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Abstract. Recently, the increasing emergency of traffic acci-
dents and the unsatisfactory outcome of surgical intervention 
are driving research to seek a novel technology to repair trau-
matic soft tissue injury. From this perspective, decellularized 
matrix grafts (ECM‑G) including natural ECM materials, and 
their prepared hydrogels and bioscaffolds, have emerged as 
possible alternatives for tissue engineering and regenerative 
medicine. Over the past decades, several physical and chemical 
decellularization methods have been used extensively to deal 
with different tissues/organs in an attempt to carefully remove 
cellular antigens while maintaining the non‑immunogenic 
ECM components. It is anticipated that when the decellular-
ized biomaterials are seeded with cells in vitro or incorporated 
into irregularly shaped defects in vivo, they can provide the 
appropriate biomechanical and biochemical conditions for 
directing cell behavior and tissue remodeling. The aim of this 
review is to first summarize the characteristics of ECM‑G and 
describe their major decellularization methods from different 
sources, followed by analysis of how the bioactive factors and 
undesired residual cellular compositions influence the biologic 
function and host tissue response following implantation. 
Lastly, we also provide an overview of the in vivo application 
of ECM‑G in facilitating tissue repair and remodeling.
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1. Introduction

The extracellular matrix (ECM) derived from organs/tissues is 
a complex, highly organized assembly of macromolecules with 
an adequate three‑dimensional (3D) organization (1). Dry ECM 
powders can be further processed to generate various injectable 
hydrogels by enzymatical digestion. To match tissue defects 
and improve therapeutic outcomes, these ECM‑hydrogels 
have been combined with synthetic materials to fabricate 
electrospun nanofibers or 3D‑printed scaffolds/conduits via 
electrospinning technology or 3D printing. The prepared 
hydrogels or solid scaffolds can seed with stem cells and/or 
incorporate with growth factors (GFs) to further enhance their 
bioactivity and repair function. These extracellular matrices 
and their final products are all termed as the decellularized 
matrix grafts (ECM‑G) or the ECM preparations (ECM‑P). 
In addition to regulating intracellular signaling pathways for 
inducing cell adhesion, these biologic ECM‑P also provide a 
permissive environment for cell growth, proliferation, migra-
tion and differentiation, which have widely applied for the 
therapeutic reconstruction in heterologous tissue disorder (2). 
Commonly, ECM‑P consists of a complex mixture of struc-
tural and functional proteins, including collagen, fibronectin, 
laminin, glycosaminoglycans, and growth factors  (GFs). 
Besides abundant bioactive factors, its inherent cross‑linked 
polymeric network and suitable mechanical property, not only 
provides physical support for tissue integrity and elasticity, 
but also modulates the wound healing response towards tissue 
remodeling  (3,4). Additionally, ECM‑P has been used in 
various forms, such as scaffold incorporated with stem cells 
and/or GFs, and even as a bioink for constructing 3D‑printed 
conduits, which have been implanted in virtually every body 
system (5).
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Injectable materials prepared from untreated raw ECM 
frequently invoke chronic inflammatory response and host 
foreign body reaction in a variety of body systems, due to residual 
immunogenicity components, such as Galactose‑α(1,3)‑galactose 
(α‑gal), major histocompatibility complex class  I  (MHC I), 
endotoxins and cell‑derived nucleic acids  (6). Additionally, 
some pathogenic contaminations contained in the biological 
ECM material may also provoke severe immune rejection and 
foreign body response in preliminary xenografts (7). They are 
divided into two major categories: Viral particles/elements 
and salmonella (8). The former is particularly problematic in 
terms of xenozoonoses, including brucellosis, leptospirosis, 
and tularellosis. The latter mainly refers to prions, which are 
derived from xenogeneic and allogeneic tissue sources (9). Thus, 
the objective on any decellularization process is maximizing 
the removal of these residual pathogenic contaminants or 
extracellular antigen molecules, while retaining the functional 
performance of non‑immunogenic ECM and maintaining 
its native ultrastructure and mechanical strength. Currently, 
the most commonly utilized methods for decellularization of 
xenogeneic and allogeneic tissues involve physical, chemical, 
and enzymatic approaches (10). The choice of these decellu-
larization approaches (single or combined method) depends on 
the complex intrinsic structure, composition, and mechanical 
properties of the raw ECM (11). Following the decellularization 
and solubilization of raw ECM, the resulting ECM‑P should 
still retain the tissue‑specific composition and nanostructure 
that are essential in contributing to ischemic injury repair, tissue 
regeneration or organ replacement.

The use of ECM grafts (ECM‑G) for tissue engineering 
and drug delivery has already been broadly investigated (3). 
The ideal ECM‑G for regenerative medicine should be clear of 
cell residues from the tissue source, and comprises a loosely 
organized nanofibrous architecture with interconnecting 
pores, which are essential for nutrient and gas exchange for 
healthy cell migration and growth (12). In addition to having 
biocompatible, biodegradable, and adequate biomechanical 
properties, the ECM‑G should also display appropriate visco-
elasticity and match the permeability property of the autologous 
homologous tissue (13). Moreover, the proteolytic turnover of 
grafted ECM should match the rate of new tissue formation in 
order to withstand mechanical stress from neighboring tissues 
during the regeneration period (14,15). Furthermore, ECM‑G 
has been developed as a delivery vehicle for incorporating 
GFs and/or cells to enhance the repair and regeneration of the 
damaged tissues and holds promising potential for improving 
the therapy of traumatic diseases.

In this review, we firstly provide an overview of the unique 
properties of ECM‑G and different decellularization methods 
for achieving sufficient cell removal from source tissues. Then, 
we discuss the effect of undesired residual cellular material 
invoking the degree of immune response. Finally, applying 
ECM‑G for tissue engineering and regenerative medicine 
will be discussed, including current limitations and future 
directions (Fig. 1).

2. ECM‑G characterization

ECM‑G is a class of naturally derived proteinaceous 
biomaterials, with excellent biophysical, biomechanical, and 

biochemical properties, which can provide biological signals 
and maintain tissue microarchitecture for guiding on cell 
growth, differentiation, neovascularization and functional 
improvement  (16). It has been shown that collagen and 
elastin, both of which are the most abundant proteins in the 
ECM‑G, played a critical role in controlling tissue osmotic 
pressure and regulating intracellular signaling cascades 
that direct stem cell differentiation and function  (17,18). 
Glycosaminoglycans (GAGs) are also regarded as important 
associated macromolecules found in the ECM‑G, as they 
generally served as crosslinkers for carrying GFs because 
their binding sites are highly negatively charge, leading to 
high affinity to cationic GFs (19). Thus, ECM‑G also serve 
as a drug delivery vehicle for the controlled release of GFs in 
a spatial and temporal manner when applied in pre‑clinical 
research. Moreover, their thermo‑responsive feature is suitable 
for injecting a cavity site of damage via a catheter or syringe. 
In addition, the three‑dimensional cross‑linked network of 
fibers is another feature that renders them capable of holding 
large amounts of water. Although the pore size, fiber diameter 
and fiber alignment of ECM‑G vary from different source 
tissue, its typical nano‑scale topography is enough to be 
sensed and manipulated by infiltrating cells (20). The visco-
elastic property of ECM‑G is another important parameter 
for evaluating stiffness and solid‑like behavior, which can 
be accurately determined by turbidimetric gelation kinetics 
and rheology. A suitable viscosity of the pre‑gel solution is 
favorable for supporting stem cell differentiation and prolif-
eration for in vitro culture and promoting the constructive and 
functional outcome of tissues and organs. For example, the 3D 
meniscus‑derived hydrogel with storage modulus (a typical 
index for reflecting viscosity) of 838±296  Pa (12  mg/ml) 
showed good cellular compatibility by facilitating the differ-
entiation of bone marrow mesenchymal stem cells into nucleus 
pulposus‑like cells after culturing for 2 weeks (21). In vivo 
examination of a low viscosity ECM hydrogel derived from 
porcine spinal cord showed that it remained within the defect 
site at body temperature (37˚C) condition which stimulates 
neovascularization and axonal outgrowth into the cavity site 
of the acute model of spinal cord injury (SCI) (22).

The different matrix density of various hydrogels, including 
water content and macromolecular density, is mainly depen-
dent on tissue sources and status (23). Generally, hydrogel 
composition and density play important roles in regulating 
cell activity and phenotype (24). The abundant water content 
filling the space between hydrogel crosslinks allows for the 
diffusion of solute molecules. Bio‑activate molecules, such 
as GFs, proteoglycans and collagens, are necessary for the 
activation of intracellular signaling cascades through integrin 
receptors to induced cell adhesion, migration, proliferation 
and differentiation (1). Thus, an ideal natural hydrogel should 
retain several distinct ECM macromoleculars as much as 
possible and contain water with proper proportion in case 
of reduced mechanical force and viscoelastic property for 
the prepared hydrogel products. Preclinical rodent studies 
using porcine‑derived urinary bladder matrix (UBM)‑ECM 
hydrogel with the concentration of 8 mg/ml implanted into a 
14‑day‑old stroke cavity induced a robust invasion of endothe-
lial cells with neovascularization for brain regeneration (25). 
Further research will focus on optimizing the matrix density 
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of various hydrogels to open new therapeutic avenues for tissue 
engineering and regenerative medicine.

Overall, these topological, biochemical and mechanical 
properties of the ECM‑G are essential for modulating diverse 
fundamental aspects of cell biology and functional outcomes 
in disease models. Generally, the intrinsic property of a 
specific ECM‑G is mostly determined by the source of tissue 
type and species. However, the optimal decellularization 
method is critical for the resulting ECM quality concerning 
ultrastructure and molecular composition  (26). Thus, 
successful procedures for ECM preparations must relate to the 
tissue of origin, comprehensively utilizing physical, chemical 
and biological methods to remove cellular material as much 
as possible, while retaining the ECM biopolymer components.

There are extensive molecular changes occurring in the 
ECM including post‑translational modification (e.g., glyco-
sylation), proteolytic processing, crosslinking, assembling 
into polymers and higher complex structures. All these 
processes are crucial for ECM properties and function, 
turnover and stability, as well as cellular interactions. These 
modifications solve the specific issue of different diseases. 
For instance, it has been shown that ECM proteins, such as 
collagen, contained in the subendothelial basement membrane 
could activate platelets, leading to thrombosis at the site of 
anastomosis during vascular surgery (27). To overcome this 
shortcoming, chemically modified vascular ECM was devel-
oped via covalently immobilizing anticoagulant heparin onto 
the ECM using collagen binding peptide (CBP) as an interme-
diate linker that selectively binds collagen within ECM. This 
heparin‑modified ECM exhibits beneficial effects on reducing 
long‑term thromboresistance and targeting VEGF to facilitate 
the adhesion and growth of endothelial cells (28). Another 

representative study by Li et al identified nanofiber‑hydrogel 
modification for repairing SCI  (29). They engineered an 
injectable nanofiber‑hydrogel composite (NHC) by covalently 
conjugating hyaluronic acid (HA) hydrogel with electrospun 
polycaprolactone (PCL) fibers. This unique bonding resulted 
in a structure that possessed mechanical strength and porosity 
to prevent contused spinal cord collapse and induce cellular 
migration within the injury site. After injecting this NHC into 
the cavity region of an adult rat with spinal cord contusion, 
macrophage polarization, vascularization, neurogenesis and 
axonal growth became significantly ameliorated at 28 days 
treatment.

3. Methods of decellularization treatments

Decellularization has become a popular technique for 
transforming different organs, such as the skin, heart, liver, 
kidneys, muscle, sis mucosa, nerves, tendons, ligaments 
and blood vessel, into bioactive ECM‑G through physical 
and/or chemical processing  (30). Since different organs 
or tissues have their unique compositions and mechanical 
behavior which are closely associated with regulating cell 
behavior and tissue regeneration, these unique compositions 
and inherent property must be retained as much as possible 
during decellularization to obtain the biologic ECM‑G (10). 
Several popular methods have been examined for performing 
decellularization, which can be mainly classified as physical, 
chemical and biological approaches (31). These decellulariza-
tion methods require various decellularization agents that 
involve specific purpose, extent, influence factor and effect on 
ECM (Table I). A complete decellularization process should 
combine these approaches together, that is, firstly destroying 

Figure 1. Schematic representation of ECM hydrogel from preparation to application. The native tissues can achieve a diversity of ECM hydrogels via combina-
tion of physical, chemical and biological approaches together. The prepared ECM hydrogels themselves with/without incorporating growth factors and/or stem 
cells are used for tissue repair and regeneration, including spinal cord injury, peripheral nerve injury and myocardial infarction. Some of these may become a 
primary option for remodeling a variety of clinical tissues defects.
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Table I. Selected agents and techniques for decellularizing tissue.

Methods/Refs.	C haracteristics	 Effects on ECM

Snap freezing	D ecellularization of tendinous, ligamentous tissue	 Disruption of cellular membranes and
(103‑105)	 and nerve tissue	 inducing cell lysis
	 Usually combined with complement chemical and
	 enzymatic techniques	
	 Affected by temperature	
Mechanical	 Tissues with hard structures	 Largely damage the ECM structure
sonication (106,107)	 Usually combined with complement chemical and 
	 enzymatic techniques
	 Affected by mechanical frequency and amplitude	
Mechanical agitation	 Removal of cellular contents	D irect damage to ECM
(44,108)	 Usually combined with complement chemical and 
	 enzymatic techniques
	 Affected by the speed and length of mechanical agitation	
Triton X‑100	 Removing nuclear and cytoplasmic waste	 More effective cell removal from thin 
(109‑111)	 Mixed results with efficacy	 tissues
	D ependent on tissue	 Mild disruption of ultrastructure and
	 Affected by exposure time, temperature, and concentration	 removal of GAG
SDS (45,112,113)	 Applying for retaining the overall matrix structure	 Removes nuclear remnants and
	 Very effective for removal of cellular components	 cytoplasmic proteins
	 from tissue
	 Affected by exposure time, temperature, and concentration
Sodium deoxycholate	 Very effective for removing cellular remnants	D amages the matrix, similar to the SDS
(114‑116)	C ausing disruption to the native tissue architecture
	 Affected by exposure time, PH and concentration	  
CHAPS (44,117)	C ell removal from thinner tissues, such as blood 	 Effectively removes cells in thin tissues
	 vessels and lung	 and mildly disrupts ultrastructure in
	 95% removal efficiency of nuclear materials	 thin tissues
	 Affected by pH and concentration	
Trypsin (47,48)	 Specifically target ECM proteins	 Digestion of the proteins in the ECM,
	 Strongly damage the ECM proteins collagen laminin, 	 in particular collagen laminin, and
	 and fibronectin	 fibronectin
	 Affected by exposure time, temperature, pH and 
	 concentration	
Pepsin (118,119)	 Generally target ECM proteins	D amage ECM proteins if digested too
	 Milld damage the ECM proteins collagen laminin, 	 long
	 and fibronectin
	 Affected by exposure time, temperature, pH and 
	 concentration	
Lipase (120,121) 	 Specifically targets lipids	 Hydrolyzing fat to derive adipose
	 Strongly efficiency	 derived ECM
	 Affected by exposure time, temperature, pH and	
	 concentration
Collagenases (123)	 Specifically targets collagen at early step	 Effectively removes collagen in ECM;
	 Strongly efficiency	 Prolonged expose will disrupt ECM
	 Affected by exposure time, temperature, pH and 	 ultrastructure
	 concentration
Nucleases (123,124)	 Specifically break down DNA or RNA sequences	 No function on ECM proteins;
	 Highly efficiency	 Only removal of nucleotides
	 Affected by temperature, pH and concentration	

SDS, sodium dodecyl sulfate; CHAPS, 3‑[(3‑cholamidopropyl)dimethylammonio]‑1‑propanesulfonate; GAGs, glycosaminoglycans.
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the cell membrane via physical shaking or ionic detergents, 
followed by solubilization of cytoplasmic and nuclear cellular 
components using sodium dodecyl sulphate  (SDS) and sodium 
deoxycholate, and finally digestion of the extracellular matrix 
into a homogeneous gel by trypsin, dispase and phospholipase. 
Furthermore, this effective removal of cellular components is 
able to achieve further improvement through coupling with 
mechanical agitation. Nevertheless, it should be highlighted 
that the entire removal of cytoplasmic and nuclear components 
while preserving the entire/native extracellular matrix entities 
and structure is an extremely difficult task. The optimal recipe 
of decellularization agents is dependent upon different specific 
tissues, as well as the intended clinical application (32). Several 
decellularization methods have been developed for a variety of 
tissues (Table II) and these will be reviewed in the following 
sections.

Physical methods. A variety of physical methods, such as 
freezing, mechanical agitation and sonication, have been 
frequently applied to facilitate tissue decellularization. Snap 
freezing has been used to disrupt cell‑cell and cell‑matrix 
bonds via the formation of intracellular ice crystals (33). After 
rapidly reducing the temperature of a tissue to the freezing 
point, cell lysis occurred immediately, facilitating the removal 
of immunogenic material from the tissue. However, it should 
be noted that the rate of temperature change for special tissue 
must be carefully controlled to protect matrix integrity from 
ice crystals disruption. Similarly, mechanical agitation is 
another effective method for conducting cell lysis using a 
magnetic stir plate or an orbital shaker (34). However, for tissue 
from the small intestine and the urinary bladder, mechanical 
agitation alone is not sufficient to completely remove intracel-
lular contents and immunogenic macromolecules due to the 
fragility of the organs and their internal structural complexity. 
Thus, this technology is only used at the beginning of the 
decellularization protocol to enhance the efficacy of further 
efforts to clear cellular debris from the tissue. Sonication is 
also commonly used to destroy cell membranes to achieve 
the goal of removing nuclear remnants and cytoplasmic 
proteins (35). Moreover, the optimal magnitude or frequency 
of sonication for breaking down cells is dependent on the 
composition, volume, and density of the tissue. Along with 
chemical or enzymatic methods, these mechanical methods 
have been used successfully in assistance of cell lysis and 
removal of cellular debris.

Chemical methods. Chemical methods involve the use of a 
variety of detergents to disrupt cell‑cell and cell‑matrix bonds, 
which have been regarded as the most extensive and robust 
method for decellularization (36,37). These detergents can be 
classified as four categories: Ionic (sodium dodecyl sulfate: 
SDS), nonionic (Triton X‑100), zwitterionic (CHAPS), alkaline 
and acid. The mechanism of these detergents for decellulariza-
tion includes facilitating cell lysis and solubilizing the released 
cellular components through the formation of micelles (38). 
The choice of decellularized detergents depends on tissue 
characteristics, such as cellular density, lipid content, and 
thickness. The following section will summarize the optimal 
recipe of decellularization agents for removing cellular 
components efficiently from the entire organ system.

Ionic detergents are subdivided into cationic and anionic 
solutions. Among them, sodium dodecyl sulfate (SDS) and 
sodium deoxycholate are representative examples for the 
removal of cellular debris from tissues (39). SDS is commonly 
used in the removal of nuclear remnants and cytoplasmic 
proteins, while sodium deoxycholate proved to be superior 
for solubilizing cytoplasmic and nuclear membranes. Thus, 
they are generally combined together to effectively eliminate 
cellular content in the medullary regions of dense organs, 
such as the kidney (40). However, there are some limitations 
when fusing ionic detergents for decellularization, such as the 
denaturation of ECM proteins and disruption of native tissue 
structure (41). Conversely, Triton X‑100, a nonionic detergent, 
has the least negative impact on the protein structure and is 
therefore commonly used for decellularization protocols (42). 
When Triton X‑100 is applied to decellularize a heart valve, a 
complete removal of nuclear remnants and maintenance of the 
native ECM structure and composition after 24 h immersion 
is observed (43). CHAPS is a zwitterionic detergent that has 
been confirmed to have a mild ability to retain mechanical 
strength when used for the decellularization of lungs (44). 
CHAPS‑treated artery tissue is presented as an intact structure 
with native collagen and elastin morphology and the collagen 
content is approximately the same as the native artery (45). 
Acidic and alkaline solutions, including HCl and NaOH, are 
commonly used to disrupt cell membranes and solubilize the 
cytoplasmic component at low concentrations. Moreover, it has 
also been shown that pH change in ECM digestible solution 
to prepare porcine spinal cord tissue via sequentially adding 
NaOH and HCl, increased the rate of gelation (46). Regarding 
the types and concentrations of chemicals employed in the 
decellularization process, it is generally more advantageous 
to use different chemicals and form a proper combination to 
exert the optimum decellularization efficiency.

Enzymatic methods. Enzymatic technology for decellulariza-
tion is frequently utilized to disrupt the interactions between the 
cells and the ECM, or to remove antigenic material to decrease 
immunogenicity  (47). Generally, proteases (e.g., trypsin, 
pepsin), nucleases (e.g., DNase, RNase), lipase, heparinases 
and hyaluronidase are the most widely applied proteolytic 
enzymes in decellularization protocols for a variety of tissues. 
The advantages of using enzymatic treatments for efficient 
decellularization are listed as follows  (48,49): i) Efficient 
decellularization via combining with other detergents; ii) main-
taining the structural integrity of the ECM for complex organs; 
iii) targeting specific target molecules removal in tissues, such 
as Gal epitope and DNA. It has been shown that enzymatic 
methods for the removal of cell debris are through specifically 
targeting the proteins to disrupt cell‑ECM adhesions. As one 
of the most commonly used proteolytic enzymes, trypsin inac-
tivates cell surface receptors, apart from adhesion complexes. 
Moreover, it exerts the maximal enzymatic activity to disrupt 
cell‑matrix interactions in tissues at the condition of 37˚C and 
pH=8.0 (50). Although trypsin alone is able to decellularize 
a soft tissue entirely, efficiency in the removal of complex 
tissues is shown to be greater when it combines with other 
detergents, including EDTA, and NaCl (51). Pepsin in weak 
acetic acid increases the yield of highly crosslinked fibrillar 
collagen (e.g., type I from skin, bone or tendon) but decreases 
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the stability of reconstituted gels at neutral pH. Nucleases, 
including DNases and RNases, are used to cleave nucleic 
acid sequences after cell lysis in tissues. Recent findings have 
shown that intervertebral discs subjected to treatment with 
0.02 mg/ml DNase and 20 mg/ml RNAse, not only removed 
DNA residual at acceptable levels of less than 50 ng/mg dry 
weight, but also markedly reduced the total processing time 
of ECM digestion (52). Lipase specifically targets ester bond 
of triglycerides to hydrolyze lipase into glycerol and fatty 
acids. Thus, it is widely used for digesting lipase from fatty 
tissues, including intestinal mucosa, human nerve and heart. 
In addition, heparinases and hyaluronidase aid in releasing 
growth factors, exposing proteins such as surface receptors 
and decreasing the water binding capacity (happening also in 
arthritic conditions). Overall, adding enzyme as the final step 
for solubilizing decellularized tissue may be desirable or even 
necessary, particularly for complete removal of cell residues or 
undesirable ECM constituents from dense tissues.

4. Removal of residual cellular components and chemicals

It is well known that to prepare proper ECM hydrogel after 
decellularization and solubilization, it is required to ensure the 
removal of undesired materials and decellularization agents 
as much as possible, while mostly retaining the desired ECM 
components and native architectures as well (53). The undesir-
able residual cellular materials include cellular‑derived DNA, 
endotoxins, xenoantigens and pathogenic contaminations, as 
well as the decellularization agents mentioned in the above 
chapter. The residual cellular‑derived DNA can be regarded 
as undesirable remnants of decellularization rather than an 

accurate and reliable representative universal reporter of cellular 
contamination (54). Current reports of minimal criteria for 
acceptable amounts of residual DNA in biologic ECM hydrogel 
is less than 50 ng/mg of dry product with fragment length of 
less than 300 bp (55), which can be detected simply through 
commercial dye‑based optometric assays or other histologic 
staining techniques. As contaminants in biologically derived 
materials, endotoxins have the potent ability to stimulate acute 
inflammatory responses for different cell types with varying 
threshold levels of contamination. Presently, the US FDA has 
stipulated that the detection limit of endotoxins in all medical 
devices, including hydrogels made from decellularized tissues, 
need to meet the requirement of less than 0.5 EU/ml (56). 
Based on the fact that endotoxin determinations are required 
for ECM‑derived materials, the use of commercialized limulus 
amebocyte lysate test has been accepted as a highly sensitive 
and accurate method for assessing the safety of a wider range 
of ECM‑P (57). Xenoantigens, including α‑gal and MHC‑I, 
are the two major extracellular components presented in the 
purified ECM‑G. When applied in clinical studies, these two 
antigens could promote recruitment and activation of immune 
cells, such as T‑cells and B‑cells, to secrete a large number of 
cytokines and chemokines that strongly invoked implant rejec-
tion and a host response (58). Thus, these xenoantigens should 
be eliminated from the prepared ECM‑G as much as possible. 
Besides xenogenic cellular antigens, residual chemicals in the 
decellularized materials is also an important concern.

The decellularization steps involve the utilization of a wide 
variety of chemical agents. These residual chemicals within 
the ECM‑G are mainly various non‑ionic and ionic solutions, 
including Triton X‑100 and SDS (10). A high concentration of 

Table II. Applications of different organ decellularization techniques to various organs.

Organ	D ecellularization agent	 Solubilization protocol	 Species	 (Refs.)

Heart	 10 U/ml heparinized water	 10X PBS	 Porcine	 (125)
	 5.0% SDS	 RT, 48 h
	 1% (v/v) Triton X‑100	
Lung	 0.0035% Triton‑X 100	 Perfusion	 Rat	 (126)
	 0.1% SDS	 1.5 mg/ml pepsin
	 0.1% potassium laurate	
Liver	 4% Triton X‑100	 Voytik‑Harbin	 Rat	 (127)
	 10 mM Tris‑HCl	 10 mg pepsin
	 0.25% trypsin	
Kidney	 Gradient of SDS (0.5%‑1.0%)	 Perfusion 	 Rat	 (128)
	 0.1% Triton X‑100	 0.1 M HCl
Skin	 1% SDS and 0.5% pen/strep	 Perfusion	 Murine	 (30)
	 Isopropyl alcohol	 0.1 M HCl
	 0.001% Triton X‑100	
Nerve	 3.0% Triton X‑100	 0.01 M HCl	 Porcine	 (84)
	 4.0% SDS	 0.1 M NaOH
Skeletal muscle	 0.7% NaCl	 Perfusion	 Mouse	 (129)
	 1% Triton X‑100	 0.02 M HCl
	 70% ethanol	 24 h

Perfusion involved i) Triton X‑100 + SDS; ii) stir plate, RT, at least 48 h; iii) neutralized to pH 7.4 and physiological salt with NaOH and 10X PBS.
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these residual chemicals within the ECM‑G will most likely 
provoke an adverse host tissue response and lead to cytotox-
icity (59). Thus, care must be taken to flush residual chemicals 
away from ECM‑G after decellularization. As these residual 
chemicals have high affinity with ECM‑related proteins, 
there is no optimal method for the complete removal of these 
residual chemicals, except for persistent washing steps with 
sterile water (59). As such, we need to create a useful detergent 
that has the capability of absorbing these residual chemicals 
and develop a standardized analytical technique that can accu-
rately detect the presence of chemicals after decellularization.

5. Application of ECM‑P in regenerative medicine

In recent years, the use of ECM‑P for surgical applications has 
become increasingly prevalent, especially for the field of nerve 
regeneration and bone repair (60). It is well known that ECM‑P 
contain a complex meshwork of proteins and polysaccharides, 
which provides biochemical support to the surrounding cells for 
promoting their survival, proliferation and differentiation (61). 
Moreover, they also possess an intact three‑dimensional 
structure and a certain intrinsic mechanical property, which 
contribute to creating an optical microenvironment for wound 
healing and tissue remodeling (62). Additionally, they are used 
as in vitro cell culture platforms for seeding and differentiating 
stem cells into tissue‑ and organ‑specific cells, or regarded as a 
bio‑therapeutic vehicle capable of delivering GFs or cytokines 
to control their release in a steady manner at the local site of 
action (3,63). Thus, ECM‑P have been used in different ways 
and combinations for guiding cell regrowth and tissue repair. 
The applications of ECM‑P for numerous pre‑clinical and 
clinical restoration of dysfunctional cells/tissues are described 
in the following subsections.

Cellular response to ECM‑P. The ECM‑P are composed 
of various distinct components that create a permissive 
environment for cell spreading, migration, proliferation, and 
differentiation. They also regulate cellular phenotype and 
behavior in various forms. Emerging researches and prelimi-
nary clinical studies have used this matrix for 3D cell culture. 
For instance, when human mesenchymal stem cells were 
encapsulated into a hydrogel with interpenetrating network 
to form a 3D culture model, the components of collagen and 
fibrillar could interact with the stem cell surface receptors, 
CD44 and RHAMM15, to support their spreading and focal 
adhesion formation  (64). Furthermore, the combination of 
human umbilical cord mesenchymal stem cells and umbilical 
vein endothelial cells in a 3D co‑culture system formed by 
photocrosslinking GelMA hydrogel efficiently stimulated cell 
proliferation and differentiation as well as vascularization (65). 
Besides acting as the 3D culture platforms, ECM‑P are also 
proposed for the construction of bioinks for tissue 3D printing. 
Lee and colleagues constructed a highly accurate human 
heart model which enabled rapid cellular infiltration and 
microvascularization using the freeform reversible embedding 
of suspended hydrogels via 3D‑bioprinting technique (66). 
Spatial organization of cardiac progenitor cells into porcine 
left ventricle tissue‑derived decellularized extracellular matrix 
bioink using 3D cell printing method could effectively facili-
tate cell survival and differentiation, and improve cell‑to‑cell 

interactions, resulting in beneficial effects on reducing cardiac 
hypertrophy and fibrosis along with improving cardiac 
function after patch transplantation  (67). ECM hydrogels 
incorporated with stem cells hold great promise for the 
formation and growth of human organoids which can be 
applied as a therapeutic tool for various disease models. The 
earliest report identified intestinal organoid formation through 
expansion of mouse and human intestinal stem cell matrices 
in an appropriate 3D matrix hydrogel (68). Subsequently, the 
use of ECM hydrogels derived from decellularized porcine 
small intestine mucosa endodermal organoid has the advan-
tage for providing a structural support and biochemical 
signals to enable formation and growth of endoderm‑derived 
human organoids, including hepatic, pancreatic, and small 
intestine (2). Similarly, Saheli et al reported that a 3D sheep 
liver‑derived ECM hydrogel has the capability to tailor the 
biochemical and biophysical microenvironment for inducing 
a functional liver organoids generation by co‑culturing human 
hepatocarcinoma cells, human mesenchymal and endothelial 
cells at a 3:2:1 ratio (69). Therefore, hydrogel‑based organoid 
morphogenesis has been employed for the construction of 3D 
tissue models in vitro to revolutionize biomedical research and 
drug development.

Although 3D organotypic construct has provided a suit-
able platform for potential applications in imitating disease 
modeling and organ development, as well as regenerative 
medicine, there are some obstacles that need to be over-
come. One major issue is low reproducibility of organoids 
and limited capability of differentiation into special tissue 
and organ types (70). It is well known that cell expansion, 
differentiation and self‑organization are mainly dependent 
on inherent genetic reprogramming and external microenvi-
ronmental cues, such as distinct biochemical and biophysical 
factors (71,72). To reproducibly and accurately recapitulate the 
expansion and differentiation of specific organoids, emerging 
solutions adopted gene reprogramming technology to 
directly alter specific gene of DNA in stem cells or utilized 
engineering approaches to precisely control cell‑matrix inter-
actions, nutrient supply and the local stiffness of the organoids 
formation (73,74). Another issue is the lack of vascular system 
during the generation of organoids (72). Neovascularization is 
of great importance for maintaining tissue oxygenation and 
fluid homeostasis. This problem may be solved by utilizing 
prevascularized scaffolds from matrix hydrogels modules via 
sacrificial printing (75).

It should be noted that ECM‑P sourced from different 
tissues/organs contained some specific molecules that play an 
important role in cell phenotype and behavior (21). Logically, 
the native ECM‑P of the homologous tissue or organ sources 
have superior biological property for inducing cell survival, 
proliferation and differentiation, as well as exerting multiple 
regenerative medicine therapies (3). It has been reported that 
the canine sciatic nerve‑specific extracellular matrix‑based 
hydrogel had the inherent ability to increase the M2 macro-
phage ratio and enhance Schwann cell migration, leading to 
functional recovery and nerve repair in a rodent nerve gap 
defect model (76). In addition, results of a study by Keane et al 
showed that a homologous esophageal ECM‑gel derived from 
small intestinal submucosa had more biological advantage 
in enhancing the migration of esophageal stem cells and the 



JIANG et al:  EXTRACELLULAR MATRIX GRAFTS: FROM PREPARATION TO APPLICATION470

formation of 3D organoids than that of the non‑homologous 
ECM‑gel isolated from urinary bladder (77). These outcomes 
indicated that the site‑specific or homologous ECM hydrogel 
could provide a set of tissue‑specific matrix and cell‑secreted 
molecules for promoting site‑appropriate differentiation 
of stem cells and maintaining site appropriate phenotype 
in vitro.

ECM‑P for preclinical applications. The decellularized tissue 
materials inherit various biochemical components that are 
favorable for organ development, tissue repair, and wound 
healing. Currently, ECM‑P have been successfully used in a 
variety of pre‑clinical animal model studies, such as spinal 
cord injury (SCI), peripheral nerve regeneration, myocardial 
repair, and so on (1,78). The reason for ECM‑P serving as a 
suitable substitute for damaged tissue restoration is their ability 
to provide a native tissue microenvironment for coexisting and 
interacting with specific body tissues or physiological systems 
without provoking strong immune and toxicity responses. 
Besides these unique properties, numerous proteins including 
collagen, elastin, fibrillin, and fibulin in the ECM‑P also acti-
vate a series of downstream signals of PI3K/AKT, MEK/ERK 
and/or Rho A/ROCK to exert their biological effect via binding 
to cell surface receptors  (79‑81). In additional, associated 
macromolecular non‑protein glycosaminoglycans found in the 
ECM‑P reversibly adsorb GFs and cytokines, expanding their 
application for tissue morphogenesis and organ development. 
Presently, we will discuss ECM‑P for preclinical applications 
through two main aspects: The nerves and the heart.

The adult nervous system, classified into the central 
(CNS) and peripheral (PNS) regions, initiates a biological 
response via receiving internal and external stimuli on the 
neuronal membrane. As the longest and thickest nerve in the 
PNS, sciatic nerve arranges the movement and sensation of 
leg and foot muscle. If sciatic nerve suffered from traumatic 
injury, surgery or compression, the partial or total loss of 
motor, sensory, and autonomic functions are bound to happen, 
leading to restricted activity and affecting the quality of life for 
clinical patients (82). An established strategy for therapeutic 
interventions is using ECM‑P, such as ECM‑based conduit or 
scaffold incorporated with/without GFs or macromolecules, 
to implant into the lesion region  (83). This technique, not 
only provides mechanical support for cell adhesion, but also 
produces insoluble microenvironmental cues for improving 
nerve functional recovery. Thus, this material is used widely 
for peripheral nerve regeneration. A decellularized porcine 
nerve matrix hydrogel could support SC proliferation in vitro 
and promote axon regeneration, myelination, and functional 
recovery when combined with electrospun conduits together 
to repair 15‑mm rat sciatic nerve defect model in vivo (84). 
Shuai et al have successfully developed a human decellular-
ized nerve scaffold via combining decellularized nerve matrix 
hydrogel and glial‑derived neurotrophic factor together and 
applying it to bridge a 50 mm sciatic nerve defect in a beagle 
model. The result showed that this nerve scaffold had excel-
lent effects on promoting motor function recovery and nerve 
tissue remodeling (85). Additionally, studies have confirmed 
that alginate/hyaluronic acid 3D scaffold was used success-
fully to direct the differentiation of encapsulated gingival 
mesenchymal stem cells towards neurogenic tissues for nerve 

regeneration therapies (86). Overall, these biological ECM‑P 
derived from mammal sciatic nerve showed various structural 
and functional characteristics for enhancing peripheral nerve 
regeneration.

The CNS trauma, including traumatic brain injury (TBI) 
and SCI, initiates a cascade of changes at both cellular and 
molecular level, which disturbs the microenvironmental 
homeostasis, impairs axon regeneration and inhibits full 
functional recovery. Injectable hydrogel with appropriate 
mechanical properties has been applied most extensively 
for both injury models (22). It has been demonstrated that 
urinary bladder matrix hydrogel injection alone decreased 
lesion volume and myelin disruption, as well as improved 
neurobehavioral recovery following TBI (87). Further studies 
demonstrated that transplantation of proliferating neural stem 
cells in bioactive urinary bladder matrix hydrogel significantly 
ameliorated memory and cognitive impairments following 
TBI  (88). Similarly, extensive findings also apply ECM‑P 
for conducting SCI trial. It has been reported that injection 
of thermosensitive poly(organophosphazenes) hydrogel 
into the cystic cavities of injured spinal cord could support 
axon growth, reduce cavity volume and decrease locomotor 
deficit (89). Use of synthetic matrix materials, seen in a study 
by Hong et al, included PEGDA and GelMa been fabricated 
into a spinal cord scaffold via 3D printing (90). Their results 
showed significant improvements in motor functional outcome 
and axonal elongation from the lesion site into the distal host 
spinal cord.

Myocardial infarction (MI) is a term for an event of heart 
attack with an increased risk of morbidity and mortality (91). 
Porcine myocardial ECM hydrogel for treating progressive 
heart failure following MI has been investigated for recent 
regenerative therapy application, because this ECM mate-
rial is capable of assembling into a nanofibrous network 
that allows cell migration and has tissue‑specific cues that 
are in favor for appropriate cardiac tissue remodeling (92). 
For instance, decellularized myocardial matrix hydrogel has 
become an alternative option for MI treatment and achieved 
long‑term functional stabilization and improvement in 
heart function  (93). However, simple use of solubilized 
porcine myocardial ECM hydrogel for MI application has 
some problems, such as limited mechanical strength and 
rapid degradation  (94). To overcome these limitations, 
Efraim et al presented a newly‑developed injectable scaffold 
via cross‑linking decellularized porcine cardiac extracellular 
matrix hydrogel with chitosan, which exhibited significant 
improvement for cardiac tissue regeneration when injected 
into rat hearts following acute and chronic MI (95). Moreover, 
use of nanocomposite hydrogel as a carrier for the delivery 
of the mesenchymal stem cells showed an efficient improve-
ment in capillary density and myocardial regeneration, 
as well as reduction in scar area (96). Thus, incorporation 
of stem cell and/or cytokines within the myocardial ECM 
hydrogel represents a viable option for the treatment of acute 
myocardial infarction.

ECM‑P for clinical applications. The use of allogeneic 
or xenogeneic ECM‑P, which are commercially available 
for more than 20 years, have become a primary option for 
remodeling a variety of clinical tissues defects, such as the 
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myocardium reconstruction, bone regeneration and nerve 
repair  (3). Most commercial products from various ECM 
sources have been reviewed in depth elsewhere (97). Thus, 
we just list some of their therapeutic outcomes. One example 
for evaluating MI repair in clinical trials is myocardial ECM 
hydrogel (identifier: NCT02305602). This heterologous 
material had the ability to go through a cardiac injection 
catheter to enhance vascular cell infiltration and cardiomyo-
cyte survival (98). In parallel, previous findings have shown 
that Avance® Nerve Graft (AxoGen Inc.) has been used to 
repair human sciatic nerve defect and achieve positive axon 
regrowth and motor functional recovery  (99). Besides, a 
biocompatible hydrogel scaffold (Geistlich Pharma  AG) 
isolated from the decellularized and demineralized bone 
has confirmed promising outcomes for repairing early and 
mid‑term clinical osteochondral knee defects  (100). The 
common features of these ECM‑P for extensive applications 
of regenerative medicine can be categorized as follows: 
i) Preserving meshwork of native architecture and biologi-
cally active molecules; ii) excellent mechanical and structural 
profiles; iii) biodegradation and temperature‑sensitive prop-
erty; and iv) easily integrating with the native tissue by filling 
the irregular defects. In this sense, ECM‑P have provided an 
efficient therapeutic approach to guide tissue regeneration 
and replacement.

6. Challenges and future outlook on ECM‑P

Although ECM‑P appear to have many advantages, there are 
some existing issues that need to be addressed. One problem 
is tissue homogeny. It has been shown that tissue sources, 
including the species, age, and specificity, can significantly alter 
tissue‑specific cell phenotype and function (101). Therefore, 
selection of the proper hydrogel product is the precondition 
for clinical tissue reconstruction. Another issue is product 
size and shape. As the cavity region of damaged tissue is 
irregular, implantation of pre‑formed scaffolds is usually inef-
ficient (102). At this condition, injection of gelatinous liquid 
is probably more suitable for treating complex disease and 
injury models. Additionally, requirements may be completely 
different when ECM‑P were used for replacing a heart valve or 
a piece of aorta, repairing wounds or defects in skin, mucosa, 
joints, or bones. Thus, the design of ECM‑P needs to satisfy 
the specific requirements for different diseases. As ECM‑P are 
becoming the alternative biomaterials for the regeneration and 
repair of damaged tissues, some of the current challenges can 
be overcome via developing international standards and good 
manufacturing practices.

7. Conclusions

Overall, this review sought to highlight the selection of an 
appropriate decellularized technique for improving biocom-
patibility and biomimetic properties in the ECM‑P that are 
suitable for applying in regenerative medicine research. With 
regards to structural and compositional diversity, each kind 
of ECM‑P from specific tissue or organ have their unique 
microenvironments and biochemical cues for inducing 
site‑appropriate cellular growth and tissue regeneration. In the 
future, with the development of 3D bioprinting approach and 

computer‑aided design technology, biocompatible ECM prod-
ucts are emerging as a promising artificial tissue substitutes 
with suitable mechanical and morphological characteristics 
for restoring damaged tissues or organ.
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