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Abstract. Nitric oxide (NO) is an ubiquitous signaling 
molecule that mediates numerous cellular processes associ‑
ated with cardiovascular, nervous and immune systems. NO 
also plays an essential role in bone homeostasis regulation. 
The present review article summarized the effects of NO on 
bone metabolism during orthodontic tooth movement in order 
to provide insight into the regulatory role of NO in orthodontic 

tooth movement. Orthodontic tooth movement is a process 
in which the periodontal tissue and alveolar bone are recon‑
structed due to the effect of orthodontic forces. Accumulating 
evidence has indicated that NO and its downstream signaling 
molecule, cyclic guanosine monophosphate (cGMP), mediate 
the mechanical signals during orthodontic‑related bone 
remodeling, and exert complex effects on osteogenesis and 
osteoclastogenesis. NO has a regulatory effect on the cellular 
activities and functional states of osteoclasts, osteocytes and 
periodontal ligament fibroblasts involved in orthodontic tooth 
movement. Variations of NO synthase (NOS) expression 
levels and NO production in periodontal tissues or gingival 
crevicular fluid (GCF) have been found on the tension and 
compression sides during tooth movement in both orthodontic 
animal models and patients. Furthermore, NO precursor and 
NOS inhibitor administration increased and reduced the tooth 
movement in animal models, respectively. Further research 
is required in order to further elucidate the underlying 
mechanisms and the clinical application prospect of NO in 
orthodontic tooth movement.
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1. Introduction

Nitric oxide (NO) is a water‑soluble, gaseous, short‑lived free 
radical molecule that plays multifaceted roles in a broad range 
of physiological and pathological processes in mammals (1‑3). 
NO is produced by NO synthase (NOS) as a consequence of 
the process of L‑arginine (L‑arg) conversion into L‑citrulline 
with the participation of oxygen and nicotinamide adenine 
dinucleotide phosphate. Three isoforms of NOS have been 
identified: Neuronal NOS (nNOS) and endothelial NOS 
(eNOS) are constitutively expressed calcium‑dependent 
enzymes, characterized by the rapid production of a small 
amount of NO; inducible NOS (iNOS) is a calcium‑independent 
enzyme that is upregulated at the transcriptional level during 
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inflammation, causing a relatively slow yet increased‑output 
NO production (2,3). The most common target of NO is 
soluble guanylate cyclase (sGC), which generates the second 
messenger cyclic guanosine monophosphate (cGMP) from 
guanosine‑5'‑triphosphate within the cell (4,5). cGMP mainly 
acts on protein kinase G (PKG) and can be degraded by phos‑
phodiesterase (PDE), such as PDE5, 6 and 9 (2,6). The effect 
of NO on bone mass regulation and bone metabolism has been 
well investigated and reviewed elsewhere; however, studies 
on the involvement of NO in orthodontic tooth movement are 
limited (7‑9).

Tooth movement induced by orthodontic force is achieved 
through bone remodeling, as a result of the sequential 
transduction of molecular signals and changes in cellular 
behaviors (10,11). It is of utmost significance to determine 
the underlying mechanism of orthodontic tooth movement, in 
order to reduce possible side‑effects and shorten the duration 
of therapy. NO is extensively involved in orthodontic‑related 
biological events, such as aseptic inflammation, mechanical 
signal transduction and bone remodeling. Furthermore, the 
regulatory effect of NO on bone remodeling has been demon‑
strated to be cGMP‑related (12,13). In the present review, the 
regulatory effects of NO on the functional states of related 
cells and tissues during orthodontic tooth movement, as well 
as the possible mechanisms involved are discussed, with the 
aim of providing helpful insight towards the application of 
effective therapeutic interventions in orthodontics. 

2. Orthodontic tooth movement overview

Orthodontic tooth movement relies upon periodontal ligament 
(PDL) and alveolar bone remodeling. The PDL is a dense 
connective tissue that plugs the tooth to the adjacent alveolar 
bone (14,15). It contains collagen fiber bundle, blood vessel, 
nerves, interstitial fluids and multiple cell types, including 
fibroblasts, osteoclasts, osteoblasts and macrophages (10,14). 
The alveolar bone consists of bone cells (osteoclasts, osteo‑
blasts and osteocytes) and the mineralized matrix (14,16). The 
force applied to the tooth triggers cell‑signaling cascades in 
the PDL and the alveolar bone, leading to tissue remodeling 
and tooth movement (11,17).

Orthodontic tooth movement can be organized into three 
phases: i) The initial phase; ii) lag phase; and iii) post‑lag 
phase (18). In the initial phase, tooth movement occurs due 
to the deformation of PDL and tooth displacement within the 
alveolar socket 24 to 48 h after the application of force to the 
teeth. The lag phase follows the initial phase, during which 
little or no tooth movement is observed due to PDL hyaliniza‑
tion in the compression region. This phase lasts 20‑30 days. 
Following the removal of necrotic tissue by macrophages, 
tooth movement resumes in the post‑lag phase (19,20). This 
phase usually occurs 40 days after the initial application of 
force.

Cellular and molecular mechanisms of orthodontic tooth 
movement
Pressure side: Osteoclasts and bone resorption. The 
pressure‑tension theory describes orthodontic tooth move‑
ment as an outcome of bone resorption in the compression 
region and bone formation in the tension region (21). On the 

pressure side, the reduction of blood flow and the distortion 
of nerve endings in PDL may cause hypoxia and the release 
of vasoactive neurotransmitters, including substance P, calci‑
tonin gene‑related peptide (CGRP), and vasoactive intestinal 
polypeptide. As a result, vasodilatation and the aggregation of 
circulating leukocytes, monocytes, macrophages, lymphocytes 
and mast cells has been observed (22‑26). Growth factors, 
chemokines and other cytokines also contribute to these 
processes (23,27,28).

Osteoclasts are multinucleated cells, that initially differ‑
entiate from multipotential hematopoietic precursors in the 
monocyte/macrophage lineage, upon macrophage‑colony 
stimulating factor (M‑CSF) and receptor activator of nuclear 
factor‑κΒ ligand (RANKL) stimulation, which are secreted 
primarily by cells of the osteoblast lineage (29‑35). M‑CSF 
promotes the proliferation, adhesion and migration of osteo‑
clast precursor cells (36‑38). RANKL promotes the fusion, 
differentiation and bone resorptive function of osteoclasts 
through the activation of RANK on the surface of osteoclast 
precursors (33,39,40). OPG, a decoy receptor for RANKL, 
suppresses osteoclastogenesis through the blockage of the 
RANK/RANKL signaling pathway (41,42). 

The aseptic inflammatory response caused by orth‑
odontic forces is indispensable for tooth movement (11,43). 
Interleukin (IL)‑1β, IL‑6, tumor necrosis factor (TNF)‑α 
and prostaglandin E2 (PGE2) can induce the release of 
RANKL and MCS‑F to stimulate osteoclast precursor 
differentiation (41,44‑47). In addition to the enhancement 
of osteoclastogenic factor expression, TNF‑α also activates 
osteoclast precursors directly through it binding to TNF 
receptor (32,48,49). PGE2 enhances the bone‑resorbing 
activity of osteoclasts through the increase of intracellular 
cyclic adenosine monophosphate (cAMP) levels or the partial 
mediation of TNF‑α (50). Mature osteoclasts occupy small 
cavities termed Howship's lacunae, in which hydrogen ions 
and proteolytic enzymes are released, including cathepsin K 
and matrix metalloproteinases (MMPs), in order to degrade 
the bone matrix (39,51,52). When the magnitude of the force 
decreases, osteoclasts become inactive and detach from the 
bone (53).

Tension side: Osteoblasts and bone formation. Bone depo‑
sition induced by osteoblasts presents is the predominant 
event on the tension side (20,54). Derived from bone marrow 
mesenchymal stem cells, osteoblasts secrete an organic matrix 
known as the osteoid, which is then incorporated further  into 
the mature bone (55). During bone formation, some osteo‑
blasts transform into bone lining cells on the bone surface, 
or osteocytes embedded in the bone matrix. Osteocytes are 
connected and communicate through cytoplasmic processes 
in tiny canals, called canaliculi (56,57). 

Transcription factor runt‑related transcription factor 2 
(Runx2), also known as ore‑binding factor subunit alpha‑1 
(Cbfa1) and the Wnt/β‑catenin pathway provide the initial 
and essential stimulus for osteoblast differentiation (34,58). 
Bone morphogenetic protein (BMP), as a member of the 
transforming growth factor β (TGF‑β) superfamily, induces 
the differentiation of osteoprogenitor cells and promotes 
osteoblast function through the stimulation of Runx2 expres‑
sion via the small mother against decapentaplegic or p38 
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mitogen‑activated protein kinase (MAPK) pathways (59‑62). 
In addition, TGF‑β also suppresses bone resorption activity 
through the upregulation of the tissue inhibitor of metallopro‑
teinases expression (43,63). IL‑10 induces an overall reduction 
in RANK signaling, through the facilitation of OPG expres‑
sion and the reduction of RANKL production (43,64,65). 

Regional hypoxia caused by orthodontic force induces 
hypoxia‑inducible factor (HIF)‑1 expression and upregulates 
the transcription of vascular endothelial growth factor (VEGF) 
in PDL fibroblasts and osteoblasts. VEGF is associated with 
osteogenic differentiation and matrix mineralization under 
the regulation of BMP, corroborating the concept that angio‑
genesis and osteogenesis are combined (66,67). Furthermore, 
HIF‑1 and VEGF also stimulate osteoclast differentiation via 
the upregulation of RANKL, contributing to the combination 
of bone resorption and bone formation (68‑70).

Some molecules that regulate the response of PDL fibro‑
blasts to the orthodontic forces have been identified in previous 
studies, such as CC chemokine receptor 5 (CCR5) and CCR5 
ligands axis (71), relaxin (Rln) and Rln family peptides (Rxfps) 
axis (72), and secretory leucocyte peptidase inhibitor (73). The 
expression levels of these molecules were upregulated in the 
PDL, due to compression and tension force; however, their 
downstream effects were different. Another consequence was 
the upregulation of the osteoclastogenesis‑relating factors, 
including RANKL, MCSF and MMPs, on the compression 
side, and osteoclast activity inhibiting factors, including 
Runx2, IL‑6, and IL‑12, that may induce osteoblast differen‑
tiation on the tension side.

Mechanotransduction: Osteocytes and fibroblasts. Osteocytes 
are critical for the transduction of mechanical stimuli into 
biochemical signals (74‑76). When a force is exerted on the 
tooth, the squeeze of the interstitial fluid causes fluid shear 
stress (FSS) in the extracellular matrix (ECM) (77). The fluid 
flow hypothesis describes the response of osteocytes to FSS 
as an essential mechanism during orthodontic treatment. FSS 
stimulates an increase in the intracellular calcium concentra‑
tion and the release of intercellular molecules in osteocytes 
through the activation of integrin, a transmembrane protein 
that connects ECM macromolecules to the internal cytoskel‑
eton (78‑80). The FSS‑related up‑regulation of NO, PGE2, 
TFG‑β, and insulin‑like growth factor alters the osteocyte 
metabolic state and osteoblast/osteoclast functions (81,82). 
Gap junctions formed by connexin (Cx) also participate in 
the osteocyte‑osteoblast communication (83,84). For example, 
Cx is involved in the release of PGE2, which enhances Runx2 
DNA binding activity through the simultaneous activation of 
the cAMP/cAMP‑dependent protein kinase and MAPK path‑
ways and the subsequent stimulation of RANKL expression in 
osteoblasts (85‑88). 

The inhibitory effect of osteocytes on osteoblastic activity 
can be induced by the secretion of sclerostin, which antago‑
nizes BMP effect and blocks canonical Wnt signaling (89‑91). 
Osteocytes regulate osteoclastic differentiation via the alter‑
nation of major osteoclast regulators, namely RANKL and 
M‑CSF (92‑94). Moreover, osteocyte apoptosis induction is 
an important event in the recruitment and differentiation of 
osteoclasts (95‑97). These findings confirm that osteocytes 
play a key role in the response to biomechanical stimuli and 

controlling bone remodeling by coordinating the activity of 
osteoblasts and osteoclasts.

Fibroblasts are involved in mechanosensation and 
mechanotransduction in connective tissues. The application 
of mechanical stretching activates integrin and causes confor‑
mational changes in focal adhesion kinase (FAK), inducing a 
signaling cascade that modulates cytoskeletal dynamics and 
gene transcription in fibroblasts (98,99). 

3. Effects of NO on orthodontic tooth movement

Expression of NO in bone tissue. Three NOS isoforms in 
total are expressed in osteoblasts, osteoclasts and osteo‑
cytes (100‑102). iNOS and eNOS are expressed in human 
PDL stem cells (103,104). Previous studies revealed the 
presence of sGC and cGMP in mouse bone marrow macro‑
phages (105), osteoclasts (105‑107), and osteocytes (108). 
Davidovitch et al (109,110) performed immunohistochem‑
istry (IHC) on alveolar bone sections obtained from cats 
and revealed that cGMP expression was increased in the 
PDL fibroblast cells stained intensely for; however, most 
cGMP expression was not detected through IHC staining in 
osteoblasts. However, cGMP expression increased due to the 
subjection of the alveolar bone to mechanical force (111,112). 
The application of electric currents to the bone, also led to the 
upregulation of cGMP in osteoblast and PDL fibroblast cells, 
accompanied by bone deposition near the cathode (113‑115). 
Since a piezoelectric current can be generated by mechanical 
stress, the above findings suggest that NO/cGMP is an impor‑
tant signaling pathway, which mediates bone cell response to 
mechanical force (116).

Role of NO in cells associated with orthodontic tooth move-
ment. Mounting evidence indicates that NO regulates multiple 
cellular behaviors related to orthodontic movement (Fig. 1 and 
Table I).

Osteoclasts. A number of studies have demonstrated that NO 
exerts biphasic effects on osteoclast formation and function. 
In several cases, NO promotes osteoclastogenesis and bone 
resorption. NO mediates pre‑osteoclasts fusion through 
the upregulation of actin cytoskeleton remodeling (117). 
Histopathological studies have demonstrated that osteoclasts, 
Howship's lacunae and new capillaries were increased in rats 
that received an injection of the NO precursor L‑arg during 
tooth movement (118‑120). 

iNOS is an important regulator of osteoclast differ‑
entiation under bacterial infection‑induced inflammatory 
conditions (121‑123). iNOS was previously found to mediate 
alveolar bone loss and periapical infectious bone resorption 
following the oral administration of Porphyromonas gingi-
valis (124) or lipopolysaccharide (122). In another study, 
histochemical analysis revealed that the osteoclast number in 
iNOS(‑/‑) mice in comparison to wild‑type mice was consid‑
erably decreased (123). Tooth eruptions are similar to tooth 
movement in terms of monocyte recruitment and osteoclast 
differentiation. Evidence indicates that increased levels of 
iNOS are associated with a greater number of osteoclasts in 
mice with accelerated tooth eruption, indicating that iNOS 
may be a bone resorption modulator candidate (125).
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As previously demonstrated, M1‑like macrophage polar‑
ization and an enhanced M1/M2 macrophage ratio increase 
the number of osteoclasts in rats or mice, accompanied by 
an increase in M1 macrophage marker expression (TNF‑α 
and iNOS) on the compression side, during tooth move‑
ment (126,127). TNF‑α stimulates the survival of differentiated 
osteoclasts through the induction of iNOS‑dependent NO 
generation (128). In the rheumatism inflammatory environ‑
ment, the TNF‑α promoting effect on alveolar bone resorption 
is partly mediated through the activation of iNOS and the 
resulting production of NO (129).

It has been observed that the promoting effect of iNOS 
on osteoclasts is mediated through the NO/cGMP pathway. 
Kaneko et al (105) revealed that 8‑nitro‑cGMP, a NO‑dependent 
derivative of cGMP in mammals, increased RANKL mRNA 
expression, and enhanced osteoclast differentiation. The 
reduction in cGMP levels due to the inhibition of NOS caused 
RANKL‑induced osteoclast differentiation suppression. 

By contrast, evidence has revealed an inhibitory effect 
of NO on osteoclasts at low concentrations. NO has been 
reported to increase osteoclast and osteoclast precursor cell 
apoptosis (101,130‑132). A novel NO donor, nitrosyl‑cobin‑
amide (NO‑Cbi), has been found to reduce the RANKL/OPG 
gene expression ratio or directly inhibit osteoclast differentia‑
tion in vitro and in vivo (133). Nicorandil, an agent that can 
increase NO production in osteoclasts, was previously shown 
to suppress osteoclast differentiation via activating sGC (134). 
NO causes osteoclast detachment and downregulates osteo‑
clast bone‑resorbing activity via the NO/cGMP/PKG pathway 
in vitro (101,107,135‑137). Of note, the selective inhibition 
of iNOS was previously found to markedly promote bone 

resorption in vivo. In an iNOS(‑/‑) mouse model of apical peri‑
odontitis, enhanced osteoclast differentiation and increased 
bone resorption were observed in comparison with the control 
group, accompanied by increased IL‑1β, TNF‑α, RANK, 
RANKL and monocyte chemoattractant protein‑1 (MCP‑1) 
levels (138,139). These results suggest that NO deficiency 
is associated with an imbalance in the host inflammatory 
response, resulting in severe bone loss.

Moreover, iNOS exerts an inhibitory effect on osteoclast 
differentiation through other pathways. Zheng et al (140) 
demonstrated that iNOS was a RANKL‑induced autocrine 
negative feedback inhibitor of RANKL‑mediated osteoclasto‑
genesis. RANKL triggered iNOS expression and NO release, 
and subsequently inhibited RANKL‑induced osteoclast 
formation in a cGMP‑independent manner.

The inconsistent effects of NO on osteoclastogenesis may 
be attributed to the differences in NO synthesis quantity, cell 
types and development states. NO action is also affected by 
the cytokines in the microenvironment. Multiple factors influ‑
ence the downstream signaling of NO, and further studies are 
required to elucidate the specific mechanism of NO regulation.

Osteoblasts. NO is also involved in the bidirectional regulation 
of osteoblasts. Decreased NO concentrations promote osteo‑
blast proliferation, differentiation and survival (133,141‑143). 
Mineralized nodule formations and mRNA expression levels 
of osteoblastic genes, such alkaline phosphatase, osteocalcin 
and collagen‑1 genes, have been shown to be enhanced by NO 
donors and 8‑Br‑cGMP, an analog of cGMP (141‑143). This 
effect was blocked by 1H‑(1,2,4)oxadiazolo‑(4,3‑a)quinox‑
alin‑1‑one (ODQ), a competitive blocker that prevents sGC 

Figure 1. A schematic representation of bone remodeling and NO regulation during orthodontic tooth movement at the compression and tension sides. After 
orthodontic force is applied to the teeth, bone remodeling in the compression region mainly manifests as osteoclastogenesis and bone resorption, while that 
in the tension region presents as osteogenesis and bone formation. The regulation of related factors on bone remodeling is indicated by black arrows. NO 
regulation of osteoclasts and osteoblasts differentiation is indicated by red arrows. HIF‑1, hypoxia‑inducible factor‑1; VEGF, vascular endothelial growth 
factor; RANKL, receptor activator of nuclear factor‑κB ligand; RANK, receptor activator of nuclear‑κB; M‑CSF, macrophage‑colony stimulating factor; 
IL‑1β/6, interleukin‑1β/6; TNF‑α, tumor necrosis factor‑α; PGE2, prostaglandin E2; MMPs, matrix metalloproteinases; BMP, bone morphogenetic protein; 
OPG, osteoprotegerin; TGF‑β, transforming growth factor‑β; IGF, insulin‑like growth factor; TIMP, tissue inhibitor of metalloproteinases.
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activation and lowers cGMP/PKG activity. It has been recently 
stated that PDE5 inhibitors, which can significantly increase 
intracellular cGMP levels, induce osteoblast differentiation 
and enhance bone regeneration in osteopenic mice via the 
cGMP/VEGF pathway (144). These findings further support 
the involvement of NO/cGMP/PKG pathway in the regulation 
of osteoblast activity (133,143,145).

Increased iNOS expression and NO levels have been 
observed during osteoblast differentiation in vitro. iNOS has 
been reported to mediate the regulation of Runx2 transloca‑
tion and downstream events (146). In eNOS knockout mice, 
osteoblast growth has been shown to be inhibited (147). 
Evidence suggests that eNOS activation promotes cell survival 
and enhances osteoblastic gene expression in osteoblasts via 
pathway cascades involving Src/extracellular signal‑regulated 
kinase (ERK), phosphoinositide 3‑kinase (PI3K)/protein 
kinase B (Akt) and Wnt/β‑catenin (148,149).

NO mediates the action of several local and systemic factors, 
including mechanical stimulation, hormones and other 
signaling molecules in osteoblasts (13,150). It has also been 
revealed that 1,25‑dihydroxyvitamin D(3) regulates bone 
mass via the upregulation of iNOS expression and NO produc‑
tion (151). CGRP has been found to promote mandibular 
bone fracture healing in vivo and stimulate the eNOS activity 
through the increase of intracellular calcium concentrations in 
osteoblasts in vitro (152,153). Furthermore, it has been observed 
that 17 β‑estradiol, a major endogenous estrogen, may promote 
eNOS expression and osteoblast differentiation through Akt 
phosphorylation in a dose‑dependent manner (154). It has been 
previously demonstrated that the bone‑protective effects of 
estrogen rely upon the NO/cGMP pathway (147,150). High 
concentrations of NO negatively impact osteoblast prolifera‑
tion and survival (145). NO simultaneously induces cell death 
and autophagy in osteoblasts (155).

Osteocytes and PDL fibroblasts. The effect of NO on osteo‑
cytes is similar to that of osteoblasts. Parathyroid hormone 
and 17β‑estradiol levels increase the expression of cGMP 
expression in osteocytes (108). Cinaciguat, an activator of sGC 
that has been declared as a potential drug target for osteo‑
porosis, was previously found to reverse osteocyte apoptosis 
and enhance bone formation in mice subjected to ovariec‑
tomy (156). NO/cGMP/PKG signaling mediated 17β‑estradiol 
anti‑apoptotic effect on osteocytes through either the activation 
of the pro‑survival kinases, ERK and Akt, mediated by type II 
PKG, or direct phosphorylation of protein related to cell death 
by type I (PKG) (157,158). However, inflammation‑induced 
iNOS activation and elevated concentrations of NO can lead to 
osteocyte apoptosis (132).

NO/cGMP/PKG signaling has been shown to regulate 
human PDL fibroblast proliferation and differentiation, with the 
involvement of MAPK and nuclear factor κ‑light‑chain‑enhancer 
of activated B cells pathways (103,159‑161). However, the 
effect of NO on cell proliferation in PDL has not yet been fully 
clarified. A previous study revealed that NO did not influence 
PDL stem cell proliferation (103). In other studies, it has been 
revealed that exogenous NO inhibits proliferation and induces 
apoptosis of PDL fibroblasts (159,162). This discrepancy could 
be attributed to differences in the cellular differentiation levels 
and varying applied agent concentrations.
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The PDL and the alveolar bone are developed from the 
dental follicle during tooth development. The literature was 
reviewed and it was observed that studies of NO regulation 
impact upon the dental follicle during tooth development has 
not been reported yet, to the best of our knowledge. It was 
surmised that the exploration of the underlying mechanism of 
NO on the development of the PDL and alveolar bone may 
provide novel insights into the role of NO in the tissue remod‑
eling observed during orthodontic tooth movement.

NO signaling in bone mechanotransduction NO is a factor 
that mediates early cellular response to applied mechanical 
forces in the PDL and bone (Fig. 2) (13,163,164). NO synthesis 
in osteoclasts (165), osteoblast (116,151,163,165‑167), osteo‑
cytes (164,168), PDL fibroblasts (169), fibroblasts (170), and 
dental pulp cells (171,172) increased following the applica‑
tion of mechanical loading, pulsed fluid flow (PFF), electrical 
stimulation, or pulsed electromagnetic field stimulation.  

The mechanical loading‑induced activation of the 
Wnt/β‑catenin pathway is an important signaling event in 
osteoblasts, osteocytes, and PDL fibroblasts, and is mediated 
by a NO‑dependent mechanism involving the FAK, Src/ERK 
and PI3K/Akt signaling pathways (169,173,174). PFF increases 
NO synthesis in osteoblasts, resulting in PKG II‑dependent 
activation of Src and PI3K‑dependent phosphorylation of Akt. 
The nuclear translocation of β‑catenin is induced and the gene 
expression of c‑fos is upregulated, initiating a proliferative 
response in mechanically stimulated osteoblasts (175‑177). 
When the osteoblast and osteocyte cytoskeleton system of 
disrupted, PFF‑induced NO production is affected (178). 

PFF induces the release of multiple soluble factors 
that promote osteogenesis and inhibits bone resorption. 
This process is partially dependent on the generation of 
NO (74,179‑181). PFF‑induced NO inhibited osteocyte apop‑
tosis through the downregulation of B‑cell lymphoma‑2 (Bcl‑2) 
and caspase‑3 (182). NO also modulates mechanically induced 
VEGF expression, contributing to angiogenesis during bone 
remodeling (183,184).

The main NOS isoform that produces NO in osteoblasts 
and osteocytes under the mechanical force action has not 
yet been elucidated. The activation of eNOS is associated 
with the phosphorylation or dephosphorylation at several 
functional sites on eNOS, which may be induced by FSS, 
estrogens, VEGF and insulin (185‑187). Several studies 
have revealed that FSS‑induced NO production is attrib‑
uted to the calcium‑dependent eNOS activation in bone 
cells (13,185,188,189). It has been revealed that the occlusal 
force led to iNOS and eNOS increased expression in hypo‑
functional and normal PDL fibroblasts (100,104).

Additionally, it has been suggested that eNOS may be 
not indispensable for mechanically‑induced NO synthesis in 
cultured osteoblasts or eNOS (‑/‑) mice (190,191). It has also 
been mentioned that ultrasound‑induced bone formation may 
be mediated through nNOS and iNOS upregulation in osteo‑
blasts (82,163,192,193). Furthermore, osteopontin has been 
shown to suppress the osteoblast response to ultrasound by 
inhibiting the expression of nNOS and iNOS through FAK 
downregulation (194). This inconsistency may be explained 
in view of the possibility of an alternative way of NO 
production induction by other NOS isoforms and through a 
non‑enzymatic NO production manner (including reduction 

of nitrite and denitrosylation of some proteins), in case a 
specific NOS isoform is absent (195‑197). The aforemen‑
tioned ultrasound results can only prove the role of nNOS 
or iNOS in ultrasound‑induced promotion on osteoblasts; 
however, those results do not contradict the involvement of 
eNOS. 

These findings suggest that NO plays a complex role in 
mechanotransduction under stress in the periodontal tissue, 
and further research on this topic is required.

Effects of NO in orthodontic tooth movement. Many studies 
have focused on the differential expression of NOS isoforms 
between areas of compression and tension during orthodontic 
tooth movement. Experiments in rats revealed that the changes 
in NOS activity in the PDL could be detected as soon as 1 h 
after teeth were subjected to orthodontic force (198). The 
increased expression of iNOS on the pressure side and eNOS on 
the tension side was observed 24 h after initiating mechanical 
loading, while increased nNOS expression mainly occurred 
after 3 h (199). An increase of iNOS‑positive osteocytes in 
the compression area was detected 6 h after force application, 
while eNOS‑positive osteocytes in the tension area increased 
after 24 h (200). As indicated above, it is generally accepted 
that iNOS dominates bone resorption at the compression site 
while eNOS mediates the osteogenic effect in the tension 
area (200,201).

The availability of studies related to the changes in NO 
levels in human periodontal tissues before and after orth‑
odontic treatment is limited. Analysis of gingival tissue 
collected from orthodontic patients revealed that eNOS and 
iNOS levels increased dramatically 2 weeks after the appli‑
ance placement (202). A variety of biomarkers in gingival 
crevicular fluid (GCF) are often analyzed, in order to facilitate 
the improvement of clinical treatment. In various studies, many 
of which recent, it has been mentioned that NO expression 
levels in GCF is related to orthodontic treatment (203‑206). 
Ford et al (203) revealed that NO concentration in GCF on the 
compression side of the central incisor increased significantly 
1 h after the application of fixed orthodontic appliances. In 
patients who received rapid maxillary expansion therapy, the 
NO levels in GCF were elevated on day 1 and 10 and were still 
elevated after 3 months of retention (204,205). However, no 
significant difference was detected in NO levels in GCF on the 
tension side, during the above treatment. These results further 
support the different regulatory effects of NO on the tension 
and pressure side, which are related to the presence of different 
NOS isoforms on different sides.

The role of NO in orthodontic treatment has also been 
confirmed in animal experiments. Tooth movement was mark‑
edly promoted in rats that received L‑arg injection, whereas a 
significant reduction of tooth movement was observed in the 
L‑NAME (eNOS inhibitor) group. Histological results also 
revealed a greater number of osteoclasts in the group with 
greater tooth movement (119,120,207). Notably, decreased 
force‑induced root resorption was noted in this group in 
comparison with the control group, although the number of 
osteoclasts increased in the L‑arg injection group (119).

Influences of NO and oral microbiota on the orthodontic 
tooth movement are also notable. In addition to being 
synthesized by the body, NO can be produced by oral 
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bacteria under hypoxic conditions through the transfor‑
mation of saliva nitrate into nitrite (208‑210). It has been 
observed that NO production is upregulated during the 
deposition of dental plaque (211). In diseases related to 
plaque accumulation, including periodontitis, an increase in 
NO levels in both blood and saliva was reported  (212‑214). 
Additionally, apart from the oral bacteria‑originating NO 
production, this has also been ascribed to the inflammatory 
response of the body. It has been previously demonstrated 
that an enhanced osteoclast formation and accelerated orth‑
odontic tooth movement may be observed in patients with 
periodontitis (215). It is reasonable to speculate that NO 
may be involved in this process, but more direct evidence is 
necessary in order to confirm this (203‑207).

4. Conclusions and future perspectives

NO is widely involved in the biomechanical response of the 
periodontium to orthodontic forces. NO exerts dose‑dependent 
and biphasic effects on the functional status and cell fate deter‑
mination of osteoblasts, osteoclasts, osteocytes, and PDL 

fibroblasts, and has been shown to promote the proliferation, 
differentiation, or inhibition of survival and function of cells. 
As an inflammatory factor and a key second messenger in 
mechanical transduction, NO is differentially expressed on 
the tension and compression side during tooth movement, 
suggesting its complex involvement in bone remodeling. The 
facilitation of NO precursor and the inhibition of NOS inhibitor 
in orthodontic tooth movement have also been confirmed in 
animal experiments. Additional studies are required, in order 
to evaluate the role and impact of NO on tooth movement 
in clinical practice. As NO exerts complex effects on both 
osteoblastic and osteoclastic activities, the spatiotemporal 
generation of NO may determine its specific biological effect 
on bone remodeling. The precise and controlled delivery of 
NO to periodontal tissue via NO‑releasing polymeric nano‑
materials may be a promising approach for the acceleration of 
orthodontic tooth movement. 
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Figure 2. A schematic representation of signaling pathways activated by mechanical stimuli and mechanically‑induced NO regulation in osteoblastic cells. 
Mechanical loads induce signal transduction through the activation of several signaling pathways, resulting in the increased expression of pro‑osteogenic factors, 
thus providing an environment which contributes to osteoblast proliferation and differentiation. NO/cGMP/PKG pathway is widely involved in the regulation 
of the above signaling pathways, indicating its important role in the mechanical transduction process. GSK3, glycogen synthase kinase 3; IGF, insulin‑like 
growth factor; PI3K, phosphoinositide 3‑kinase; Akt, protein kinase B; NOS, nitric oxide synthase; Arg, arginine; NO, nitric oxide; cGMP, cyclic guanosine 
monophosphate; PKG, protein kinase G; Cx43, connexin 43; COX‑2, cyclooxygenase‑2; PGE2, prostaglandin E2; ERK, extracellular signal‑regulated kinase; 
cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; HIF‑1, hypoxia‑inducible factor 1; VEGF, vascular endothelial growth factor.
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