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Role of nitric oxide in orthodontic tooth movement (Review)
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Abstract. Nitric oxide (NO) is an ubiquitous signaling
molecule that mediates numerous cellular processes associ-
ated with cardiovascular, nervous and immune systems. NO
also plays an essential role in bone homeostasis regulation.
The present review article summarized the effects of NO on
bone metabolism during orthodontic tooth movement in order
to provide insight into the regulatory role of NO in orthodontic

Correspondence to: Professor Fang Huang, Department of
Pediatric Dentistry, Hospital of Stomatology, Sun Yat-sen University,
56 Lingyuan Xi Road, Guangzhou, Guangdong 510055, P.R. China
E-mail: hfang@mail.sysu.edu.cn

Dr Wenguo Fan, Guangdong Provincial Key Laboratory of
Stomatology, Guanghua School of Stomatology, Sun Yat-sen
University, 74 Zhongshan Road 2, Guangzhou, Guangdong 510080,
P.R. China

E-mail: fanweng@mail.sysu.edu.cn

“Contributed equally

Abbreviations: NO, nitric oxide; c¢GMP, cyclic guanosine
monophosphate; NOS, nitric oxide synthase; L-arg, L-arginine;
nNOS, neuronal NOS; eNOS, endothelial NOS; iNOS, inducible
NOS; sGC, soluble guanylyl cyclase; PKG, cGMP-dependent protein
kinases; PDE, phosphodiesterase; PDL, periodontal ligament; CGRP,
calcitonin gene-related peptide; M-CSF, monocyte/macrophage
colony-stimulating factor; RANKL, receptor activator of nuclear
factor-kB ligand; OPG, osteoprotegerin; IL, interleukin; TNF, tumor
necrosis factor; PGE2, prostaglandin E2; cAMP, cyclic adenosine
monophosphate; MMPs, matrix metalloproteinases; Runx2,
transcription factor runt-related transcription factor 2; BMP, bone
morphogenetic protein; TGF, transforming growth factor; MAPK,
mitogen-activated protein kinase; HIF, hypoxia-inducible factor;
VEGEF, vascular endothelial growth factor; FSS, fluid shear stress;
ECM, extracellular matrix; Cx, connexin; FAK, focal adhesion
kinase; ODQ, 1H-(1,2.4)oxadiazolo-(4,3-a)quinoxalin-1-one; ERK,
extracellular signal-regulated kinase; PI3K, phosphoinositide
3-kinase; Akt, protein kinase B; PFF, pulsed fluid flow; GCF, gingival
crevicular fluid; L-NAME, N(G)-nitro-L-arginine methyl ester

Key words: NO, ¢cGMP, orthodontic tooth movement, bone
remodeling, osteoblast, osteoclast

tooth movement. Orthodontic tooth movement is a process
in which the periodontal tissue and alveolar bone are recon-
structed due to the effect of orthodontic forces. Accumulating
evidence has indicated that NO and its downstream signaling
molecule, cyclic guanosine monophosphate (cGMP), mediate
the mechanical signals during orthodontic-related bone
remodeling, and exert complex effects on osteogenesis and
osteoclastogenesis. NO has a regulatory effect on the cellular
activities and functional states of osteoclasts, osteocytes and
periodontal ligament fibroblasts involved in orthodontic tooth
movement. Variations of NO synthase (NOS) expression
levels and NO production in periodontal tissues or gingival
crevicular fluid (GCF) have been found on the tension and
compression sides during tooth movement in both orthodontic
animal models and patients. Furthermore, NO precursor and
NOS inhibitor administration increased and reduced the tooth
movement in animal models, respectively. Further research
is required in order to further elucidate the underlying
mechanisms and the clinical application prospect of NO in
orthodontic tooth movement.
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1. Introduction

Nitric oxide (NO) is a water-soluble, gaseous, short-lived free
radical molecule that plays multifaceted roles in a broad range
of physiological and pathological processes in mammals (1-3).
NO is produced by NO synthase (NOS) as a consequence of
the process of L-arginine (L-arg) conversion into L-citrulline
with the participation of oxygen and nicotinamide adenine
dinucleotide phosphate. Three isoforms of NOS have been
identified: Neuronal NOS (nNOS) and endothelial NOS
(eNOS) are constitutively expressed calcium-dependent
enzymes, characterized by the rapid production of a small
amount of NO; inducible NOS (iNOS) is a calcium-independent
enzyme that is upregulated at the transcriptional level during
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inflammation, causing a relatively slow yet increased-output
NO production (2,3). The most common target of NO is
soluble guanylate cyclase (sGC), which generates the second
messenger cyclic guanosine monophosphate (cGMP) from
guanosine-5'-triphosphate within the cell (4,5). cGMP mainly
acts on protein kinase G (PKG) and can be degraded by phos-
phodiesterase (PDE), such as PDES5, 6 and 9 (2,6). The effect
of NO on bone mass regulation and bone metabolism has been
well investigated and reviewed elsewhere; however, studies
on the involvement of NO in orthodontic tooth movement are
limited (7-9).

Tooth movement induced by orthodontic force is achieved
through bone remodeling, as a result of the sequential
transduction of molecular signals and changes in cellular
behaviors (10,11). It is of utmost significance to determine
the underlying mechanism of orthodontic tooth movement, in
order to reduce possible side-effects and shorten the duration
of therapy. NO is extensively involved in orthodontic-related
biological events, such as aseptic inflammation, mechanical
signal transduction and bone remodeling. Furthermore, the
regulatory effect of NO on bone remodeling has been demon-
strated to be cGMP-related (12,13). In the present review, the
regulatory effects of NO on the functional states of related
cells and tissues during orthodontic tooth movement, as well
as the possible mechanisms involved are discussed, with the
aim of providing helpful insight towards the application of
effective therapeutic interventions in orthodontics.

2. Orthodontic tooth movement overview

Orthodontic tooth movement relies upon periodontal ligament
(PDL) and alveolar bone remodeling. The PDL is a dense
connective tissue that plugs the tooth to the adjacent alveolar
bone (14,15). It contains collagen fiber bundle, blood vessel,
nerves, interstitial fluids and multiple cell types, including
fibroblasts, osteoclasts, osteoblasts and macrophages (10,14).
The alveolar bone consists of bone cells (osteoclasts, osteo-
blasts and osteocytes) and the mineralized matrix (14,16). The
force applied to the tooth triggers cell-signaling cascades in
the PDL and the alveolar bone, leading to tissue remodeling
and tooth movement (11,17).

Orthodontic tooth movement can be organized into three
phases: i) The initial phase; ii) lag phase; and iii) post-lag
phase (18). In the initial phase, tooth movement occurs due
to the deformation of PDL and tooth displacement within the
alveolar socket 24 to 48 h after the application of force to the
teeth. The lag phase follows the initial phase, during which
little or no tooth movement is observed due to PDL hyaliniza-
tion in the compression region. This phase lasts 20-30 days.
Following the removal of necrotic tissue by macrophages,
tooth movement resumes in the post-lag phase (19,20). This
phase usually occurs 40 days after the initial application of
force.

Cellular and molecular mechanisms of orthodontic tooth
movement

Pressure side: Osteoclasts and bone resorption. The
pressure-tension theory describes orthodontic tooth move-
ment as an outcome of bone resorption in the compression
region and bone formation in the tension region (21). On the

pressure side, the reduction of blood flow and the distortion
of nerve endings in PDL may cause hypoxia and the release
of vasoactive neurotransmitters, including substance P, calci-
tonin gene-related peptide (CGRP), and vasoactive intestinal
polypeptide. As a result, vasodilatation and the aggregation of
circulating leukocytes, monocytes, macrophages, lymphocytes
and mast cells has been observed (22-26). Growth factors,
chemokines and other cytokines also contribute to these
processes (23,27,28).

Osteoclasts are multinucleated cells, that initially differ-
entiate from multipotential hematopoietic precursors in the
monocyte/macrophage lineage, upon macrophage-colony
stimulating factor (M-CSF) and receptor activator of nuclear
factor-kB ligand (RANKL) stimulation, which are secreted
primarily by cells of the osteoblast lineage (29-35). M-CSF
promotes the proliferation, adhesion and migration of osteo-
clast precursor cells (36-38). RANKL promotes the fusion,
differentiation and bone resorptive function of osteoclasts
through the activation of RANK on the surface of osteoclast
precursors (33,39,40). OPG, a decoy receptor for RANKL,
suppresses osteoclastogenesis through the blockage of the
RANK/RANKL signaling pathway (41,42).

The aseptic inflammatory response caused by orth-
odontic forces is indispensable for tooth movement (11,43).
Interleukin (IL)-1pB, IL-6, tumor necrosis factor (TNF)-a
and prostaglandin E2 (PGE2) can induce the release of
RANKL and MCS-F to stimulate osteoclast precursor
differentiation (41,44-47). In addition to the enhancement
of osteoclastogenic factor expression, TNF-a also activates
osteoclast precursors directly through it binding to TNF
receptor (32,48,49). PGE2 enhances the bone-resorbing
activity of osteoclasts through the increase of intracellular
cyclic adenosine monophosphate (c(AMP) levels or the partial
mediation of TNF-a (50). Mature osteoclasts occupy small
cavities termed Howship's lacunae, in which hydrogen ions
and proteolytic enzymes are released, including cathepsin K
and matrix metalloproteinases (MMPs), in order to degrade
the bone matrix (39,51,52). When the magnitude of the force
decreases, osteoclasts become inactive and detach from the
bone (53).

Tension side: Osteoblasts and bone formation. Bone depo-
sition induced by osteoblasts presents is the predominant
event on the tension side (20,54). Derived from bone marrow
mesenchymal stem cells, osteoblasts secrete an organic matrix
known as the osteoid, which is then incorporated further into
the mature bone (55). During bone formation, some osteo-
blasts transform into bone lining cells on the bone surface,
or osteocytes embedded in the bone matrix. Osteocytes are
connected and communicate through cytoplasmic processes
in tiny canals, called canaliculi (56,57).

Transcription factor runt-related transcription factor 2
(Runx2), also known as ore-binding factor subunit alpha-1
(Cbfal) and the Wnt/p-catenin pathway provide the initial
and essential stimulus for osteoblast differentiation (34,58).
Bone morphogenetic protein (BMP), as a member of the
transforming growth factor p (TGF-p) superfamily, induces
the differentiation of osteoprogenitor cells and promotes
osteoblast function through the stimulation of Runx2 expres-
sion via the small mother against decapentaplegic or p38
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mitogen-activated protein kinase (MAPK) pathways (59-62).
In addition, TGF-f3 also suppresses bone resorption activity
through the upregulation of the tissue inhibitor of metallopro-
teinases expression (43,63). IL-10 induces an overall reduction
in RANK signaling, through the facilitation of OPG expres-
sion and the reduction of RANKL production (43,64,65).

Regional hypoxia caused by orthodontic force induces
hypoxia-inducible factor (HIF)-1 expression and upregulates
the transcription of vascular endothelial growth factor (VEGF)
in PDL fibroblasts and osteoblasts. VEGF is associated with
osteogenic differentiation and matrix mineralization under
the regulation of BMP, corroborating the concept that angio-
genesis and osteogenesis are combined (66,67). Furthermore,
HIF-1 and VEGF also stimulate osteoclast differentiation via
the upregulation of RANKL, contributing to the combination
of bone resorption and bone formation (68-70).

Some molecules that regulate the response of PDL fibro-
blasts to the orthodontic forces have been identified in previous
studies, such as CC chemokine receptor 5 (CCRS5) and CCR5
ligands axis (71), relaxin (RIn) and Rln family peptides (Rxfps)
axis (72), and secretory leucocyte peptidase inhibitor (73). The
expression levels of these molecules were upregulated in the
PDL, due to compression and tension force; however, their
downstream effects were different. Another consequence was
the upregulation of the osteoclastogenesis-relating factors,
including RANKL, MCSF and MMPs, on the compression
side, and osteoclast activity inhibiting factors, including
Runx2, IL-6, and IL-12, that may induce osteoblast differen-
tiation on the tension side.

Mechanotransduction: Osteocytes and fibroblasts. Osteocytes
are critical for the transduction of mechanical stimuli into
biochemical signals (74-76). When a force is exerted on the
tooth, the squeeze of the interstitial fluid causes fluid shear
stress (FSS) in the extracellular matrix (ECM) (77). The fluid
flow hypothesis describes the response of osteocytes to FSS
as an essential mechanism during orthodontic treatment. FSS
stimulates an increase in the intracellular calcium concentra-
tion and the release of intercellular molecules in osteocytes
through the activation of integrin, a transmembrane protein
that connects ECM macromolecules to the internal cytoskel-
eton (78-80). The FSS-related up-regulation of NO, PGE2,
TFG-f, and insulin-like growth factor alters the osteocyte
metabolic state and osteoblast/osteoclast functions (81,82).
Gap junctions formed by connexin (Cx) also participate in
the osteocyte-osteoblast communication (83,84). For example,
Cx is involved in the release of PGE2, which enhances Runx2
DNA binding activity through the simultaneous activation of
the cAMP/cAMP-dependent protein kinase and MAPK path-
ways and the subsequent stimulation of RANKL expression in
osteoblasts (85-88).

The inhibitory effect of osteocytes on osteoblastic activity
can be induced by the secretion of sclerostin, which antago-
nizes BMP effect and blocks canonical Wnt signaling (89-91).
Osteocytes regulate osteoclastic differentiation via the alter-
nation of major osteoclast regulators, namely RANKL and
M-CSF (92-94). Moreover, osteocyte apoptosis induction is
an important event in the recruitment and differentiation of
osteoclasts (95-97). These findings confirm that osteocytes
play a key role in the response to biomechanical stimuli and
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controlling bone remodeling by coordinating the activity of
osteoblasts and osteoclasts.

Fibroblasts are involved in mechanosensation and
mechanotransduction in connective tissues. The application
of mechanical stretching activates integrin and causes confor-
mational changes in focal adhesion kinase (FAK), inducing a
signaling cascade that modulates cytoskeletal dynamics and
gene transcription in fibroblasts (98,99).

3. Effects of NO on orthodontic tooth movement

Expression of NO in bone tissue. Three NOS isoforms in
total are expressed in osteoblasts, osteoclasts and osteo-
cytes (100-102). iNOS and eNOS are expressed in human
PDL stem cells (103,104). Previous studies revealed the
presence of sGC and cGMP in mouse bone marrow macro-
phages (105), osteoclasts (105-107), and osteocytes (108).
Davidovitch et al (109,110) performed immunohistochem-
istry (IHC) on alveolar bone sections obtained from cats
and revealed that cGMP expression was increased in the
PDL fibroblast cells stained intensely for; however, most
cGMP expression was not detected through IHC staining in
osteoblasts. However, cGMP expression increased due to the
subjection of the alveolar bone to mechanical force (111,112).
The application of electric currents to the bone, also led to the
upregulation of cGMP in osteoblast and PDL fibroblast cells,
accompanied by bone deposition near the cathode (113-115).
Since a piezoelectric current can be generated by mechanical
stress, the above findings suggest that NO/cGMP is an impor-
tant signaling pathway, which mediates bone cell response to
mechanical force (116).

Role of NO in cells associated with orthodontic tooth move-
ment. Mounting evidence indicates that NO regulates multiple
cellular behaviors related to orthodontic movement (Fig. 1 and
Table I).

Osteoclasts. A number of studies have demonstrated that NO
exerts biphasic effects on osteoclast formation and function.
In several cases, NO promotes osteoclastogenesis and bone
resorption. NO mediates pre-osteoclasts fusion through
the upregulation of actin cytoskeleton remodeling (117).
Histopathological studies have demonstrated that osteoclasts,
Howship's lacunae and new capillaries were increased in rats
that received an injection of the NO precursor L-arg during
tooth movement (118-120).

iNOS is an important regulator of osteoclast differ-
entiation under bacterial infection-induced inflammatory
conditions (121-123). iNOS was previously found to mediate
alveolar bone loss and periapical infectious bone resorption
following the oral administration of Porphyromonas gingi-
valis (124) or lipopolysaccharide (122). In another study,
histochemical analysis revealed that the osteoclast number in
iNOS(-/-) mice in comparison to wild-type mice was consid-
erably decreased (123). Tooth eruptions are similar to tooth
movement in terms of monocyte recruitment and osteoclast
differentiation. Evidence indicates that increased levels of
iNOS are associated with a greater number of osteoclasts in
mice with accelerated tooth eruption, indicating that iNOS
may be a bone resorption modulator candidate (125).
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Figure 1. A schematic representation of bone remodeling and NO regulation during orthodontic tooth movement at the compression and tension sides. After
orthodontic force is applied to the teeth, bone remodeling in the compression region mainly manifests as osteoclastogenesis and bone resorption, while that
in the tension region presents as osteogenesis and bone formation. The regulation of related factors on bone remodeling is indicated by black arrows. NO
regulation of osteoclasts and osteoblasts differentiation is indicated by red arrows. HIF-1, hypoxia-inducible factor-1; VEGF, vascular endothelial growth
factor; RANKL, receptor activator of nuclear factor-kB ligand; RANK, receptor activator of nuclear-kB; M-CSF, macrophage-colony stimulating factor;
IL-1p/6, interleukin-13/6; TNF-a, tumor necrosis factor-o; PGE2, prostaglandin E2; MMPs, matrix metalloproteinases; BMP, bone morphogenetic protein;
OPG, osteoprotegerin; TGF-, transforming growth factor-f; IGF, insulin-like growth factor; TIMP, tissue inhibitor of metalloproteinases.

As previously demonstrated, M1-like macrophage polar-
ization and an enhanced M1/M2 macrophage ratio increase
the number of osteoclasts in rats or mice, accompanied by
an increase in M1 macrophage marker expression (TNF-a
and iNOS) on the compression side, during tooth move-
ment (126,127). TNF-a stimulates the survival of differentiated
osteoclasts through the induction of iNOS-dependent NO
generation (128). In the rheumatism inflammatory environ-
ment, the TNF-a promoting effect on alveolar bone resorption
is partly mediated through the activation of iNOS and the
resulting production of NO (129).

It has been observed that the promoting effect of iNOS
on osteoclasts is mediated through the NO/cGMP pathway.
Kaneko et al (105) revealed that 8-nitro-cGMP,a NO-dependent
derivative of cGMP in mammals, increased RANKL mRNA
expression, and enhanced osteoclast differentiation. The
reduction in cGMP levels due to the inhibition of NOS caused
RANKTL-induced osteoclast differentiation suppression.

By contrast, evidence has revealed an inhibitory effect
of NO on osteoclasts at low concentrations. NO has been
reported to increase osteoclast and osteoclast precursor cell
apoptosis (101,130-132). A novel NO donor, nitrosyl-cobin-
amide (NO-Cbi), has been found to reduce the RANKL/OPG
gene expression ratio or directly inhibit osteoclast differentia-
tion in vitro and in vivo (133). Nicorandil, an agent that can
increase NO production in osteoclasts, was previously shown
to suppress osteoclast differentiation via activating sGC (134).
NO causes osteoclast detachment and downregulates osteo-
clast bone-resorbing activity via the NO/cGMP/PKG pathway
in vitro (101,107,135-137). Of note, the selective inhibition
of iNOS was previously found to markedly promote bone

resorption in vivo. In an iNOS(-/-) mouse model of apical peri-
odontitis, enhanced osteoclast differentiation and increased
bone resorption were observed in comparison with the control
group, accompanied by increased IL-1p, TNF-a, RANK,
RANKL and monocyte chemoattractant protein-1 (MCP-1)
levels (138,139). These results suggest that NO deficiency
is associated with an imbalance in the host inflammatory
response, resulting in severe bone loss.

Moreover, iNOS exerts an inhibitory effect on osteoclast
differentiation through other pathways. Zheng et al (140)
demonstrated that iNOS was a RANKL-induced autocrine
negative feedback inhibitor of RANKL-mediated osteoclasto-
genesis. RANKL triggered iNOS expression and NO release,
and subsequently inhibited RANKL-induced osteoclast
formation in a cGMP-independent manner.

The inconsistent effects of NO on osteoclastogenesis may
be attributed to the differences in NO synthesis quantity, cell
types and development states. NO action is also affected by
the cytokines in the microenvironment. Multiple factors influ-
ence the downstream signaling of NO, and further studies are
required to elucidate the specific mechanism of NO regulation.

Osteoblasts. NO is also involved in the bidirectional regulation
of osteoblasts. Decreased NO concentrations promote osteo-
blast proliferation, differentiation and survival (133,141-143).
Mineralized nodule formations and mRNA expression levels
of osteoblastic genes, such alkaline phosphatase, osteocalcin
and collagen-1 genes, have been shown to be enhanced by NO
donors and 8-Br-cGMP, an analog of cGMP (141-143). This
effect was blocked by 1H-(1,2,4)oxadiazolo-(4,3-a)quinox-
alin-1-one (ODQ), a competitive blocker that prevents sGC
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Table I. Continued.

(Refs.)

Downstream pathways

Regulation

Agent (concentration)

Cell type

(157,158)

Mediated the effects of estradiol by activating

Increased osteocyte survival

DETA-NONOate (3 M)

MLO-Y4 murine

Akt/ERK and phosphorylating BAD via PKG Ia and

PKGII

osteocyte-like cells

(159)

Via HO-1/ERK/NF-«B

Decreased cell proliferation

SNP (0.5-1.0 mM)

Human PDL cells

Promoted cell differentiation

(103)

Via JNK MAPK

No influence on proliferation and survival,
promoted osteogenic and reduced

adipogenic differentiation
Decreased cell survival

SNP (75 uM)

Human PDL stem cells
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(162)

Increased Bax and cytochrome c, and reduced
caspase-3 via JNK, ERK and p38 MAPK

osteocyte apoptosis (132).

SNP (1-4 mM)
1 4,5-trisphosphate receptor I; IRAG, IP3RI-associated protein; SIN-1, 3-morpholinosydnonimine; ATG7, autophagy related 7; LC3-II, light chain 3-II; DEA-NO, diethylamine NONOate; HO-1, heme

oxygenase-1; Bax, BCL2-associated X protein; JNK, c-Jun N-terminal kinase.

methyl-20-furyl)-1-benzyl-indazole; L-NMMA, NG-methyl-L-arginine; NO-Cbi, nitrosyl-cobinamide; SNP, sodium nitroprusside; VASP, vasodilator-stimulated phosphoprotein; IP3RI, inositol

DETA-NONOate/DEA-NO/NOC-18, 2.2'-(hydroxynitrosoydrazino)bis-ethanamine; AG, aminoguanidine; SNAP, S-nitroso-N-acetyl-penicillamine; IFN-f, interferon f; YC-1, 3-(50-hydroxy-

Human PDL
fibroblasts

activation and lowers cGMP/PKG activity. It has been recently
stated that PDES5 inhibitors, which can significantly increase
intracellular cGMP levels, induce osteoblast differentiation
and enhance bone regeneration in osteopenic mice via the
cGMP/VEGF pathway (144). These findings further support
the involvement of NO/cGMP/PKG pathway in the regulation
of osteoblast activity (133,143,145).

Increased iNOS expression and NO levels have been
observed during osteoblast differentiation in vitro. iNOS has
been reported to mediate the regulation of Runx2 transloca-
tion and downstream events (146). In eNOS knockout mice,
osteoblast growth has been shown to be inhibited (147).
Evidence suggests that eNOS activation promotes cell survival
and enhances osteoblastic gene expression in osteoblasts via
pathway cascades involving Src/extracellular signal-regulated
kinase (ERK), phosphoinositide 3-kinase (PI3K)/protein
kinase B (Akt) and Wnt/f3-catenin (148,149).

NO mediates the action of several local and systemic factors,
including mechanical stimulation, hormones and other
signaling molecules in osteoblasts (13,150). It has also been
revealed that 1,25-dihydroxyvitamin D(3) regulates bone
mass via the upregulation of iNOS expression and NO produc-
tion (151). CGRP has been found to promote mandibular
bone fracture healing in vivo and stimulate the eNOS activity
through the increase of intracellular calcium concentrations in
osteoblasts in vitro (152,153). Furthermore, it has been observed
that 17 B-estradiol, a major endogenous estrogen, may promote
eNOS expression and osteoblast differentiation through Akt
phosphorylation in a dose-dependent manner (154). It has been
previously demonstrated that the bone-protective effects of
estrogen rely upon the NO/cGMP pathway (147,150). High
concentrations of NO negatively impact osteoblast prolifera-
tion and survival (145). NO simultaneously induces cell death
and autophagy in osteoblasts (155).

Osteocytes and PDL fibroblasts. The effect of NO on osteo-
cytes is similar to that of osteoblasts. Parathyroid hormone
and 17f-estradiol levels increase the expression of cGMP
expression in osteocytes (108). Cinaciguat, an activator of sGC
that has been declared as a potential drug target for osteo-
porosis, was previously found to reverse osteocyte apoptosis
and enhance bone formation in mice subjected to ovariec-
tomy (156). NO/cGMP/PKG signaling mediated 17p-estradiol
anti-apoptotic effect on osteocytes through either the activation
of the pro-survival kinases, ERK and Akt, mediated by type II
PKG, or direct phosphorylation of protein related to cell death
by type I (PKG) (157,158). However, inflammation-induced
iNOS activation and elevated concentrations of NO can lead to

NO/cGMP/PKG signaling has been shown to regulate
human PDL fibroblast proliferation and differentiation, with the
involvementof MAPK andnuclearfactork-light-chain-enhancer
of activated B cells pathways (103,159-161). However, the
effect of NO on cell proliferation in PDL has not yet been fully
clarified. A previous study revealed that NO did not influence
PDL stem cell proliferation (103). In other studies, it has been
revealed that exogenous NO inhibits proliferation and induces
apoptosis of PDL fibroblasts (159,162). This discrepancy could
be attributed to differences in the cellular differentiation levels
and varying applied agent concentrations.
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The PDL and the alveolar bone are developed from the
dental follicle during tooth development. The literature was
reviewed and it was observed that studies of NO regulation
impact upon the dental follicle during tooth development has
not been reported yet, to the best of our knowledge. It was
surmised that the exploration of the underlying mechanism of
NO on the development of the PDL and alveolar bone may
provide novel insights into the role of NO in the tissue remod-
eling observed during orthodontic tooth movement.

NO signaling in bone mechanotransduction NO is a factor
that mediates early cellular response to applied mechanical
forces in the PDL and bone (Fig. 2) (13,163,164). NO synthesis
in osteoclasts (165), osteoblast (116,151,163,165-167), osteo-
cytes (164,168), PDL fibroblasts (169), fibroblasts (170), and
dental pulp cells (171,172) increased following the applica-
tion of mechanical loading, pulsed fluid flow (PFF), electrical
stimulation, or pulsed electromagnetic field stimulation.

The mechanical loading-induced activation of the
Whnt/B-catenin pathway is an important signaling event in
osteoblasts, osteocytes, and PDL fibroblasts, and is mediated
by a NO-dependent mechanism involving the FAK, Src/ERK
and PI3K/Akt signaling pathways (169,173,174). PFF increases
NO synthesis in osteoblasts, resulting in PKG II-dependent
activation of Src and PI3K-dependent phosphorylation of Akt.
The nuclear translocation of B-catenin is induced and the gene
expression of c-fos is upregulated, initiating a proliferative
response in mechanically stimulated osteoblasts (175-177).
When the osteoblast and osteocyte cytoskeleton system of
disrupted, PFF-induced NO production is affected (178).

PFF induces the release of multiple soluble factors
that promote osteogenesis and inhibits bone resorption.
This process is partially dependent on the generation of
NO (74,179-181). PFF-induced NO inhibited osteocyte apop-
tosis through the downregulation of B-cell lymphoma-2 (Bcl-2)
and caspase-3 (182). NO also modulates mechanically induced
VEGEF expression, contributing to angiogenesis during bone
remodeling (183,184).

The main NOS isoform that produces NO in osteoblasts
and osteocytes under the mechanical force action has not
yet been elucidated. The activation of eNOS is associated
with the phosphorylation or dephosphorylation at several
functional sites on eNOS, which may be induced by FSS,
estrogens, VEGF and insulin (185-187). Several studies
have revealed that FSS-induced NO production is attrib-
uted to the calcium-dependent eNOS activation in bone
cells (13,185,188,189). It has been revealed that the occlusal
force led to iNOS and eNOS increased expression in hypo-
functional and normal PDL fibroblasts (100,104).

Additionally, it has been suggested that eNOS may be
not indispensable for mechanically-induced NO synthesis in
cultured osteoblasts or eNOS (-/-) mice (190,191). It has also
been mentioned that ultrasound-induced bone formation may
be mediated through nNOS and iNOS upregulation in osteo-
blasts (82,163,192,193). Furthermore, osteopontin has been
shown to suppress the osteoblast response to ultrasound by
inhibiting the expression of nNOS and iNOS through FAK
downregulation (194). This inconsistency may be explained
in view of the possibility of an alternative way of NO
production induction by other NOS isoforms and through a
non-enzymatic NO production manner (including reduction
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of nitrite and denitrosylation of some proteins), in case a
specific NOS isoform is absent (195-197). The aforemen-
tioned ultrasound results can only prove the role of nNOS
or iNOS in ultrasound-induced promotion on osteoblasts;
however, those results do not contradict the involvement of
eNOS.

These findings suggest that NO plays a complex role in
mechanotransduction under stress in the periodontal tissue,
and further research on this topic is required.

Effects of NO in orthodontic tooth movement. Many studies
have focused on the differential expression of NOS isoforms
between areas of compression and tension during orthodontic
tooth movement. Experiments in rats revealed that the changes
in NOS activity in the PDL could be detected as soon as 1 h
after teeth were subjected to orthodontic force (198). The
increased expression of iNOS on the pressure side and eNOS on
the tension side was observed 24 h after initiating mechanical
loading, while increased nNOS expression mainly occurred
after 3 h (199). An increase of iNOS-positive osteocytes in
the compression area was detected 6 h after force application,
while eNOS-positive osteocytes in the tension area increased
after 24 h (200). As indicated above, it is generally accepted
that iNOS dominates bone resorption at the compression site
while eNOS mediates the osteogenic effect in the tension
area (200,201).

The availability of studies related to the changes in NO
levels in human periodontal tissues before and after orth-
odontic treatment is limited. Analysis of gingival tissue
collected from orthodontic patients revealed that eNOS and
iNOS levels increased dramatically 2 weeks after the appli-
ance placement (202). A variety of biomarkers in gingival
crevicular fluid (GCF) are often analyzed, in order to facilitate
the improvement of clinical treatment. In various studies, many
of which recent, it has been mentioned that NO expression
levels in GCF is related to orthodontic treatment (203-206).
Ford et al (203) revealed that NO concentration in GCF on the
compression side of the central incisor increased significantly
1 h after the application of fixed orthodontic appliances. In
patients who received rapid maxillary expansion therapy, the
NO levels in GCF were elevated on day 1 and 10 and were still
elevated after 3 months of retention (204,205). However, no
significant difference was detected in NO levels in GCF on the
tension side, during the above treatment. These results further
support the different regulatory effects of NO on the tension
and pressure side, which are related to the presence of different
NOS isoforms on different sides.

The role of NO in orthodontic treatment has also been
confirmed in animal experiments. Tooth movement was mark-
edly promoted in rats that received L-arg injection, whereas a
significant reduction of tooth movement was observed in the
L-NAME (eNOS inhibitor) group. Histological results also
revealed a greater number of osteoclasts in the group with
greater tooth movement (119,120,207). Notably, decreased
force-induced root resorption was noted in this group in
comparison with the control group, although the number of
osteoclasts increased in the L-arg injection group (119).

Influences of NO and oral microbiota on the orthodontic
tooth movement are also notable. In addition to being
synthesized by the body, NO can be produced by oral
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Figure 2. A schematic representation of signaling pathways activated by mechanical stimuli and mechanically-induced NO regulation in osteoblastic cells.
Mechanical loads induce signal transduction through the activation of several signaling pathways, resulting in the increased expression of pro-osteogenic factors,
thus providing an environment which contributes to osteoblast proliferation and differentiation. NO/cGMP/PKG pathway is widely involved in the regulation
of the above signaling pathways, indicating its important role in the mechanical transduction process. GSK3, glycogen synthase kinase 3; IGF, insulin-like
growth factor; PI3K, phosphoinositide 3-kinase; Akt, protein kinase B; NOS, nitric oxide synthase; Arg, arginine; NO, nitric oxide; cGMP, cyclic guanosine
monophosphate; PKG, protein kinase G; Cx43, connexin 43; COX-2, cyclooxygenase-2; PGE2, prostaglandin E2; ERK, extracellular signal-regulated kinase;
cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; HIF-1, hypoxia-inducible factor 1; VEGF, vascular endothelial growth factor.

bacteria under hypoxic conditions through the transfor-
mation of saliva nitrate into nitrite (208-210). It has been
observed that NO production is upregulated during the
deposition of dental plaque (211). In diseases related to
plaque accumulation, including periodontitis, an increase in
NO levels in both blood and saliva was reported (212-214).
Additionally, apart from the oral bacteria-originating NO
production, this has also been ascribed to the inflammatory
response of the body. It has been previously demonstrated
that an enhanced osteoclast formation and accelerated orth-
odontic tooth movement may be observed in patients with
periodontitis (215). It is reasonable to speculate that NO
may be involved in this process, but more direct evidence is
necessary in order to confirm this (203-207).

4. Conclusions and future perspectives

NO is widely involved in the biomechanical response of the
periodontium to orthodontic forces. NO exerts dose-dependent
and biphasic effects on the functional status and cell fate deter-
mination of osteoblasts, osteoclasts, osteocytes, and PDL

fibroblasts, and has been shown to promote the proliferation,
differentiation, or inhibition of survival and function of cells.
As an inflammatory factor and a key second messenger in
mechanical transduction, NO is differentially expressed on
the tension and compression side during tooth movement,
suggesting its complex involvement in bone remodeling. The
facilitation of NO precursor and the inhibition of NOS inhibitor
in orthodontic tooth movement have also been confirmed in
animal experiments. Additional studies are required, in order
to evaluate the role and impact of NO on tooth movement
in clinical practice. As NO exerts complex effects on both
osteoblastic and osteoclastic activities, the spatiotemporal
generation of NO may determine its specific biological effect
on bone remodeling. The precise and controlled delivery of
NO to periodontal tissue via NO-releasing polymeric nano-
materials may be a promising approach for the acceleration of
orthodontic tooth movement.
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