth factor 2; DBP, vitamin D-binding protein; ADAMTS, disintegrin and metalloproteinase

with thrombospondin motifs; TSP-1, thrombospondin-1; ECM, extracellular matrix; cGMP, cyclic guanosine monophosphate; NO, nitric oxide; SMC, smooth muscle cell; VSMC, vascular smooth muscle

cell; TGF-f, transforming growth factor-f3.

to calreticulin (CRT) on the cell surface and induce focal
adhesion disassembly, as well as cell migration through the
association of CRT with lipoprotein LRP (10,13,133).

Integrins are a family of glycosylated, heterodimeric
transmembrane receptors that consist of a and f subunits,
which provide a physical link between the ECM and the
cytoskeleton. Previous studies identified that TSP-1 and TSP-2
may also interact with various types of integrins. Binding
of integrin a3f1 to TSP-1 mediates efficient migration of
ECs, indicating that the binding of TSP-1 and integrin a3p1
stimulates cell adhesion and migration (15,16). Despite this,
integrin a3p1 binding to TSP-1 can also mediate cell motility
and inhibit angiogenesis (15,17). Studies have demonstrated
that a4p1 integrin mediates CD47-stimulated sickle red
blood cells adhesion to immobilized TSP-1 and modulate T
cell behavior (18,134). In addition, the N-terminal domain of
TSP-1 is also a ligand for a6f1 integrin, which modulates the
adhesion of human microvascular endothelial to immobilized
TSP-1 and TSP-2 (19). TSP-1 and TSP-2 may also interact with
B1 integrin, contributing to the adhesion of cells that express
B1 integrin (28,135). The type III repeats of TSP-1 and TSP-2
may interact with integrin olIf3 and avp3, promoting their
binding with platelets (136). A previous study has demon-
strated that TSP-2 may also contribute to anti-angiogenesis in
diabetes myocardium (137). These results indicate the impor-
tant role of the interaction between integrins and TSPs in the
ECM-receptor interaction.

PI3K-AKT pathway. The PI3K-Akt pathway can be activated
by various cellular stimuli, such as growth factors, and regu-
lates numerous fundamental cellular functions, such as cell
proliferation, migration and apoptosis. These cellular activities
are critical for the pathological process of CVDs. TSP-1 and
TSP-2 also participate in a number of these activities through
the PI3K-Akt pathway. The N-terminal domain of TSP-1 can
interact with platelet-derived growth factor, leading to media-
tion of VSMC proliferation and migration (138). In addition to
the ability to degrade collagen, studies suggest that MMP-9
may also release vascular endothelial growth factor to partici-
pate in modulating the invasion and the morphogenesis of
endothelial cells, which can also be modulated by TSP-1 (139).
The type Il repeats of TSP-1 interacts with EGFR and increases
cell migration (140). The type III repeat domain of TSP-1 and
TSP-2 may interact with integrin olIf3 and avp3, promoting
SMC migration (141). Binding of TSP-1 and TSP-2 to FGF2
inhibits apoptosis (43) and triggers caspase-independent cell
death (142).

CD36 is a multi-ligand receptor that participates in various
pathological processes of CVDs, such as the formation of
atherosclerosis. CD47 is a glycoprotein on numerous types
of cell surfaces, which serves an important regulatory role in
immune response and inflammation. The binding of TSP-1 and
CD36 inhibits angiogenesis through promoting endothelial
cell apoptosis and inhibiting nitric oxide (NO) signal transduc-
tion (15,25,143). The C-terminal domain of TSP-1 and TSP-2
can interact with CD47, which may promote cell migration
and adhesion (18,42,144), inhibit cyclic guanosine monophos-
phate synthesis, nitric oxide (NO) signaling (143,145) and cell
cycle progression in ECs (146). Previous data revealed that the
binding of TSP-1 and CD47 may also inhibit angiogenesis,blood
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(Refs.)

Inhibitors

(Refs.)

Effect

Associated
signal pathways

Interacting
molecules

NO

Table III. Continued.

Domains
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flow, and adhesion of monocytes and macrophages (147-150),
which may promote foam cell formation (151), pulmonary
arterial vasculopathy (152) and LV heart failure (68). Through
these mechanisms, TSP-1 and TSP-2 serve a significant role in
numerous CVDs.

TGF-B pathway. A wide range of different cellular func-
tions, such as cell proliferation, differentiation, migration
and apoptosis, can also be modulated by TGF-f3, a member
of the transforming growth factor superfamily, which is a
group of secreted cytokines. Studies also revealed that TSP-1
regulates the above cellular activities through the TGF-f3
pathway. Previous data suggested that the type I repeats of
TSP-1 may bind and activate latent TGF-. The activated
TGF-f can further stimulate new matrix deposition and
angiogenesis (45,153-155), promote inflammatory response via
recruitment of inflammatory cells and increase myofibroblast
differentiation (156) through the TGF-f pathway.

TSP-2 may also bind to latent TGF-f3. However, TSP-2 cannot
activate latent TGF-f. In addition, due to this reason, TSP-1 and
TSP-2 can regulate the activity of TGF-$ and modulate the
downstream pathways by competitively binding to it (45).

(166)
167)

ECM homeostasis. Numerous pathological processes of CVDs
are accompanied by the destruction of ECM homeostasis.
For example, excessive accumulation of type I and type III
collagen is a significant feature of cardiac hypertrophy, which
is due to the higher collagen synthesis capacity compared
with the degradation ability. MMP2 and MMP?9 serve crucial
roles in maintaining ECM homeostasis. Evidence revealed
that TSP-1 and TSP-2 may interact with MMP2 and MMP9,
which can inhibit their activity and regulate collagen homeo-
stasis (20,157,158).

In addition, there is also evidence revealing that collagens
can interact with TSP-1 directly. The C-terminal domain
of TSP-1 may bind to collagen I, contributing to fibroblast
homeostasis (156). These results suggest that TSP-1 and TSP-2
contribute markedly to ECM homeostasis.

Negatively regulates TSP-2 transcription and induces

angiogenesis
ADAMTSI1-TSP2 pathway Promotes wound closure and inhibits angiogenesis

Phagosome pathway. Phagocytosis of TSP-1 serves a critical
role in tissue remodeling and inflammation in CVDs, which is
mediated by various ligands. In vascular endothelial cells, the
heparan sulfate proteoglycans expressed on the cell surface
are associated with the process of binding and endocytosis of
TSP-1, which leads to its lysosomal degradation (8). Evidence
revealed that the HSPG on the endothelial cells may mediate
the binding and degradation of TSP-1 (159). Studies suggest
that LRP may also function in mediating phagocytosis of
TSP-1 in certain types of cells (160,161), indicating that LRP
may serve a significant role in the catabolism of TSP-1 in vivo.
The binding of TSP-1 and CD36 has been demonstrated to
promote the internalization of oxidized LDL, fatty acids and
phospholipids, leading to inhibition of atherosclerosis (162).
However, little is known on the specific role of TSP-2 in the
phagosome pathway, and requires further study.

PI3K-AKT pathway

ADAMTSI

Calcium pathway. Calcium is an indispensable ion involved
in numerous physiological processes in the human body. It
participates in maintaining the biopotentials on both sides
of the cell membrane, maintaining normal muscle expansion

ADAMTS, disintegrin and metalloproteinase with thrombospondin motifs; TSP-2, thrombospondin-2; ECM, extracellular matrix; VSMC, vascular smooth muscle cells; LRP, low-density lipoprotein

LRP, lipoprotein receptor-related protein; MMP, matrix metalloprotein; EGFR, epidermal growth factor receptor; FGF2, fibroblast growth factor 2; CYP1B1, cytochrome p450 1b1; NO, nitric oxide;
receptor related protein.
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and relaxation, nerve conduction and vasoconstriction. TSP-1
and TSP-2 can bind to calcium and affect the function of
modulating physiological activities. Using a simulated model,
previous studies have identified that the change between fully
calcium-loaded and calcium-depleted TSP1-Sigl may modu-
late its interactions, which may become a novel therapeutic
target (38,163). Binding of TSP-2 and FGF2 can be inhibited
by calcium, indicating that calcium can affect cell function via
intervening in interactions between other molecules (36).

Other pathways. In addition to the aforementioned pathways,
TSP-1 and TSP-2 also interact with numerous other ligands.
During the coagulation reaction, TSP-1 can interact with the
vitamin D-binding protein, contributing to the chemotaxis
of coagulation factor C5a (164). TSP-2 can interact with
cytochrome p450 1B1, promoting angiogenesis through the
regulation of oxidative stress (165). In addition, as an impor-
tant gas signal in the cardiovascular system, NO can negatively
regulate TSP-2 transcription and induce angiogenesis (166).

A disintegrin and metalloproteinase with thrombospondin
motifs (ADAMTYS) is a type of metalloproteinase which has
been demonstrated to be associated with numerous CVDs.
Studies have identified that ADAMTSI contributes to wound
closure and inhibits the angiogenesis via interaction with
TSP-1 and TSP-2 (167). Evidence has revealed that there is a
close association between ADAMTS7 and CVDs. TSP-1 and
TSP-2 interaction with ADAMTS7 promotes the pathological
processes of atherosclerosis, coronary artery disease (168-172),
aortic aneurysm (173) and vascular remodeling (174-176)
through interacting with TSP-1 and TSP-2. Conversely,
there is also evidence revealing that ADAMTS7 may inhibit
LV reverse remodeling following MI (177-179), suggesting
ADAMTS7 may be a critical regulator in CVDs.

5. Conclusions

The present review suggests that TSP-1 and TSP-2 serve
significant roles in the pathological process of numerous
CVDs, and their multi-domain structural features and ability
to bind to different ligands may also provide novel targets for
the treatment of different CVDs at the molecular level.

However, there are two limitations of the present study.
Firstly, although both TSP-1 and TSP-2 have a similar multi-
domain structure, both bind to different ligands and serve
different roles. There is limited research into the specific role
of TSP-2 in the pathogenesis of numerous CVDs, indicating
that more research is required. Secondly, numerous novel
ligands remain to be identified. Fortunately, with the devel-
opment of new large-scale techniques, including array-based
surface plasmon resonance, new-generation yeast two-hybrid
and numerous novel computational methods, novel TSP-1 and
TSP-2 ligands may be identified (4). Identification of these
ligands may contribute to determination of the interaction
networks of TSP-1 and TSP-2, which may provide an improved
understanding of their role in CVDs.
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