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Abstract. Gastric cancer (GC) is one of the most common 
malignancies and the second leading cause of cancer‑associ-
ated death in the world. The carcinogenesis and development 
of GC involves complicated steps and various factors, in which 
the tumor microenvironment serves a vital role. Mesenchymal 
stem cells (MSCs), also known as mesenchymal stromal cells, 
are multipotent stromal cells, and have gained increasing 
attention due to their wound‑healing ability, as well as their 
tumor‑promoting potential. MSCs are essential components 
of the tumor microenvironment and serve important roles 
in tumor initiation, progression and metastasis. The present 
review focuses on GC and discusses recent advances in under-
standing the effect of GC‑derived MSC‑like cells (GC‑MSCs) 
on tumor progression, chemoresistance and immune escape. 
Additionally, the mechanism underlying the tumor tropism 
of bone marrow‑derived MSCs and the malignant transition 
of these cells to GC‑MSCs are addressed. The potential of 
GC‑MSCs in the treatment of GC, such as for predicting 
prognosis and as therapeutic targets, is also discussed in 
association with their critical role in tumor progression. The 
information on the characteristics and functions of GC‑MSCs 
provided in the present review may promote the development 
of novel therapeutic strategies against GC.
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1. Introduction

According to global cancer statistics, gastric cancer (GC) 
ranked fifth in incidence (5.7% of the total cases) and third in 
mortality (8.2% of the total cancer deaths) among malignan-
cies worldwide in 2018 (1). When detected early, GC is usually 
curable and has a 5‑year survival rate of >90%; however, the 
prognosis of patients with advanced GC remains poor (2). The 
lack of early clinical symptoms often delays the diagnosis of 
GC, resulting in the development of an incurable disease in a 
number of patients (3). Another reason for the high mortality 
is that surgical resection is the only curative treatment for 
GC (4). Despite the availability of a number of novel therapies, 
including targeted therapy and immunotherapy (3,5), the treat-
ment of GC remains unsatisfactory. Therefore, elucidating the 
underlying mechanisms underlying tumor progression may 
help develop more effective treatments.

The tumor microenvironment (TME) is a complex and 
dynamic cellular community composed of cancer cells, 
endothelial cells, fibroblasts, immune cells, and mesenchymal 
stem cells (MSCs) (6). The TME is formed via the recruit-
ment of tumor‑supporting MSCs and extensive remodeling of 
adjacent tissues; thus, the TME differs from normal tissues 
in numerous aspects, including the extracellular matrix, blood 
vessels and phenotypes of cells (7). The interaction between 
tumor cells and the TME serves an important role in tumor 
initiation, progression, chemoresistance and immune escape, 
and certain molecules present in the TME are prognosis 
predictors in various types of cancer, such as pancreatic 
cancer, GC and urothelial carcinoma (8‑11). MSCs, which are 
important components of the TME and serve critical roles in 
tumor progression, have been extensively studied.

MSCs, also known as mesenchymal stromal cells, are 
multipotent stromal cells with the ability to differentiate 
into osteoblasts, adipocytes, chondrocytes and other types 
of cells under different conditions  (12). Despite extensive 
research efforts, the multi‑differentiation potential of MSCs 
has only been demonstrated in vitro, and there are few studies 
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describing their characteristics in  vivo  (13,14). MSCs can 
accelerate wound healing by regulating inflammation (15). 
Additionally, MSCs can suppress the function of both innate 
and adaptive immune cells, including macrophages and 
lymphocytes (15). In cases of weak inflammatory responses, 
MSCs can act as antigen‑presenting cells and increase the 
immune response (15). In cancer, MSCs are critical components 
of the TME and promote the progression of several types of 
tumor, such as hepatocarcinoma and colorectal cancer (16,17). 
Tumors are considered to be ‘wounds that never heal’, and 
MSCs can migrate to injured tissues, supporting the tumor 
tropism of MSCs and their ability to sense wound‑associated 
signals (18). Upon recruitment to tumors, MSCs are converted 
into tumor‑associated MSCs (TA‑MSCs), which can promote 
tumor progression more potently (19). TA‑MSCs interact with 
tumor cells and are involved in the remodeling of the TME 
in response to signals from tumor cells and other stromal 
cells (19,20). The crosstalk between TA‑MSCs and tumor cells 
can be mediated by several mechanisms, including paracrine 
signals, exosomes and direct contact (21,22). Furthermore, 
TA‑MSCs can differentiate into cancer‑associated fibroblasts, 
which promote tumor progression (23).

In the present review, the effect of GC‑derived MSC‑like 
cells (GC‑MSCs) on GC progression, metastasis, chemo-
resistance and immune escape are described. Additionally, 
the mechanisms by which GC cells, immune cells and other 
stromal cells educate MSCs and skew MSCs towards the 
GC‑MSC fate are discussed. Finally, the therapeutic potential 
of GC‑MSCs as both targets and biomarkers are summarized.

2. Biological characteristics of GC‑MSCs

Friedenstein et al (24) discovered the presence of mouse bone 
marrow (BM)‑derived fibroblast‑like cells in the early 1970s, 
which are currently known as MSCs. MSCs are present in 
numerous tissues, including the stomach (25). GC‑MSCs have 
been successfully isolated and characterized from patients with 
GC (26,27). Similarly to other stem cells, GC‑MSCs have the 
potential to differentiate into adipocytes and osteocytes (28). 
Since no specific surface markers of GC‑MSCs have been iden-
tified, they can only be characterized by in vitro experiments; 
GC‑MSCs express high levels of CD29, CD90 and CD105 
and barely detectable levels of CD34, CD45 and CD19 (28). 
Although BM‑MSCs and GC‑adjacent non‑cancerous 
tissue‑derived MSCs (GCN‑MSCs) can transform into 
GC‑MSCs in the TME, these three types of cells exhibit both 
similarities and differences (23). The three types of cells have 
similar morphology when isolated from patients (Fig. 1A), as 
well as surface markers and differentiation potential. They 
are all slender and look like a shuttle under the microscope. 
The three types of cells are positive for CD29, CD44 and 
CD105, and negative for CD14 and CD34 (26). BM‑MSCs and 
GCN‑MSCs express CD13, whereas GC‑MSCs do not (26). 
They all have a pluripotent differentiation potential and can 
differentiate into osteocytes and adipocytes (26). However, 
GC‑MSCs can proliferate twice as fast as GCN‑MSCs 
and BM‑MSCs  (26). GC‑MSCs differ from BM‑MSCs in 
the number of cytoplasmic organelles, tumor‑promoting 
capacity and secretion levels of numerous inflammatory 
cytokines, such as IL‑6, monocyte chemoattractant protein 1 

and VEGF (26,29). GC‑MSCs can improve the proliferative, 
migratory and pro‑angiogenic abilities of GC cells more 
potently than GCN‑MSCs and BM‑MSCs, partly by secreting 
IL‑8 (30). These findings suggest that GC‑MSCs maintain the 
mesenchymal lineage and stem cell capabilities, and differ 
from MSCs from non‑GC tissues in several aspects, especially 
their tumor‑promoting capabilities.

3. Formation of GC‑MSCs

MSCs migrate to the tumor. Studies have revealed that 
BM‑MSCs have tropism to several types of tumor, such as 
glioma and breast cancer, by intravenous or intraperitoneal 
injection (31,32). CXC‑chemokine ligand 16 (CXCL16) secreted 
by breast cancer cells binds to its receptor CXC‑chemokine 
receptor 6 (CXCR6) on BM‑MSCs, which in turn produce 
CXCL10, thereby promoting the recruitment of BM‑MSCs to 
cancer cells (33). The combination of CXCL12 and CXCR6 
facilitates the recruitment of BM‑MSCs to prostate tumors (34). 
Other chemokines and growth factors also participate in the 
migration of MSCs from non‑cancer to cancer tissues, such 
as transforming growth factor‑β (TGF‑β), platelet‑derived 
growth factor, monocyte chemoattractant protein‑1 and 
stromal cell‑derived factor‑1 (35‑37). Hypoxia in the TME 
induces BM‑MSCs tropism to breast cancer (33). Thus, there 
are various mechanisms involved in the migration of MSCs 
from non‑cancer to tumor tissues. In GC, Berger et al (38) 
performed a ‘plug assay’, in which GC and lung carcinoma 
cell‑derived microvesicles (MVs) were collected and used as 
a Matrigel plug, which was implanted into teratoma tissues; 
6‑10  days after the injection, the plug was harvested and 
subjected to histological analysis or dissociated into a single 
cell suspension. The results revealed that MSCs were present in 
the plug containing GC cell‑derived MVs, whereas the control 
group did not exhibit MSCs, suggesting that GC cell‑derived 
MVs are responsible for the migration of MSCs, although the 
underlying mechanism remains unknown (38). To the best of 
our knowledge, there are no studies investigating the tropism 
of MSCs from non‑GC to GC tissues, and additional studies 
are required to understand this migration and to identify key 
cytokines or chemokines.

MSCs transform into GC‑MSCs. After their recruitment to 
the tumor site, MSCs from non‑cancer tissues are converted 
into TA‑MSCs under the influence of tumor cells, immune 
cells, local TA‑MSCs and other stromal cells (34). In GC, 
tumor cells are involved in the malignant transition of 
MSCs through several mechanisms (Table I). For example, 
Shamai et al (39) revealed that GC cells have the capacity to 
increase R‑spondin expression in GC‑MSCs, and GC‑MSCs 
can in turn upregulate Lgr5 expression in GC cells. Therefore, 
tumor cells can alter gene expression in GC‑MSCs and 
GC‑MSCs can induce tumor cell stemness. Exosomes from 
GC  cells regulate the immunomodulatory properties of 
adipose‑derived MSCs by activating the NF‑κB signaling 
pathway (40). GC‑MSCs exposed to GC cell‑derived exosomes 
can activate both macrophages and T  lymphocytes, thus 
maintaining the inflammatory TME and promoting tumor 
progressio (40). MicroRNAs (miRNAs/miRs) are involved 
in the malignant transition of MSCs from non‑GC tissues. 
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The downregulation of miR‑155‑5p expression caused by the 
activation of NF‑κB signaling in GC‑MSCs promotes this 
process, as demonstrated by the effect of miR‑155‑5p inhi-
bition on conferring BM‑MSCs a GC‑MSC‑like phenotype 
and function (41). Unlike miR‑155‑5p, miR‑374 expression 
is upregulated in GC‑MSCs, and overexpression of miR‑374 

promotes the proliferation and migration of MSCs from 
normal gastric tissues by regulating the Wnt5a/β‑catenin 
signaling pathway (42,43). Additionally, immune cells can 
participate in the malignant transition of MSCs. Macrophages 
activate umbilical cord‑derived MSCs and confer these 
MSCs a pro‑inflammatory phenotype, which can promote 

Figure 1. (A) Morphology of GC‑MSCs, GCN‑MSCs and BM‑MSCs (magnification, x400). Cells in the images were isolated as part of a previous study (28) 
and the current images were taken for the present study. (B) Malignant transition of MSCs and underlying mechanisms. MSCs, mesenchymal stem cells; 
BM‑MSCs, bone marrow‑derived MSCs; GC‑MSCs, gastric cancer‑derived MSC‑like cells; GCN‑MSCs, GC‑adjacent non‑cancerous tissues‑derived MSCs; 
miR, microRNA.

Table I. Mechanisms of the malignant transition of MSCs to GC‑MSCs.

		  Effect on	
First author, year	 Regulation mechanism	 malignant transition	 (Refs.)

Shamai et al, 2019	 GC cells increased R‑spondin expression in GC‑MSCs	 Promote	 (39)
Shen et al, 2019	 GC cells secreted exosomes to activate NF‑κB signaling pathway	 Promote	 (40)
Zhu et al, 2016	 miR‑155‑5p inhibited NF‑κB signaling pathway	 Inhibit	 (41)
Ji et al, 2017;	 miR‑374 activated Wnt5a/β‑catenin signaling pathway	 Promote	 (42,43)
Sun et al, 2018			 
Yang et al, 2014	 Macrophages activated NF‑κB signaling pathway	 Promote	 (44)
Xu et al, 2018	CD 4+ T cells upregulated PD‑L1 expression in	 Enhance GC‑MSCs	 (45)
	 GC‑MSCs through phosphorylated‑STAT3	 tumor‑promoting effect	
Zhang et al, 2016	 Helicobacter pylori infection activated NF‑κB signaling pathway 	 Promote	 (46)

miR, microRNA; GC‑MSCs, gastric cancer‑derived MSC‑like cells; PD‑L1, programmed cell death‑ligand 1.



SHEN  and  ZHU:  GC-MSCs IN TUMOR PROGRESSION458

GC progression partly through the NF‑κB signaling pathway, 
as demonstrated by in vitro and in vivo experiments (44). 
CD4+ T lymphocytes may also be involved in this process; 
although the effect of CD4+ T cells on the malignant transi-
tion of MSCs has not been investigated, these cells upregulate 
the expression levels of PD‑L1 in GC‑MSCs through the 
p‑STAT3 signaling pathway, and GC‑MSCs with positive 
PDL1 expression protect tumor cells from immune cells (45). 
Patients with GC infected with Helicobacter pylori have a 
high mortality rate because this bacterium confers MSCs 
a pro‑inflammatory phenotype through the activation of 
the NF‑κB signaling pathway (46). Overall, these findings 
suggest that GC cells, as well as immune cells and bacteria, 
can convert BM‑MSCs into GC‑MSCs (Fig. 1B).

4. Effects of GC‑MSCs on tumor progression and the 
tumor microenvironment

GC‑MSCs promote tumor progression. TA‑MSCs promote 
tumor progression by secreting cytokines, which act directly 
on tumor cells or other stromal cells in the TME (47‑49). 
GC‑MSCs can promote GC  progression through various 
mechanisms (Fig.  2). For example, IL‑15 secreted by 
GC‑MSCs induces GC cell epithelial‑mesenchymal transition 
and promotes GC cell migration, which are associated with 
tumor growth and metastasis, respectively (28). Consistently, 
IL‑15 levels are higher in patients with GC than in healthy 
donors in both serum and tissues in association with lymph node 

metastasis (28). In addition, GC‑MSCs produce high levels of 
IL‑8, which serves a role in tumor cell proliferation and migra-
tion, and in angiogenesis (30). However, the tumor‑promoting 
ability of IL‑8 has only been demonstrated in vitro and the 
underlying mechanisms remain unknown. In addition to 
cytokines, other molecules serve roles in the tumor‑promoting 
effect of GC‑MSCs. The interaction between GC cells and 
GC‑MSCs maintains GC cell stemness through the activation 
of the R‑spondin/Lgr5 axis and WNT/β‑catenin signaling 
pathway (39). Hepatocyte growth factor (HGF) exclusively 
secreted by GC‑MSCs promotes the proliferation and migra-
tion of GC cells through the activation of the HGF/c‑MET 
signaling pathway (38). Furthermore, platelet‑derived growth 
factor‑DD (PDGF‑DD) secreted by GC‑MSCs increases 
the phosphorylation of PDGF receptor‑β in GC cells, thus 
promoting GC cell proliferation and migration; recombi-
nant PDGF‑DD can mimic the tumor‑promoting effect of 
GC‑MSCs conditioned medium (CM) on GC cell proliferation 
and migration (50). GC‑MSCs induce VEGF expression in GC 
cells in vitro and in vivo, and contribute to GC‑MSC‑mediated 
angiogenesis by activating the NF‑κB/VEGF signaling 
pathway (51). Since tumor neovascularization is indispensable 
for continuous tumor growth, this pathway may be a potential 
target to inhibit tumor growth. Notably, lung carcinoma cell 
proliferation is independent of lung carcinoma MSCs, whereas 
GC cell proliferation is critically dependent on the presence of 
their counterparts GC‑MSCs (38). This phenomenon suggests 
that tumor growth does not always depend on the counterpart 

Figure 2. GC‑MSCs promote tumor progression. GC‑MSCs can promote proliferation and migration of GC cells and induce stemness and tumor angiogenesis 
by secreting cytokines and activating signaling pathways. GC‑MSCs, gastric cancer‑derived mesenchymal stem cell‑like cells; HGF, hepatocyte growth factor; 
PDGF, platelet‑derived growth factor.
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TA‑MSCs. The interaction between tumor cells and TA‑MSCs 
is specific not only for the requirements of the tumor cells, but 
also their capacity to recruit MSCs and educate them to further 
promote tumor progression (38). Overall, these results demon-
strate that GC‑MSCs serve essential roles in GC progression.

GC‑MSCs induce tumor chemoresistance. Chemotherapy is 
the first‑line treatment for patients with advanced GC; pre‑ or 
post‑operative chemotherapy with 5‑fluorouracil (5‑FU) and 
cisplatin has improved the survival rates of patients with 
GC (52‑54). However, the response rate for this therapy is limited 
by the development of chemoresistance (55,56). Therefore, it 
is urgent to investigate the mechanisms underlying GC cell 
chemoresistance. The TME can protect tumors from chemo-
therapy through physical barriers and metabolites, exosomes 
and other substances secreted by tumor stromal cells (57). 
One of the key components of the TME, TA‑MSCs, induces 
tumor cell chemoresistance through various mechanism, 
such as elevating tumor cell stemness and secreting certain 
molecules, such as interleukins and chemokines  (58‑60). 
Cancer stem cells  (CSCs), also known as cancer initiation 
cells, were identified based on the observation of histological 
heterogeneity in tumors and on the fact that a single mouse 
tumor cell can form a new tumor (61). Although the definition 
of CSC is contentious, these cells have self‑renewal and differ-
entiation capacities and sustain the growth of tumors (62,63), 
which is associated with tumor cell chemoresistance. In GC, 
He et al (64) suggested that MSCs promote GC cell stemness 
and chemoresistance through fatty acid oxidation (FAO) based 
on in vitro and in vivo experiments. Mechanistically, TGF‑β1 
secreted by MSCs activates SMAD2/3 through TGF‑β recep-
tors, which then induces lncRNA MACC1‑AS1 expression 
in GC cells and promotes FAO‑dependent stemness and 
chemoresistance by antagonizing miR‑145‑5p (64). GC‑MSCs 
express high levels of the ATP‑binding cassette subfamily B 
member 1 transporter, which results in decreased drug accu-
mulation in chemoresistant cells (39). Exosomes secreted by 
GC‑MSCs induce GC cell resistance to 5‑FU by activating 
calcium/calmodulin‑dependent protein kinases and the 
Raf/MEK/ERK kinase cascade, thus upregulating the expres-
sion levels of multi‑drug resistance‑associated proteins (65). 
The aforementioned studies indicate that GC‑MSCs can induce 
GC cell chemoresistance by secreting cytokines and exosomes, 
although there may be other undiscovered mechanisms that 
may help develop strategies to overcome chemoresistance.

GC‑MSCs suppress antitumor immunity. The number and 
types of inflammatory factors in the TME can alter the 
immune responses to tumors, although the underlying mecha-
nisms remain obscure. MSCs modulate immune cells and can 
suppress the immune response; however, they can also promote 
immune responses when inflammatory conditions are not 
enough (66). Additionally, GC‑MSCs can modulate antitumor 
immunity by interacting with immune cells, such as macro-
phages, neutrophils and T  lymphocytes. Macrophages are 
associated with a poor prognosis of GC and are used as prog-
nostic indicators (67). Li et al (68) suggested that GC‑MSCs 
may trigger the polarization and generation of M2‑like macro-
phages by activating the JAK2/STAT3 signaling pathway 
via high secretion of IL‑6/IL‑8. M2‑like macrophages can 

facilitate the metastasis and progression of GC by enhancing 
epithelial‑mesenchymal transition in GC cells (68). Exosomes 
extracted from the GC AGS cell line can induce macrophage 
phagocytosis and promote the secretion of pro‑inflammatory 
factors, thereby activating CD69 and CD25 on the surface of 
T cells through the NF‑κB signaling pathway in MSCs (40). 
Regarding neutrophils, there is a reciprocal interaction between 
GC‑MSCs and neutrophils. GC‑MSCs can induce chemotaxis 
and neutrophil activation, as well as suppress neutrophil spon-
taneous apoptosis through the activation of the STAT3 and 
ERK1/2 signaling pathways (29). Neutrophils incubated with 
GC‑MSCs or GC‑MSCs‑CM can promote the migration of 
tumor cells and induce the formation of tube‑like structures in 
endothelial cells (29). Furthermore, GC‑MSC‑treated neutro-
phils can in turn convert normal MSCs into tumor‑associated 
fibroblasts  (30). GC‑MSCs‑CM pretreatment reverses the 
inhibitory effect of peripheral blood mononuclear cells and 
promotes GC liver metastases by disrupting the balance of 
regulatory T cells and T helper 17 cells (69). Both innate and 
adaptive immune cells can be affected by GC‑MSCs, and they 
can gain tumor‑promoting abilities or be inhibited.

GC‑MSCs upregulate PD‑L1 expression in GC cells. In past 
years, immune checkpoints, including programmed cell death 
protein 1 (PD‑1)/programmed cell death 1 ligand 1 (PD‑L1), 
cytotoxic T‑lymphocyte‑associated protein  4 and T‑cell 
immunoglobulin domain and mucin domain‑3, have attracted 
increasing attention for their ability to weaken the function of 
T lymphocytes and induce tumor immune escape. Blocking the 
interaction between PD1 and PD‑L1 has exhibited promising 
results in the treatment of several types of cancer, including 
breast cancer and squamous cell carcinoma of the head and 
neck (70,71). In GC, pembrolizumab, a PD‑1 inhibitor, has 
shown good results in phase I/II trials, with objective response 
rates of 11.6‑25.8% and low toxicity (72,73), and the combina-
tion of nivolumab and regorafenib, which respectively inhibit 
PD‑1 or VEFGR tyrosine kinase, also exhibits antitumor 
activity (74). However, the response to this therapy cannot be 
predicted due to a lack of effective biomarkers (72). GC‑MSCs 
upregulate PD‑L1 expression in GC cells by secreting 
IL‑8, which can regulate the STAT3 and mTOR signaling 
pathways (75). The role of GC‑MSCs in regulating PD‑L1 
in GC cells has not been investigated extensively. Further 
investigation of the involvement of GC‑MSCs in the regula-
tion of PD‑L1 expression and elucidation of the underlying 
mechanism may help the development of anti‑PD‑L1 therapy 
and may provide novel biomarkers.

5. Therapeutic opportunities for GC‑MSCs

Since MSCs can be isolated from bone marrow and adipose 
tissues, they have been used in numerous studies in past 
years (76,77). MSCs from non‑cancer tissues can suppress 
immune responses and have immune evasion properties; they 
are therefore stable in an allogeneic environment and display 
promise for cell therapy (78). For instance, exosomes from 
MSCs from non‑GC tissues and MSCs themselves can serve 
as vehicles to transport miRNAs or drugs and cytokines to 
tumors, thus suppressing tumor progression, according to 
laboratory tests and clinic trials (79‑81).
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Unlike MSCs from non‑GC tissues, GC‑MSCs cannot be 
used as drug carriers due to their critical role in tumor progres-
sion. Instead, they should be specifically targeted to eliminate 
their effect on tumor cell proliferation, drug‑resistance and 
migration. However, GC‑MSCs have no specific surface 
markers, and therefore they cannot be targeted without affecting 
other cells. Only the substances released by GC‑MSCs can 
serve as targets to suppress their tumor‑promoting capability. 
For example, GC‑MSCs can induce chemoresistance in tumor 
cells through FAO, and inhibition of FAO attenuates this 
phenomenon, suggesting that FAO may be a potential target to 
reduce chemoresistance in GC (64). Similarly, GC‑MSCs‑CM 
treatment can promote tumor cell proliferation and migration 
and increase pro‑angiogenic abilities through the secretion 
of IL‑8; therefore, the use of an IL‑8 neutralizing antibody 
may suppress the effects of GC‑MSCs (30). In addition, IL‑8 
produced by GC‑MSCs upregulates PD‑L1 expression in tumor 
cells and can thus induce tumor cell resistance to CD8+ T cells, 
and inhibition of IL‑8 can eliminate resistance (75). The afore-
mentioned studies indicate that target key modulators in the 
tumor‑promoting process of GC‑MSCs can suppress tumor 
progression and chemoresistance. Furthermore, this strategy 
may be effective in combination with other therapies, such as 
chemotherapy and anti‑PD‑L1 therapy.

Furthermore, miRNAs and cytokines secreted by 
GC‑MSCs can predict prognosis. For instance, GC‑MSCs 
have higher expression levels of miR‑214, miR‑221 and 
miR‑222 than GCN‑MSCs, and high expression levels of 
miR‑221 and miR‑222, or miR‑214 and miR‑222 in the tissues 
of patients with GC are positively associated with lymph node 
metastasis and serosal invasion, respectively (82). IL‑15 in the 
GC microenvironment is mostly derived from GC‑MSCs and 
is associated with lymph node metastasis (28). GC‑MSCs can 
secrete high levels of IL‑8, which predicts a poor prognosis in 
patients with GC (30). In summary, GC‑MSCs can potentially 
be developed into novel therapies and prognostic biomarkers.

6. Conclusions

In past years, the interaction between MSCs and tumors has 
gained increasing attention. The present review focused on the 
transformation of MSCs from non‑GC tissues into GC‑MSCs 
and the role of GC‑MSCs in tumor progression, chemoresis-
tance and immune escape. In addition to GC cells, immune 
cells and bacteria can be involved in the malignant transforma-
tion of MSCs into GC‑MSCs. GC‑MSCs can in turn promote 
tumor progression, induce chemoresistance and confer immune 
cells a tumor‑promoting phenotype. Regarding their thera-
peutic potential, the upstream or downstream modulators of 
GC‑MSCs can serve as targets to weaken their effect on tumor 
progression. However, the interaction between other stromal 
cells and GC‑MSCs, and the underlying mechanisms require 
further investigation, including the roles of natural killer cells 
and endothelial cells. In addition, specific surface markers of 
GC‑MSCs remain to be identified, which may facilitate the 
specific targeting of GC‑MSCs without affecting other cells. 
The association between GC‑MSCs and PD‑L1 should be 
investigated further, as it may provide new insight into PD‑L1 
co‑therapy. Despite numerous advances in the understanding 
of the effect of GC‑MSCs on tumor progression, elucidating 

the function and underlying mechanisms of GC‑MSCs may 
provide valuable information to improve the treatment of GC.
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