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Abstract. Radix Astragali (RA) is widely used in traditional
Chinese medicine (TCM), and astragaloside IV (AS-IV) is
the most critical component of RA. Previous studies have
demonstrated that AS-IV exerts effects on the myocardium,
nervous system and endocrine system, among others. In
the present review article, data from studies conducted
over the past 20 years were collated, which have evaluated
the effects of AS-IV on tumors. The mechanisms of action
of AS-IV on malignant cells both in vivo and in vitro were
summarized and it was demonstrated that AS-IV plays a
vital role, particularly in inhibiting tumor growth and metas-
tasis, promoting the apoptosis of tumor cells, enhancing
immune function and preventing drug resistance. Moreover,
AS-IV controls several epithelial-mesenchymal transforma-
tion (EMT)-related and autophagy-related pathways, such
as the phosphoinositide-3-kinase (PI3K)/protein kinase B
(AKT), Wnt/pB-catenin, mitogen-activated protein kinase
(MAPK)/extracellular regulated protein kinase (ERK) and
transforming growth factor-p (TGF-f)/SMAD signaling
pathways, which are commonly affected in the majority of
tumors. The present review provides new perspectives on the
functions of AS-IV and its role as an adjuvant treatment in
cancer chemotherapy.
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1. Introduction

Cancer is the second leading cause of mortality worldwide
and results in an increasing number of deaths annually. The
World Health Organization postulates a 60% increase in
cancer cases over the next 20 years globally (1). The medical
treatment of the majority of cancers almost always involves
several traditional approaches, such as surgery, chemotherapy
and radiotherapy. Surgical resection is a suitable approach
for tumor management in the early stages of primary tumors.
However, surgery is still limited by post-operative recurrence
and metastasis (2,3). Of late, chemoradiotherapy, molecular
targeted therapy and immune checkpoint inhibitors have been
considered the treatment approach for advanced stages of
cancers; however, severe adverse events limit their use (4,5).
Therefore, alternative therapeutic methods are required to
address these existing shortcomings. Accordingly, tradi-
tional Chinese medicines (TCMs), such as ginseng, Radix
Astragali (RA), Scutellaria barbata, Curcumae and turmeric,
are used to enhance the efficacy and reduce the side-effects
of chemoradiotherapy. TCMs are effective in suppressing
tumor progression, relieving surgery-associated discomfort,
improving immune function and preventing complications
caused by the use of other treatment modalities (6).

RA is a dietary complement widely used in TCM and
is known to modulate the immune system and attenuate
the adverse effects of cytotoxic agents (7). Saponins are the
primary constituents that are responsible for the suppres-
sion of tumor growth, which exert their effects via intrinsic
and extrinsic apoptotic pathways, modulating intracellular
signaling pathways, and inhibiting metastasis and angiogen-
esis. Astragaloside IV (AS-IV; chemical structure presented
in Fig. 1) and astragaloside II are the 2 main components of
RA (8).

AS-IV, chemically known as 3-O-B-D-xylopyranosyl-
6-0-B-D-glucopyranosyl-cycloastragenol (C,,HgO,,), is a
lanolin-alcohol type of tetracyclic triterpenoid saponin. It is
included in the Chinese and European Pharmacopoeia as a
quality-control indicator of RA. It has long been used since
ancient times in China without any evident hepatotoxic and
nephrotoxic effects. Moreover, no side-effects have been
reported in rats following 14 weeks of the continuous oral
administration of AS-I'V (10 mg/kg/day) (9,10). However, there
is currently no data available regarding the safety of AS-IV in
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humans, at least to the best of our knowledge. The methods
used to extract AS-IV include ultrafiltration, high-speed
centrifugation, ultrasonic extraction and alcohol precipitation.
The present review article aimed to obtain and collate data
from studies conducted over the past 20 years on the effects
of AS-IV on tumors. In addition, the mechanisms of action of
AS-IV on malignant cells both in vivo and in vitro are summa-
rized in order to provide insight into the effects of AS-IV on
cancer in humans.

2. Literature search

Search strategy. Studies in English and Chinese, as well as
trials published before June 1, 2020, were searched on online
databases. The databases in the English language that were
used were PubMed, MEDLINE, Embase, ScienceDirect, Web
of Science, BIOSIS Previews and the Cochrane Library and
Cochrane Central Register of Controlled Trials (CENTRAL).
The Chinese databases used for the searches included the
China National Knowledge Infrastructure (CNKI) database
and Wanfang Med Online.

In the present review, ‘astragaloside IV’, ‘Cancer’
and ‘mechanism’ were used as the key search concepts.
Additionally, their synonyms were also included. Moreover,
manual searches were also carried out using the aforemen-
tioned terms. The search methodology is described as follows
as an example: i) astragaloside IV; ii) astraloside; iii) ASIV;
iv) i OR ii OR iii; v) cancer[MeSH]; vi) tumor[MeSH];
vii) v OR vi; viii) pathway[MeSH]; ix) mechanism[MeSH];
x) viii OR ix; and xi) iv AND vii AND ix.

Inclusion criteria. The inclusion criteria were as follows:
Studies exploring the molecular mechanisms of AS-IV in
cancer; studies with comparable experimental and control
groups, and those that successfully established animal models
of cancer; studies in which animal experiments were approved
by an ethics committee; and studies that investigated related
pathways involving upstream and downstream molecular
mechanisms and published experimental findings, which
could be retrieved.

Exclusion criteria. The exclusion criteria were as follows:
Studies that included only AS-IV or astragalus polysaccharide
(APS) as the experimental group; studies that had an obvious
risk of bias, including selection bias, performance bias,
detection bias, reporting bias and attrition bias; case studies,
cross-over studies and studies without a separate control group;
studies combining AS-IV with other TCM interventions, in
which data specific to the effect of AS-IV interventions on
cancer could not be extracted separately.

3. Effects of AS-IV in cancer models

AS-IV has been widely used in the management of cardiovas-
cular, digestive, endocrine, and nerve-related diseases (11-13).
Furthermore, it exerts significant anticancer effects when used
alone or as an adjuvant to other treatment modalities, as it
sensitizes the host to other drugs (Table I).

To the best of our knowledge, there are no systematic
reviews available that discuss the role of AS-IV in cancer;

therefore, in the present review article, the efficacy and mecha-
nisms of action of AS-IV in cancer therapy are presented and
discussed.

Induction of apoptosis. Apoptosis, also known as programmed
cell death, includes the initiation stage, effect stage and degra-
dation stage. Apoptosis is characterized by surface blebbing,
chromatin condensation, fragmentation of chromosomal DNA
and the appearance of apoptotic bodies.

As shown in Table I and Fig. 2, AS-IV leads to apoptosis
mainly by the mitochondrial-dependent intrinsic pathway and
the death receptor-dependent extrinsic pathway. The intrinsic
pathway leads to the release of cytochrome ¢ (Cyt C) from
the mitochondria, which activates caspase-9, -3 and -7 (14).
However, Bcl-2 can inhibit the release of Cyt C and avoid the
intrinsic apoptosis induced by Bax (15). Research has indi-
cated that AS-IV can enhance the Bax/Bcl-2 ratio to induce
intrinsic apoptosis in a number of types of cancer, including
colorectal cancer (CRC), breast cancer, lung cancer, vulvar
squamous cell cancer (VSCC) and hepatocellular carcinoma
(HCC) (16-21).

In terms of extrinsic apoptosis, certain receptors, e.g., the
Fas ligands and tumor necrosis factor (TNF)-a, can set off the
caspase-8-dependent extrinsic apoptotic pathways and become
activated following the caspase cascade, which finally triggers
apoptosis (22). It has been reported that combined treatment
with AS-IV and cisplatin (10 uM) markedly promotes the
cleavage of caspase-8 and -3, and poly(ADP-ribose) poly-
merase (PARP) in MG-63 and 143B cells via the Fas/FasL
signaling pathway, which considerably sensitizes the osteo-
sarcoma cells to the effects of cisplatin (23). In CRC, AS-1V
alone can increase the release of Cyt C into the cytoplasm and
upregulate the Bax/Bcl-2 ratio, as well as activate PARP and
the caspase cascade (16).

The TAP protein family may be the most important apop-
totic regulator involved in both intrinsic and extrinsic apoptosis
pathways, including the x-linked mammalian inhibitor of
apoptosis (XIAP), survivin and cellular inhibitor of apoptosis
protein 1 (cIAP1) (22,24).

HCC is associated with a high morbidity and mortality rate
globally, and presents with increased levels of anti-apoptotic
proteins, including myeloid cell leukemia 1 (MCLI), cellular
FLICE-like inhibitory protein (c-FLIP) and XIAP. c-FLIP can
suppress death receptor-mediated apoptosis, which inhibits
caspase-8 (25-28). Additionally, studies have demonstrated
that MCLI can block apoptosis induced by various apoptotic
stimuli, including chemoradiotherapy (29-31). Its high protein
expression levels in cancer cells are associated with drug resis-
tance (32). AS-IV has been shown to significantly decrease
XIAP, MCLI, c-FLIP and survivin expression in HCC and C6
glioma cells (33,34).

Inhibition of proliferation. High levels of reactive oxygen
species (ROS) are considered to be a driver of a number of
diseases, such as cancer and neurodegeneration. ROS are
capable of increasing the carcinogenic potential of cancer
cells and activating hypoxia-inducing factor (HIF) in hypoxic
tumor cells to maintain cell viability (32,35). On the other
hand, cells are capable of eliminating surplus ROS via mecha-
nisms involving superoxide dismutase (SOD) and glutathione
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Figure 1. Chemical structure of astragaloside I'V.

peroxidase (GSH-Px) (36). Yang proved that AS-IV inter-
rupted the proliferation of Spc-A-1 cells and suggested that
the mechanism was related to the activity of the antioxidant
enzymes, SOD and GSH-Px, which modulate ROS levels in
cancer (37).

In the B7/cluster of differentiation (CD)28 superfamily,
the overexpression of B7-H3 is observed in various types
of cancer. It can downregulate the T-cell-mediated immune
responses, leading to immune escape (38-40). AS-IV can
reduce B7-H3 by upregulating miR-29c, which inhibits cell
growth and reduces the protein level of the cell-cycle regula-
tors, cyclin D1 and CDK4, in CRC cells. Thus, the anticancer
effects of AS-IV may be mediated via the B7-H3/nuclear
factor (NF)-kB/cyclin DI axis (41). It also increases the cyto-
toxicity of cisplatin in non-small cell lung cancer (NSCLC) by
suppressing the expression of B7-H3 (42). Moreover, another
study reported that AS-IV inhibited the proliferation of HCC
HepG2 cells and promoted apoptosis by regulating oxidative
stress and the NF-«B signaling pathway (43).

Inhibition of metastasis. Matrix metalloproteinases (MMPs)
are a group of proteolytic enzymes containing active Zn**. Its
functions include, but are not limited to, degrading the extra-
cellular matrix (ECM). The interaction between MMPs and
cell-surface ECM receptors affects the function of integrins
and contributes to cell invasion (44). MMP-2 and MMP-9, in
particular, have been considered to play a vital role in tumor
progression (45).

The extracellular signal-regulated kinase pathway (ERK),
an important upstream switch, has been known to regulate the
secretion of MMPs in cells (46). Mitogen-activated extracel-
lular signal-regulated kinase (MAPK) is a serine/threonine
(Ser/Thr) kinase involved in cell proliferation, differentiation,
growth and apoptosis. In general, the MAPK/ERK pathway,
i.e., Ras-Raf-MEK-ERK pathway, is deregulated in various
types of cancers (47). Recently, inhibitors against the
MAPK/ERK pathway have been designed to combat glioma
and have been shown to be effective in the U251, as well
as the SGC7901 cell lines with the downregulation of the
expression of MMP-2 and MMP-9 (48-52). Li et al and Cao

reported that AS-IV inhibited the progression of glioma and
gastric cancer by interfering with the MAPK/ERK signaling
pathway (53,54). Moreover, ascites in H22-tumor-bearing
mice have been shown to be decreased by AS-IV by inhibiting
the angiogenesis- and metastasis-associated genes, as well as
the expression of aquaporins (AQPs) (55).

Tissue inhibitors of metalloproteinases (TIMPs) comprise
TIMP-1, TIMP-2, TIMP-3 and TIMP-4, all of which can form
complexes with several MMPs via covalent bonds, thereby
inhibiting MMPs (56,57). The NM23 gene is a widely studied
metastasis suppressor gene. The protein encoded by NM23 has
the function of inhibiting tumor metastasis (58). AS-IV can down-
regulate the mRNA and protein expression of MMP-2, -7 and -9,
can mediate multidrug resistance/P-glycoproteins (MDR1/P-gp)
and multidrug resistance-associated protein 1(MRP-1), and
upregulate TIMP-1 and NM23 to inhibit the proliferation of
BGC823 (gastric cancer) cells and reverse drug resistance (59).

Epithelial-mesenchymal transformation (EMT) is the
conversion of a polarized epithelial cell, which interacts with
the basement membrane by means of its basal surface, to a
mesenchymal cell. As regards the metastatic process, EMT
can be detected based on specific molecular changes, such as
diminished E-cadherin and cytokeratin levels, and elevated
levels of N-cadherin and vimentin (60). As the transforming
growth factor Bl (TGF-f1) is a known factor in triggering
the initiation and execution of EMT, the downregulation of
TGF-plsignaling can prevent EMT in tumor cells. As shown
in Fig. 3, AS-IV can affect EMT via several pathways.

The Wnt/B-catenin signaling pathway regulates EMT.
Using U251 cells, Han ef al found that AS-IV treatment inhib-
ited TGF-p1-guided EMT by interrupting the Wnt/B-catenin
pathway (61). B-catenin can also modulate glycogen synthase
kinase 3f (GSK3p). AKT is an upstream molecule that
activates GSK3[ phosphorylation, eventually leading to the
accumulation of B-catenin in the cell nucleus (62). AS-IV has
also been shown to attenuate EMT in HCC and NSCLC via
the modulation of the Akt/GSK-3/B-catenin pathway (18,63).

Phosphoinositide-3-kinase/protein kinase B/nuclear
factor kB (PI3K/Akt/NF-kB) is another common pathway
suppressing TGF-B1-induced EMT. It has been reported
that AS-IV can inhibit TGF-f1-induced EMT by interfering
with the PI3K/Akt/NF-xB signaling pathway in SiHa and
MGC-803 cells (21,64). Moreover, it inhibits the phosphoryla-
tion of MAPK and mTOR to varying degrees, which is related
to the proliferation of cancer cells.

Apart from the signaling pathways discussed, AS-IV
may also interrupt the migration and invasion of A549
cells. This process is associated with the suppression of
PKC-a-ERK1/2-NF-kB and can be detected based on specific
proteins, e.g., E-cadherin, integrin f1 and MMPs (65). PKC-a
expression can be affected by ROS, which can induce the
downstream signaling of ERK1/2 and activate NF-«kB to
initiate the metastasis of carcinoma cells (66).

In parallel, several miRNAs take part in the inhibition of
EMT signaling (67). For example, miR-134 from the miRNA
gene family has been proven to inhibit EMT (68,69). CREBI is
an important transcription enhancer. A previous study reported
that miR-134 activated by AS-IV markedly inhibiting EMT
signaling and increasing the chemosensitivity of SW-480 cells
to oxaliplatin by inhibiting CREBI1 expression (70).
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(Refs.)
(111)

Mechanism of action
NOX2|,NOX4|, relieve oxidative stress

Effects
cardiac fibrosis and cardiac dysfunction

Alleviate body weight loss, myocardial
injury, apoptosis of cardiomyocytes,
in DOX-treated mice and in vitro

Cell type
Neonatal cardiomyocytes of
Sprague Dawley (SD) rats

Observation
In vivo (40 mg/kg) C57B1/6 mice;

in vitro (20 uM)
1, an increase in target protein; |, a decrease in target protein; PARP, poly ADP-ribose polymerase; ERK, extracellular regulated protein kinases; TGF-31, transforming growth factor-f31; MMP, mitochon-

drial membrane potential; AQP1, aquaporin 1; VEGF, vascular endothelial growth factor; AMPK, AMP-activated protein kinase; EMT, epithelial-mesenchymal transition; PI3K, phosphoinositide-3-kinase;

Table I. Continued.

Doxorubicin

Cancer type
treatment
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Similar to miR-134, miR-150-5p markedly downregulates
[B-catenin in liver carcinoma, functioning as an inhibitor to
attenuate the proliferation of cancer cells. Ithas been well-estab-
lished that AS-IV can regulate the miR150-5p/f-catenin axis
to induce the apoptosis of HCC cells (20).

Long non-coding RNAs (IncRNAs) are long nucleotide
chains without protein-coding capability (71,72). LncRNAs
have been identified to participate in several biological
processes and are known to play a crucial role in the emer-
gence and progression of cancers. For example, IncRNA-ATB
promotes EMT by connecting to the miR-200 family, main-
taining the viability of malignant cells via IL-11/STAT3
signaling, which can be prevented by AS-IV (73,74).

Vav3, a member of the Vav protein family, functions as
an exchange factor for Rho family GTPases, such as Racl.
It consists of 8 domains, and the complexity of the structure
contributes to its various functions. Vav3 modulates different
members in the Rho family to participate in the MAPK,
PI3K/Akt and NF-«xB signaling pathways. Previous studies
have demonstrated that MMPs and Rho GTPases play a
pivotal role in the migration of the majority of malignant cells.
AS-IV has been shown to have antitumor and anti-metastasis
functions both in vivo and in vitro. These functions are accom-
plished by the downregulation of Vav3 in liver and breast
cancer by blocking the Racl/MAPK signaling pathway, as well
as by decreasing MMP-2, MMP-9, and the proteins related to
cellular responses during stress and cell signaling (75,76).

Inhibition of angiogenesis. Neovascularization relies on the
secretion of vascular endothelial growth factor (VEGF) by
tumor cells and the proliferation of endothelial cells (77).
VEGEF serves as a signal for cyclooxygenase-2 (COX-2)/pros-
taglandin E2 (PGE2). PGE2 is involved in the major process
of COX-2 acting on malignant cells (78). AS-IV inhibits the
growth of SGC7901 cells with the downregulation of COX-2,
which leads to the suppression of its downstream product,
PGE2 expression, and the downregulation of VEGF, thereby
decreasing tumor growth (79). Apart from SGC7901, a reduc-
tion in VEGF expression has also been reported in studies
using A549 and U251 cells.

MDR and increase in chemosensitivity. MDR is the leading
cause of the failure of chemotherapy and cancer renascence.
The key to reversing tumor drug resistance is to prevent
MDR pathways to reduce drug efflux, which can enhance the
chemosensitivity of tumor cells (80). It has been found that
MDR can be attributed to several factors, including P-gps, lung
resistance-related proteins (LRPs), breast cancer resistance
protein (BCRP) and multidrug resistance-associated protein 2
(MRP2), all of which can pump drugs out from tumor cells and
reduce the anticancer efficacy of drugs (81). Several studies have
reported that AS-IV can reverse MDR and increase the chemo-
sensitivity or radiosensitivity of tumors (17,82-87) (Fig. 4)
Caveolin-1 (CAV-1) is a constituent protein playing a role
in signal transduction and other cellular activities. It has been
confirmed that the expression of CAV-1 is positively associ-
ated with cancer metastasis and has, therefore, been identified
as a potential target to reverse MDR (88). Zheng et al reported
that AS-IV reduced CAV-1 expression and reversed the
Taxol-induced increase in CAV-1 expression; furthermore,

myeloid-cell-leukemia 1; cFLIP, cellular FLICE-like inhibitory protein; mTOR, mammalian target of rapamycin; B7-H3, GPI-linked CD59 and costimulatory molecule CD276; CTL, cytotoxic T lympho-

cytes; IDO-1, indolemaine-2,3-dioxygenase-1; CREB, cAMP-response element binding protein; GNF, gastric normal fibroblast; GCAF, gastric cancer-associated fibroblast; IFN-y, interferon-gamma;

MNNG, N-methyl-N'"-nitro-N-nitrosoguanidine; TIGAR, TP53-induced glycolysis and apoptosis regulator; PLGC, precancerous lesions of gastric carcinoma; NOX, NADPH oxidase; iNOS, inducible
nitric oxide synthase; CAV-1, caveolin-1; STAT3, signal transducers and activators of transcription 3; GCS, glucosylceramide synthase; TIMP-1, tissue inhibitor of metalloproteinases 1; MRP1, multidrug

resistance-associated protein 1; PGE2, prostaglandin E2; ROS, reactive oxygen species; SOD, superoxide dismutase; GSH-PX, glutathione peroxidase; IKKa, IkB kinase a; IKKf, IkB kinase 3; 3NT,

3-nitrotirosina; LDHA, Lactate dehydrogenase; MCT1, monocarboxylate transporter 1; NOX4, NADPH oxidase, isoform-4; DOX, Doxorubicin.

system -a; LC3I, the protein expressions of light chain 3I; LC3II, the protein expressions of light chain 31I; Atg7, autophagy related 7; AKT, protein kinase B; GSK3p, glycogen synthase kinase 3(;
eraldehyde 3-phosphate dehydrogenase; HSP, heat shock protein; GRP78, glucose regulated protein 78; Bip, binding immunoglobulin protein; XIAP, X-linked inhibitor of apoptosis protein; MCL1,

P-gp, P-glycoprotein; MDR1, multidrug resistance protein 1; a-SMA, alpha-smooth muscle actin; LncRNA-ATB, long non-coding RNA activated by transforming growth factor-f3; GAPDH, glyc-

JNK, c-Jun N-terminal kinase; NF-xkB, nuclear factor-kB; PCNA, proliferating cell nuclear antigen; COX-2, cyclooxygenase-2; HIF-1a, hypoxia-inducible factor-1; ROS, reactive oxygen species;
STAT3, signal transducer and activator of transcription 3 Racl, Rac family small GTPase 1; MAPK, mitogen-activated protein kinase; TNF-a, tumor necrosis factor a; PKC-a, protein kinase C
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Figure 2. Effect of AS-IV on apoptosis-related pathways. AS-1V, astragaloside IV; XIAP, x-linked mammalian inhibitor of apoptosis; MCLI1, myeloid cell
leukemia 1; c-FLIP, cellular FLICE-like inhibitory protein; ROS, reactive oxygen species; VEGF, vascular endothelial growth factor; MCT, monocarboxylic
acid transporter; HIF, hypoxia-inducing factor; GPx, glutathione peroxidase; GSH, glutathione; SOD, superoxide dismutase.
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Figure 3. Effect of AS-IV on EMT-related pathways. AS-1V, astragaloside IV; GSK38, glycogen synthase kinase 33; mTOR, mammalian target of rapamycin;
HIF, hypoxia-inducing factor.

AS-IV administration resulted in initiating the endothelial ~MDR (89). Co-treatment with AS-IV and Taxol lowers ERK

nitric oxide synthase (eNOS)/nitric oxide (NO)/peroxynitrite ~ and JNK in malignant cells, which are associated with chemo-

(ONOO) pathway and inhibiting CAV-1, which can induce sensitizing effects (17).

severe oxidative stress and apoptosis (17). Studies have found that inhibiting the JNK signaling
Moreover, the MAPK pathway, which comprises the pathway suppresses the expression of c-Jun and drug-resistant

ERK, JNK and p38 pathways, controls several biological and  genes, e.g., MDR1 and P-gp, and increases drug-induced the

cellular processes in cancer. Therefore, its activation is vital to  apoptosis of tumor cells. Wang ef al demonstrated that AS-IV
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Figure 4. Effect of AS-IV on MDR-related molecular mechanisms. MDR, multidrug resistance; GCS, glucosylceramide synthase; P-gp, P-glycoprotein; LRP,
lung resistance-related proteins; BCRP, breast cancer resistance protein; MRP, multidrug resistance-associated protein; COX2, cyclooxygenase 2; PGE2,

prostaglandin E2; VEGF, vascular endothelial growth factor; SIRT6, sirtuin 6.

may reverse MDR by inhibiting the JNK/c-Jun/AP-1 pathway
in Bel-7402/FU cells (82,83).

Silent information regulator 6 (SIRT6),an NAD*-dependent
deacetylase, plays a key regulatory role in genomic stability,
metabolism, chromatin regulation, telomere integrity, gene
transcription and glucose and lipid metabolism. Further
exploration of these molecular mechanisms has indicated that
the multiple roles of SIRT6 in tumorigenesis are realized by
regulating the ERK, SMAD and Raf pathways (84).

SIRT6 also triggers lethal autophagy in human cancer
cells (90). Recent studies have reported that the upregulation
of SIRT6 enhances the sensitivity of NSCLC cells to other
drugs and treatment modalities (91-93). Accordingly, the study
by Dai et al illustrated that AS-IV acted on SIRT6 to heighten
the tumor responses to gefitinib in the NCI-H1299, HCC827
and A549 lung cancer cell lines (85).

Studies have indicated that NOTCH3 is highly expressed
in tumor cells. It also has been shown that the depletion of
NOTCH3 by sorafenib and adriamycin can increase the
expression of p53, promote GSK3[ phosphorylation and
downregulate p21, thereby enhancing the efficacy of chemo-
therapy (94,95). In addition, NOTCH3 may be used as a
biomarker for RC. In a previous in vitro study, AS-IV was
reported to enhance the chemosensitivity of CRC towards
cisplatin by suppressing NOTCH3 (86).

The glucosylceramide synthase (GCS)-mediated abolish-
ment of ceramide-induced apoptosis is one of the underlying
mechanisms of acquired drug resistance in some resistant
cells (96). AS-IV can reverse drug resistance to doxorubicin
in HepG2/GCS cells, suggesting that MDR can be prevented
using AS-IV as it reduces the expression of GCS (87).

Improvement of immunity. Owing to their high cytotoxicity
and proliferation ability, cytotoxic T lymphocytes (CTLs)
are useful in the monitoring and elimination of cancer cells.
During tumor progression, the tumor microenvironment
(TME) results in the suppression of immune function, which
results in a loss of the functions of CTL, leading to immune
escape.

Tumor-associated macrophages (TAMs) constitute the most
important inflammatory cell group in the TME. Recent studies
have revealed that TAM may polarize to the M2-type in terms
of phenotypic characteristics. Macrophage colony-stimulating
factor-1 (CSF-1), interleukin (IL)-4, IL-10, TGF-$ and IL-13
benefit M2 subgroup differentiation. Moreover, M2 and Tregs
can reduce the levels of CTLs. Type 2 (M2) macrophages
do not exert antitumor effects, but rather participate in the
occurrence, development, invasion and metastasis of tumors;
therefore, the phenotype M2 is a novel potential target for
tumor therapy (97).

There are multiple mechanisms by virtue of which
tumor cells escape recognition by CTLs. Indoleamine-2,3-
dioxygenase (IDO) is a tryptophan-degrading enzyme that
participates in the immune-escape program. In C57BL/6 mice
bearing Lewis lung carcinoma cells, AS-IV was shown to
exert antineoplastic and immunity-boosting effects to inhibit
Tregs and augment CTL activity by suppressing IDO expres-
sion (98). AS-IV has also been shown to partially block M2
differentiation via the AMPK signaling pathway, thereby
inhibiting invasion, migration and angiogenesis (99).

In 7,12-dimethylbenzanthracene-induced liver and breast
cancer in tumor-bearing mice, the effect of co-treatment of
cisplatin and AS-IV against breast cancer in vivo was more
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prominent than that of cisplatin alone. The mechanism of
action may be related to the effective upregulation of the levels
of immune factors IL-2, IFN-y, CD3*, CD4*, CD4*/CD8"*, and
the downregulation of IL-1, IL-6, TNF-a and CD8* in liver
and breast cancer (100,101).

Moreover, in vivo experiments have demonstrated that
AS-IV promotes host immunity by regulating the levels of
cytokines, NO and cycle-related mRNA and/or protein expres-
sion, particularly IL-1, IL-6 and TNF-a, under the influence
of the NF-kB/MAPK pathway. As an inhibitor of prolifera-
tion, AS-IV also modulates the levels of cyclin D1, CDK4 and
CDKG6 in the host, promotes the secretion of CDs, such as
CD40 and CD86, and arrests cells in the G2/M stage (102).

Promotion of autophagy. Autophagy is a process in which
proteins or organelles are engulfed into vesicles and fused with
lysosomes to form an autophagosome. Subsequently, the enclosed
contents are degraded, thus achieving the metabolic needs of
cells and the renewal of some organelles (103). Autophagy has
a dual-directional effect on the progression and survival of
malignant tumors. This progression could be measured based
on the distribution of LC3-I and LC3-II, which are biomarkers
indicating autophagy vesicle accumulation (104).

AS-IV elevates the level of autophagy-associated proteins,
such as LC3I/I1, Atg7 and Atgl2 in cervical cancer cells. It also
mediates differentially expressed proteins, including MGST3,
AKRIC2, and ERLINI, which are related to cancer prolif-
eration and cytoskeleton composition. Two autophagy-related
proteins, namely, DCP1A and TMSB4X, have been found to
be increased in HeLa and SiHa cells following the administra-
tion of AS-IV (105).

The TGF-p/SMAD signaling pathway plays a crucial role
in a number of types of cancer and the dysfunction of this
pathway is an important pathogenic mechanism in cancers.
SMAD and downstream TGF-f intracellular signaling transfer
the ligand-receptor interaction signal from the cytoplasm to
the nucleus. In a previous study, in VSCC cells, AS-IV was
shown to improve the dysfunctions of the TGF-f/SMAD
pathway, determined based on the elevated TGF-BRII and
Smad4 levels; it was also found that AS-IV induced autophagy
in SW962 cells, and markedly increased Beclin-1 and LC3-II
levels, and decreased p62 protein levels (19).

Prevention of cancer. Aerobic glycolysis and oxidative phos-
phorylation are common energy sources in tumor cells. Owing
to the rapid growth and high energy demand of tumor cells,
there is a tendency for an increased glucose uptake and lactate
production. Monocarboxylic acid transporters (MCT)1 and
MCTH4 can transport large amounts of lactic acid produced by
tumor cells to the extracellular environment and play a key
role in maintaining the acidic environment required for the
glycolysis in tumor cells (106). CD147 is indispensable to the
activity of MCT1 and MCT4 in gastric cancer. The study by
Zhang et al suggested that AS-IV reduced the precancerous
lesions of gastric carcinoma (PLGC), inhibited glycolysis
by regulating the p53/miRNA-34a/LDHA and p53/TIGAR
pathways, and restored the levels of MCT1/4, CD147 and
HIF-1a (107).

AS-IV inhibits the activity of gastric cancer-associated
fibroblasts (GCAFs) with an increased miR-214 and decreased

miR-301a expression. AS-IV also inhibits GCAFs from
increasing key factors, such as SRY-box?2 (SOX2) and NANOG,
in inducing pluripotency in somatic cells, decreasing M-CSF
expression and increasing TIMP2 expression (108). All these
studies demonstrate that AS-IV hinders the development of
gastric cancer. This topic is worthy of further exploration in
a clinical setting.

Remission of side-effects from chemotherapy. NADPH
oxidase (NOX) is a plasma membrane-related enzyme protein
family consisting of 7 members of DUOX1-2 and NOX1-5
families. Among the NOXs, NOX2 and NOX4 are expressed in
the heart and are responsible for increasing intracellular ROS
levels. Oxidative stress has been identified as a main cause of
doxorubicin (DOX)-induced cardiomyopathy (109,110). DOX
administration has been shown to increase the levels of NOX2
and NOX4 in animal hearts, thereby increasing ROS-induced
cardiomyopathy. By contrast, AS-IV noticeably reduces the
cardiomyopathy induced by DOX, decreases the oxidative
stress caused by NOX2 and NOX4, attenuates the complica-
tions of doxorubicin, and, thus, appears suitable as an adjuvant
to chemotherapy (111).

4. Conclusions and future perspectives

TCMs are commonly used in clinical treatment in several Asian
countries. They significantly contribute towards enhancing the
effects of other therapies and reducing toxicity. The in vitro
and in vivo effects of AS-IV in inhibiting tumor proliferation
and invasion and in promoting tumor cell apoptosis have been
well-documented. Current findings highlight the role of AS-IV
in suppressing EMT, as EMT plays a role in the majority of
processes related to AS-IV in cancer. Furthermore, AS-IV has
also been proven to exert significant preventive effects against
MDR and in the regulation of immunity in antitumor therapy.
In addition, the low-cost and ready availability of AS-IV
further accentuates its potential in tumor therapy.

Despite these advantages, the use of AS-1V is still limited
by several means: i) Its mechanisms of action have not been
adequately elucidated. A previous study demonstrated that
AS-IV enhanced the efflux activity of P-gp and BCRP through
the Nrf2-ARE signaling pathway, exerting the opposite effect
on P-gp protein in liver cancer and gastric cancer cells, which
may lead to herb-drug interactions following treatment with
AS-1V (112); ii) there are no clinical studies (to the best of our
knowledge) available that explore the role and safety of AS-IV
in human cancers. The human body is complex compared
to model organisms (in vivo or in vitro) used in a laboratory
setting; iii) finally, the dose of AS-IV used in studies varies
greatly; therefore, the safety window and effective dose of
AS-IV need to be accurately established. Thus, further studies
are warranted to determine the effects of AS-IV and large
cohort clinical studies are required to further validate its effi-
cacy in a clinical setting.
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