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Abstract. Histone acetyltransferases are responsible for 
histone acetylation, while histone deacetylases (HDACs) coun‑
teract histone acetylation. An unbalanced dynamic between 
histone acetylation and deacetylation may lead to aberrant 
chromatin landscape and chromosomal function. HDAC2, a 
member of class I HDAC family, serves a crucial role in the 
modulation of cell signaling, immune response and gene expres‑
sion. HDAC2 has emerged as a promising therapeutic target 
for liver disease by regulating gene transcription, chromatin 
remodeling, signal transduction and nuclear reprogramming, 
thus receiving attention from researchers and clinicians. The 
present review introduces biological information of HDAC2 
and its physiological and biochemical functions. Secondly, the 
functional roles of HDAC2 in liver disease are discussed in 
terms of hepatocyte apoptosis and proliferation, liver regenera‑
tion, hepatocellular carcinoma, liver fibrosis and non‑alcoholic 
steatohepatitis. Moreover, abnormal expression of HDAC2 
may be involved in the pathogenesis of liver disease, and its 
expression levels and pharmacological activity may represent 
potential biomarkers of liver disease. Finally, research on 

selective HDAC2 inhibitors and non‑coding RNAs relevant 
to HDAC2 expression in liver disease is also reviewed. The 
aim of the present review was to improve understanding of 
the multifunctional role and potential regulatory mechanism 
of HDAC2 in liver disease.
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1. Introduction

The level of histone acetylation is of importance for 
nuclear stability, chromatin structure, gene expression and 
physiological functions in hepatocytes  (1,2). Histone acet‑
yltransferases  (HATs) and histone deacetylases (HDACs) 
are antagonistic proteases that serve regulatory roles in the 
balance of histone acetylation and deacetylation in nucleo‑
somes (3). HATs, which favor of histone acetylation, transfer 
acetyl groups from acetyl‑CoA to the ε‑NH2 group of lysine 
residue side chains and neutralize the positive charge of 
histone tails, thus making chromatin structure more loose 
and conducive to active transcription (4‑6). HDACs, which 
facilitate histone deacetylation, remove the acetyl group from 
the ε‑amino group of lysine residue side chains, reconstitute 
positive charge on the surface of lysine and increase binding 
affinity with the negatively charged surface of DNA (5,6). 
Furthermore, interactions between histone and DNA result 
in the formation of compacted and inactive chromatin that 
restrains gene transcription (7‑10).

The dysfunction of histone deacetylation is associated with 
the occurrence and development of liver disease (11). HDACs 
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are emerging as next‑generation drug targets, thus gaining 
increasing attention and recognition (12‑15). HDAC2 is respon‑
sible for the deacetylation of the N‑terminal of histone H3 
and H4, leading to a more compacted chromatin structure and 
transcriptional gene silencing (16,17). HDAC2 participates in 
the genesis and development of renal, cardiovascular, neuro‑
logical and lung disease (18‑23). Furthermore, small molecular 
compounds, peptides and other biological agents that inhibit 
HDAC2 show potential in the treatment of cancer (24‑26), as 
well as degenerative and inflammatory immune disease (27‑29). 
In particular, evidence has also highlighted the key role of 
HDAC2 in the pathological process of liver disease (30‑32).

The present review introduces gene localization, structural 
information and biological functions of HDAC2, as well as 
the pharmacological role of HDAC2, its expression level in a 
variety of liver diseases and effects on hepatocyte apoptosis 
and proliferation, liver regeneration, hepatocellular carci‑
noma (HCC), liver fibrosis and non‑alcoholic steatohepatitis 
(NASH). Finally, a number of selective HDAC2 inhibitors and 
non‑coding (nc)RNAs relevant for HDAC2 expression in liver 
disease are reviewed (Fig. 1).

2. HDAC2

Characterization and classification of HDACs. Histone 
proteins serve structural and functional roles almost in all 
nuclear processes (33,34). Histones, DNA and a number of 
different protein complexes form chromatin to facilitate 
dynamic changes that occur during DNA replication, cell‑cycle 
progression, transcription process and post‑transcription 
events (35). Changes in chromatin that do not involve a change 
in DNA sequence are defined as epigenetic modification. One 
of the earliest known types of chromatin epigenetic modifi‑
cations is histone acetylation, although its potential role in 
cell fate determination has not been fully elucidated  (36). 
Acetylation has been widely studied and its potential roles and 
regulatory mechanisms have been revealed (37,38).

Like HATs, HDACs are rich in structural diversity and 
serve multiple functions (39), making them potential targets 
for pharmacological intervention and drug development (40). 
HDACs are part of a multiprotein family in which each member 
of HDAC has its own specialized function. In mammals, the 
HDAC family can be divided into four distinct subfamilies 
according to their structure, enzyme function, subcellular local‑
ization, expression pattern and homology with a typical HDAC 
in yeast (Table I): Class I (HDACs 1‑3 and 8), II (HDACs 4‑7, 
9 and 10), III [Sirtuins (Sirs/SIRTs)] and IV (HDAC11) (41‑44). 
The class I HDAC family consists of HDAC1‑3 and 8, which 
have a relatively high similarity to HDAC2. They are ~50 kDa 
in size, are ubiquitously expressed and have homology with 
yeast reduced potassium dependency 3  (37,45,46). Class  II 
HDACs comprise HDAC4‑7, 9 and 10, which have a high degree 
of homology to yeast HDA‑1 (47‑49). They are ~120‑150 kDa in 
size and are widely expressed in a tissue‑specific manner (50,51). 
Class II HDACs can be separated into class IIa (HDACs 4, 5, 7 
and 9) and IIb (HDACs 6 and 10), depending on the presence 
of tandem deacetylase domains (41,52). The class III HDACs, 
also known as Sir2 family, are named for their homology to 
the yeast Sir2gene. Sir2 family is a highly conservative gene 
family, including Sirt1‑7 (53‑55). Among these, Sirt1, 2, 3 and 

5 have a common NAD‑dependent deacetylase domain, which 
can catalyze the deacetylation of histone as well as non‑histone 
proteins. By contrast, Sirt4 and 6 have a NAD+‑dependent 
ADP ribosylation domain, which is key for protein ribosyl‑
ation  (54,55). Class  III HDACs share little homology with 
class I and II HDACs, and their enzyme activity is not inhibited 
by broad‑spectrum HDAC inhibitors [such as butyrate, valproic 
acid, trichostatin A (TSA) or suberoyl anilide hydroxamic 
acid] (56). The class IV family HDAC11 shares some, but not 
sufficient, homology with class I and II HDACs (57,58). HDAC11 
is enriched in the brain, heart, muscle, kidney and testis in a cell 
type‑specific manner (48,59). Furthermore, class I, II and IV 
HDACs have a zinc‑dependent active site that can be specifi‑
cally targeted by(compounds containing hydroxamates), such 
as TSA. As many drugs targeting HDAC isotypes have shown 
positive effects, HDAC enzymes may represent a novel thera‑
peutic target for liver disease (2,11).

Structure and subcellular location of HDAC2. HDAC2 
belongs to class I HDAC family, which is primarily located in 
the nucleus. HDAC2 is a specific enzyme with high activity 
and enantioselectivity to histone substrates (60). HDAC2 shares 
high structural homology and a common catalytic mechanism 
with other class  I HDACs, particularly HDAC1. Similar 
to other class  I HDACs, HDAC2 comprises a conserved 
deacetylase domain with short amino‑ and carboxy‑terminal 
extensions, which are key for localization and maintaining 
their stability and function (48). HDAC1 and HDAC2 have 
notable amino acid homology. In large‑scale gene expression 
analysis of brain and heart tissue, they affect different target 
gene sets by forming the same compressor complex (61). The 
crystal structure of human HDAC2 protein in the presence 
of hydroxamates has been revealed. The HDAC2 catalytic 
site is made up of a ‘foot pocket’, a lipophilic ‘tube’ and a 
catalytic Zn2+ 8 Å deep. More specifically, the ‘foot pocket’, 
tightly adjacent to the zinc binding site, is primarily formed 
by Tyr29, Met35, Phe114 and Leu144. The lipophilic tube, 
leading from the surface to the zinc binding site, is surrounded 
by Gly154, Phe155, His183, Phe210 and Leu276  (62,63). 
Furthermore, the zinc ion is accompanied by Asp181, His183, 
and Asp269 (62‑64). HDAC2 inhibitors typically have a phar‑
macophore comprising three sectors: A zinc‑binding group, a 
linker portion and a hydrophobic cap group (65‑67). Based on 
molecular docking and virtual screening techniques, a series of 
compounds with novel skeletal structures have been identified 
as HDAC inhibitors, and their inhibitory activities and clinical 
therapeutic effects have been investigated (68,69). HDAC2 is 
the most thoroughly studied member of the HDAC family, 
which can be modulated by post‑translational modifications, 
such as phosphorylation (70,71), acetylation (72), ubiquitina‑
tion (73) and sumoylation (74). In particular, post‑translational 
phosphorylation of HDAC2 negatively regulates its deacetylase 
activity and serves an active role in chronic inflammation (75). 
Furthermore, HDAC2 possesses several phosphorylation sites 
at the C‑terminal, which are concentrated on serine residue (76).

3. Role of HDAC2 in hepatocyte apoptosis and proliferation

HDAC2 inhibits hepatocyte apoptosis. Due to its anatomical 
location and complex intersection, the liver is vulnerable to 
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a variety of toxic, metabolic, inflammatory and necrotic 
stimuli (77,78). Hepatocytes are highly sensitive to death 

receptor‑mediated apoptosis due to ubiquitous expression of 
death receptors in the liver (79). It has been demonstrated 

Table I. Classification of classic HDACs.

		  Sequence			C   hromosomal	 Sub‑cellular
Class	C o‑factors	 homology	 Protein	 Size (AA)	 location	 localization	 Tissue expression

I	 Zn+ 	 Yeast RPD3	 HDAC1	   482 	 1p34	 Nucleus	 Ubiquitous
			   HDAC2	   488	 6q21	 Nucleus	 Ubiquitous
			   HDAC3	   428 	 5q31	 Nucleus/cytoplasm	 Ubiquitous
			   HDAC8	   377	 Xq13	 Nucleus	 Ubiquitous
IIa	 Zn+	 Yeast HDA1	 HDAC4	 1084	 2q37	 Nucleus/cytoplasm	 Heart, smooth muscle, brain
			   HDAC5	 1122	 17q21	 Nucleus/cytoplasm	 Heart, smooth muscle, brain
			   HDAC7	   952	 12q13	 Nucleus/cytoplasm	 Heart, placenta, pancreas,
							       smooth muscle
			   HDAC9	 1011/879/	 7p15‑p21	 Nucleus/cytoplasm	 Smooth muscle, brain
				    590			 
IIb	 Zn+	 Yeast HDA1	 HDAC6	 1215	 Xp11	 Nucleus/cytoplasm	 Kidney, liver, heart, pancreas
			   HDAC10	   669	 22q13	 Nucleus/cytoplasm	 Spleen, kidney, liver
III	 NAD+/NAD	 Yeast Sir2	 SIRT1	   564	 No data	 Euchromatin	 Unknown
			   SIRT2	   377		C  ytoplasm	
			   SIRT3	   396		  Mitochondrial	
			   SIRT4	   320		  Mitochondrial	
			   SIRT 5	   308		  Mitochondrial	
			   SIRT6	   356		  Heterochromatin
			   SIRT7	   407		  Nucleolus	
IV	 Zn+	 Yeast 	 HDAC11	   347	 3p25	 Nucleus	 Heart, smooth muscle,
		  RPD3/HDA1					     kidney, brain

HDAC/HDA, histone deacetylase; RPD3, reduced potassium dependency 3; Sir/SIRT, sirtuin.

Figure 1. HDAC2 inhibitor and non‑coding RNA relevant to HDAC2 expression in liver disease. HDAC2, histone deacetylase 2; HCC, hepatocellular carci‑
noma; NASH, non‑alcoholic steatohepatitis.
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that the abnormal death of hepatocytes is a key trigger 
factor for the occurrence and development of both acute and 
chronic liver disease (77). It is therefore necessary to inves‑
tigate the underlying pathogenesis and therapeutic targets 
of liver disease and the expression levels and pharmaco‑
logical activity of HDAC2. There is increasing evidence that 
HDAC2 is involved in the regulation of hepatocyte death, 
thereby implying that HDAC2 serves a key role in the patho‑
genesis of liver disease (80,81). Here, experimental evidence 
for the effects of HDAC2 on hepatocyte apoptosis will be 
discussed.

TGF‑β, a pleiotropic growth factor, has been shown 
to induce apoptosis in primary rat and AML‑12 murine 
hepatocytes, consequently leading to liver injury and regen‑
eration termination (80,81). Through transfection of HDAC2 
RNA interference (RNAi) plasmid, Lei  et  al  (80) found 
that HDAC2 serves as a significant anti‑apoptotic factor in 
TGF‑β1‑induced apoptosis of AML‑12. Lei et al further found 
that downregulation of HDAC2 significantly induces spon‑
taneous cell apoptosis and increases the apoptotic response 
following TGF‑β1 treatment. Moreover, ERK1/2 has been 
shown to be significantly inhibited in cells transfected with 
HDAC2i. In HDAC2i‑transfected cells, low baseline levels 
of phosphorylated ERK1/2 were concomitant with decreased 
TGF‑β1‑induced apoptosis, suggesting that negative regulation 
of ERK1/2 is associated with the role of HDAC2 in apoptosis. 
In sum, these findings highlighted that silencing HDAC2 
may induce spontaneous apoptosis of AML12 hepatocytes by 
promoting ERK1/2 expression and pharmacological activity. 
Taken together, this supports the important physiological role 
of HDAC2 in hepatocyte apoptosis. The anti‑apoptotic effect 
of HDAC2 overexpression may be a promising therapeutic 
strategy for treatment of liver disease.

HDAC2 promotes proliferation of hepatocytes. Impaired 
proliferation of hepatocytes is associated with the occur‑
rence and progression of liver disease (82). However, little is 
known about the underlying mechanisms that lead to defec‑
tive hepatocyte proliferation. HDAC2 serves critical roles 
in cell proliferation and tissues regeneration (83). HDAC2 
knockout inhibits proliferation and induces senescence of 
MCF7 cells by enhancing the binding activity and interac‑
tion of p53‑DNA (84). HDAC2 deficiency usually results in 
different cellular phenotypes, suggesting that HDAC2 has a 
cell‑type‑specific role that may be relevant to the cell prolif‑
erative status (30). Turgeon et al (85) demonstrated that defects 
in tissue structure and perturbation of microenvironment 
homeostasis are accompanied by inhibition of cell prolif‑
eration when HDAC1/2 is knocked out. There is increasing 
evidence that HDAC2 promote the proliferation of liver 
cancer cell lines, although there is no indication of HDAC2 
involvement in the proliferation of normal liver cells (86‑88). 
Ler et al (86) found that the combined knock out of HDAC2 
and HDAC1 decreases cell proliferation and improves survival 
of patients with HCC. HDAC2 overexpression is routinely 
detected in cancer cells, and HDAC2 deficiency and inhibi‑
tion lead to HCC cell apoptosis (87). The role of HDAC2 in 
cell proliferation was previously observed in the development 
of cardiac and B cells; HDAC2 and HDAC1 jointly inhibit 
cell cycle protein‑dependent kinase p21 (WAF1/CIP1) and 

p57KIP2 transcription and promote progression from G1 to 
S phase (88). By contrast, HDAC2 suppresses transcription 
of p21WAF1/CIP1 via binding to Sp1‑binding site enriched 
proximal region of the p21WAF1/CIP1 promoter (89).

4. HDAC2 in liver disease

HDAC2 promotes liver regeneration. Liver regeneration is of 
clinical significance in various types of liver disease (90,91). 
In the event of massive hepatocyte loss or damage, the intrinsic 
regenerative capacity of hepatocytes is activated by endog‑
enous molecule‑mediated signaling pathways  (92). Rapid 
synchronous compensatory regeneration occurs following 
2/3 partial hepatectomy (PH), and regenerated hepatocytes 
immediately enter the cell cycle and proliferate rapidly, 
restoring their original quality and function (93). Studies on 
the deficiency of HDAC2 in mouse liver regeneration have 
confirmed the key role of HDAC2 in liver regeneration (94,95). 
Following PH, the liver/body weight ratio is significantly 
lower in hepatocyte‑selective HDAC2‑/‑ mice compared with 
wild‑type mice; HDAC2‑/‑ mice also show more severe liver 
damage. Additionally, the expression of HDAC2 gradually 
increases within 0.5 to 3.0 days in mouse post‑hepatectomy 
livers at an early stage of regeneration. Ki67, a mitotic marker, 
is decreased by ~30‑70% in HDAC2 knockout mice, subse‑
quently leading to defective mitosis. Decreased cyclinD1 
and CDK2 in HDAC2‑deficient hepatocytes suggests that 
HDAC2 liver‑specific knockout triggers downregulation of 
cell cycle proteins and blocks cell cycle progression. Studies 
have shown that HDAC2 is expressed differently in male and 
female mice, and HDAC2 can directly bind to the promoter of 
B‑myc (93,95). The expression of B‑myc in the female liver is 
higher than in the male liver, which may be potential mecha‑
nism for the significantly slower rate of replication and quality 
reconstruction of individual female hepatocytes following 
PH. In conclusion, the altered metabolic pattern in HDAC2 
knockout mice is consistent with the well‑known regenerative 
characteristic of hepatocytes. This evidence also confirms 
a key role for HDAC2 in the metabolic response following 
PH (Fig. 2).

HDAC2 in liver fibrosis. Liver f﻿﻿ibrosis, primarily characterized 
by excessive accumulation of extracellular matrix proteins, 
is a worldwide medical problem with increasing annual 
morbidity (96,97). The majority cases of liver fibrosis arise in 
the context of various etiology of liver damage, such as chronic 
viral infections  (98), excessive alcohol consumption  (99), 
metabolic disorder (100) or autoimmune disease (101). The 
regression and improvement of liver fibrosis are primarily 
attributed to inactivation and apoptosis of activated hepatic 
stellate cells (HSCs) (102). Notably, emerging evidence has 
revealed the potential features and roles of HDACs in the 
progression of liver fibrosis (103,104). It was also reported 
that several HDACs are involved in the activation of HSCs 
and the progression of hepatic fibrosis  (105,106). In addi‑
tion, accumulating evidence has highlighted the key role of 
HDAC2 in the development of renal fibrosis and pulmonary 
fibrosis (18,107,108). In this regard, it is worth verifying the 
functional role of HDAC2 in the occurrence and reversal of 
liver fibrosis.
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In order to reveal the possible association between HDAC2 
and liver fibrosis, a CCl4‑induced mouse liver fibrosis and its 
spontaneous reversal model have been successively estab‑
lished  (119); this supported the view that aberrant HDAC 
expression and activity participate in the occurrence and devel‑
opment of liver fibrosis. Expression of HDAC2 is increased 
during CCl4‑induced liver fibrosis and significantly decreased 
during its reversal. Similarly, the expression of HDAC2 is also 
significantly increased in human hepatic fibrosis. Exposure of 
HSC‑T6 cells to TGF‑β1 results in increased HDAC2 expres‑
sion in a dose‑ and time‑dependent manner. Loss‑of‑function 
analyses have confirmed that loss of HDAC2 induces cell 
cycle arrest and inhibits the expression of collagen 1α1 and 
α‑smooth muscle actin protein in HSC‑T6 cells activated by 
TGF‑β1 (110‑112). Mechanistically, it has been widely reported 
that HDAC2‑small interfering (si)RNA leads to increased 
expression of SMAD7 compared with scramble siRNA‑trans‑
fected groups (111,112). Collectively, these results suggest that 
HDAC2 activates HSCs and promotes the occurrence of liver 
fibrosis by suppressing SMAD7 expression. In conclusion, 
these findings may demonstrate the role of HDAC2 in the 
progression and reversal of liver fibrosis, and therefore have 
significant implications for the development of novel treatment 
strategies for liver fibrosis (Fig. 3).

HDAC2 in NASH. NASH, a more aggressive form of 
non‑alcoholic fatty liver disease, is pathologically charac‑
terized by cell damage, inflammatory cell infiltration and 
hepatocyte ballooning (113,115). Sustained accumulation of 
reactive oxygen species (ROS) and resultant oxidative stress, 
mitochondrial dysfunction and accumulation of triglyceride 
and lipotoxic metabolites have been identified as contributing 

factors to NASH (115). To date, there are no current Food and 
Drug Administration (USA)‑approved effective therapies to 
manage NASH (116). The inhibitory modulation of HDAC2 
may contribute to the prevention of NASH (117).

Zhong et al (117) found that CD36 deficiency specifically 
upregulates monocyte chemotactic protein‑1 (MCP‑1) expres‑
sion, thereby aggravating macrophage infiltration and hepatic 
inflammation. In addition, they also indicated that CD36 
deficiency effectively suppresses nuclear HDAC2 expression 
by decreasing intracellular ROS and increasing the binding 
of acetyl histone 3 to MCP‑1 promoter, which subsequently 
enhances expression of MCP‑1, increases hepatic macrophage 
infiltration and promotes NASH development. Screening of 
11 classic HDACs in CD36‑/‑ mouse liver and CD36‑deficient 
hepatocytes also revealed that CD36 deletion significantly 
inhibits nuclear expression of HDAC2 in hepatocytes, but 
not that of other HDACs. Taken together, this indicates that 
CD36 deficiency in hepatocytes promotes MCP‑1 expression 
by inhibiting nuclear expression of HDAC2. Thus, the loss 
of CD36 results in decreased ROS levels, which lead to the 
development of NASH in mice by inhibiting the expression of 
HDAC2 and promoting that of MCP‑1. Overall, maintaining a 
good balance between nuclear HDAC2 expression and hepatic 
ROS levels may be a potential novel therapeutic strategy for 
the prevention of NASH (Fig. 4).

HDAC2 promotes HCC. HCC is one of the most common 
types of solid malignancy and is driven by different molecular 
mechanisms (118,119). Researchers have linked gene expres‑
sion signatures with the occurrence and prognosis of HCC 
and investigated gene expression patterns and potential 
therapeutic targets (120). Evidence suggests that HDAC2 is 

Figure 2. Schematic representation of the role of HDAC2 in liver regeneration. Following PH or CCl4 exposure, the expression of HDAC2 decreases. The loss of 
HDAC2 inhibits expression of Ki67 and induces expression of B‑myc, which results in hepatocyte mitosis defects and impaired liver regeneration. PH, partial 
hepatectomy; HDAC2, histone deacetylase 2.
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overexpressed in tumors, and HDAC2 downregulation leads to 
high expression levels of cell cycle circuit elements, including 

p21WAF1/Cip1, which is a well‑characterized regulatory 
factor that serves a key role in cell senescence (121,122). With 

Figure 3. Potential regulatory mechanisms of HDAC2 in liver fibrosis. The expression of HDAC2 protein increases in mice exposed to CCl4 and HSC‑T6 cells 
treated with TGF‑β. Furthermore, HDAC2 exerts its key role in HSC activation and liver fibrosis by suppressing the expression of SMAD7, which is a negative 
modulator in of HSC activation and liver fibrosis. HDAC2, histone deacetylase 2; HSCs, hepatic stellate cells.

Figure 4. Key roles of HDAC2 in the progression of NASH. In CD36‑/‑ mice, CD36 deficiency blocks hepatic HDAC2 by decreasing ROS levels, and increases 
acetyl histone3 binding to MCP‑1, thus enhancing expression of MCP‑1, increasing hepatic macrophage infiltration and promoting NASH development. 
HDAC2, histone deacetylase 2; NASH, non‑alcoholic steatohepatitis; ROS, reactive oxygen species; MCP‑1, monocyte chemotactic protein‑1.
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regard to liver cancer, HDAC2 promotes proliferation, and its 
aberrant expression may be a prognostic indicator of HCC (86).

A study found that HDAC2 overexpression is associated 
with poor survival of patients with low‑grade and early‑stage 
tumors, suggesting that HDAC2 is an independent and reliable 
predictor of survival of patients with HCC (123). Noh et al (89)
assessed the tumorigenic potential of HDAC2, evaluated 
abnormal HDAC2 expression and investigated its regulatory 
mechanism in HCC; abnormal regulation of HDAC2 served a 
key role in HCC progression by regulating cell cycle regula‑
tory components at the transcriptional level. Their data also 
showed that HDAC2 overexpression was not associated with 
Wnt and c‑myc signaling pathways, which play an important 
role in malignant cell proliferation. Kim et al (124) investi‑
gated the underlying mechanism of HDAC2 in tumorigenesis; 
increased expression of casein kinase II (CK2α) was posi‑
tively correlated with HDAC2. They proposed a regulatory 
mechanism whereby increased HDAC2 expression in HCC is 
primarily caused by the activation of CK2α/AKT pathways 
mediated by EGF. Lee et al  (108) indicated that systemic 
delivery of HDAC2 siRNA encapsulated in lipid nanopar‑
ticles is sufficient to inhibit HCC progression. In addition, 
mTORC1 activation and NF‑κB p50 nuclear translocation 
are essential for the transcriptional activation of oncogenic 
HDAC2 in HCC (125). Furthermore, 1,25(OH)2D3 inhibits the 
progression of HCC by downregulating HDAC2 (126,127). 
Consistently, Wang et al  (128) also found that high levels 
of HDAC2 expression are negatively correlated with PTEN 
expression in HCC patients with poor prognosis (Fig. 5).

Merck60 selectively inhibits HDAC1 and HDAC2, 
thereby increasing histone acetylation and disrupting 

core gene regulatory architecture in rhabdomyosar‑
coma (129). Methot et al (130) investigated novel selective 
HDAC1/HDAC2 inhibitors (SHI‑1:2), which incorporate 
a biaryl zinc‑binding motif into a nicotinyl scaffold; the 
optimized SHI‑1:2 structure exhibited notable inhibitory 
activity against HDAC1 and HDAC2, and its specific selec‑
tivity for HDAC1/HDAC2 was 100 times higher than that 
for other HDACs (131). N‑(2‑amino‑5‑substituted phenyl) 
benzamide significantly induced HCT116 cell death by 
specifically targeting HDAC2 (62). In addition, the effects 
of C15 urushiol and its triazole derivatives on the apoptosis 
of liver cancer cells have been qualitatively and quanti‑
tatively verified (132). Venturelli et al  (133) reported that 
6‑ and 8‑prenylnaringenin enter into the ‘foot pocket’ of 
HDAC2 and combine with zinc ion of their catalytic center, 
subsequently inhibiting excessive proliferation of melanoma 
cells. N‑[4‑(Hydrazinecarbonyl)phenyl]‑3,5,6‑trimethylpyr‑
azine‑2‑carboxamide exhibits notable anticancer activity 
in  vivo (IC50=1.60  µM)  (134) Among squaramide‑based 
derivatives, the lead compound 42 exhibits good druggability 
by specifically inhibiting HDAC2 (67). Isopropyl derivative 5 
and tert‑butyl derivative 6, is which derived from the lead 
compound NSC746457, exhibit a significantly inhibitory 
effect on HDAC2 (63). Novel indazole and pyrazolo(3,4‑b) 
pyridine derivatives have been designed and synthesized 
via fragment‑based virtual screening; biological evaluation 
showed that compounds 15k and 15m possess distinctly 
inhibitory effect towards HDAC2 (66). Rosmarinic acid has 
been demonstrated to downregulate HDAC2 expression, 
subsequently leading to cell cycle arrest and apoptosis (135). 
N‑(2‑aminophenyl)‑4‑[(4‑fluorophenoxy)methyl] benzamide 

Figure 5. Schematic representation of the role of HDAC2 in HCC. Treatment with EGF increases CK2α expression and phosphorylation of mTOR and AKT, 
inducing expression of HDAC2 in HCC. In addition, elevated expression of HDAC2 triggers a positive feedback loop of AKT phosphorylation via transcrip‑
tional modulation of phosphoinositide signaling molecules. Furthermore, 1,25(OH)2D3 inhibits the growth of HCC cells via downregulating HDAC2‑mediated 
PTEN upregulation, and upregulating p21 (WAFI/CIP1), AKT deactivation and inhibition of the PI3K/AKT signaling pathway. HDAC2, histone deacetylase 2; 
CK2α, casein kinase II; HCC, hepatocellular carcinoma.
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exhibits antitumor activity by inhibiting HDAC2 at an IC50 
of 3.84  µM  (65). In addition, a series of 2‑aminobenza‑
mide‑based compounds exhibit highly inhibitory effects on 
solid cancer cell lines and low cytotoxicity against normal 
cells (Table II) (68).

ncRNAs mediate HDAC2 expression at the posttran‑
scriptional level  (136,137). A meta‑analysis of 1,258 HCC 
samples showed that downregulation of microRNA (miRNA 
or miR)‑100‑5p contributes to the progression and prognosis 
of HCC by negatively regulating HDAC2 expression (138). 
Noh  et  al  (87) found that miR‑145 functions as a tumor 
suppressor by directly targeting HDAC2 in liver cancer. In 
addition, another study demonstrated that miR‑31 signifi‑
cantly decreases HDAC2 expression by suppressing mRNA 
translation in HCC cells (139). In sum, these results suggest 
that promotion or suppression of certain miRNAs cause 
aberrant expression of HDAC2, which be involved in HCC 
tumorigenesis. Dai et al (140) found that long ncRNA SNHG15 
upregulates HDAC2 expression by sponging miR‑490‑3p, 
which further promotes HCC progression.

In summary, these results demonstrate that HDAC2 
possesses carcinogenic properties. These studies also suggest 
that the development of novel compounds or ncRNAs may be a 
promising therapeutic modality for liver cancer by selectively 
targeting HDAC2.

5. Conclusion

Epigenetic modifications serve prime regulatory roles 
in genetic events, such as transcriptional activation and 
silencing (141). The effects of epigenetic modifications have 
been recognized, although their specific roles may still be 
controversial. Histone acetylation contributes to gene expres‑
sion, while histone deacetylation leads to suppression of gene 
transcription (142). Studies have shown that relative levels of 
histone acetylation and deacetylation are of significance for 
the regulation of pathophysiological processes, including 
proliferation, cell‑cycle progression, differentiation, immune 
evasion, inflammatory lesion, apoptosis and death (143‑145). 
Pharmacological inhibition of HDAC activity or expression 
alters chromatin acetylation levels, subsequently confusing 
boundaries between transcriptionally active and quiescent 
chromatin (146‑148).

The increasing incidence of liver disease requires novel 
effective therapeutic interventions. HDAC2 exhibits attractive 
pharmacological effects in hepatocyte loss or injury, HCC 
and NASH by modulating hepatocyte death and regulating 
cell cycle components. In the past decades, researchers have 
characterized HDAC classification, structure and subcellular 
localization (47‑50,52,54). The malignant or beneficial role of 
HDAC2 in liver fibrosis, non‑alcoholic fatty liver disease and 

Table II. Lead compounds of potential histone deacetylase 2 inhibitors.

Inhibitor	 Function	 IC50, nM	 Analysis method	 (Refs.)

Compound 12	 Anticancer	 44.0	 SAR	 (136)
Compound 5/8	 Anticancer	 27.0/39.0	 SAR	 (59)
K560	 Neuroprotection	 520.0	 VS	 (138)
Compound 4b	 ND	 40.6	 SAR	 (87)
RH01652	 Prevent AD	 ND	 MDs‑QC	 (139)
BRD8430	 Neuroblastoma	 ND	 HTS	 (140)
	 differentiation			 
Eight hits urushiol	 ND	 ND	 PM‑VS	 (141)
derivatives				  
C15 Triene	 ND	 ND	 MD‑MDs‑VS	 (61)
Triazole	 Anticancer	 ND	 SAR‑MD	 (143)
ST088357	 ND	 16870.0	 Scaffold‑Merging HQ	 (148)
6‑PN/8‑PN	 Anticancer	 ND	 SAR	 (145)
Compound 4g/6c/6g	 ND	 130.0/160.0/580.0	 MD 	 (146)
LAQ824 	 ND	 3.0	 MD	 (147)
Compound 7a 	 Anticancer	 53.7	 QSAR 	 (148)
Squaramide‑based	 Anticancer	 ND	 SAR	 (64)
hydroxamic acids
ID5/TD6	 Anticancer	 22.0/18.0	C lick‑chemistry/MD	 (60)
Compound 15k/15m	 Anticancer	 4.2/3.6	 VS‑MD	 (63)
Rosmarinic acid	 Anticancer	 ND	 Activity screening	 (149)
Compound 12a	 Anticancer	 ND	 MD‑SAR	 (62)
Compounds12g/12h	 Anticancer	 205.0/144.0	 SAR	 (65)

ND, no description available; SAR, structure‑activity relationship; VS, virtual screening; MDs, molecular dynamics; QC, quantum chemistry; 
HTS, high‑throughput screening; PM, pharmacophore modeling; MD, molecular docking; HQ, hybrid query; QSAR, quantitative SAR.
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liver cancer has been revealed. Nonetheless, the mechanism 
of HDAC2 in the development of liver disease has not been 
elucidated and more investigations are needed in future. In 
summary, these properties of HDAC2 make it an appealing 
therapeutic target by regulating expression of HDAC2 and 
HDAC2‑dependent signaling pathways.

HDAC2 presents favorable characteristics as a potential 
drug target. Consequently, pharmacological agents that inhibit 
HDAC2 may be a prospective treatment for liver ailments. 
However, the few known HDAC2 inhibitors are broad spec‑
trum inhibitors that simultaneously inhibit several members of 
HDACs family and thus may have more potential adverse side 
effects. Therefore, it is necessary to develop novel HDAC2 
inhibitors with higher targeting selectivity. High homology 
and cellular co‑localization of multiple HDACs makes devel‑
opment and use of HDAC2 inhibitors difficult. The expression 
and pharmacological activity of HDAC2 is important for the 
prediction, diagnosis and prognosis of liver disease. NF‑κB, 
c‑Myc, Sp1 and Sp3 can bind to the HDAC2 promoter, thereby 
augmenting HDAC2 transcription (149‑151). These findings 
suggest that the HDAC2 promoter may also be a potential 
target for pharmacological intervention.

The present study reviewed the specific roles of HDAC2 
and the potential application of HDAC2 inhibitors in liver 
disease. Increasing evidence has highlighted the key role of 
HDAC2 in the occurrence and development of liver disease 
and demonstrated that HDAC2 inhibitor therapy may be a 
therapeutic approach. Better understanding of the potential 
roles and regulatory mechanisms of HDAC2 in liver disease 
may improve the ability to predict the pace of liver disease 
progression and exploit specific targeted therapeutic strategies.
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