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Abstract. Tumor necrosis factor‑α (TNF‑α) is a pleiotropic 
pro‑inflammatory cytokine that contributes to the patho‑
physiology of several autoimmune diseases, such as multiple 
sclerosis, inflammatory bowel disease, rheumatoid arthritis, 
psoriatic arthritis and systemic lupus erythematosus (SLE). 
The specific role of TNF‑α in autoimmunity is not yet fully 
understood however, partially, in a complex disease such as 
SLE. Through the engagement of the TNF receptor 1 (TNFR1) 
and TNF receptor 2 (TNFR2), both the two variants, soluble 
and transmembrane TNF‑α, can exert multiple biological 
effects according to different settings. They can either func‑
tion as immune regulators, impacting B‑, T‑ and dendritic 
cell activity, modulating the autoimmune response, or as 
pro‑inflammatory mediators, regulating the induction and 
maintenance of inflammatory processes in SLE. The present 
study reviews the dual role of TNF‑α, focusing on the different 
effects that TNF‑α may have on the pathogenesis of SLE. In 
addition, the efficacy and safety of anti‑TNF‑α therapies in 
preclinical and clinical trials SLE are discussed.
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1. Introduction

Tumor necrosis factor‑α (TNF‑α) is a complex cytokine that 
impacts various physiological and pathological conditions. It 
can function as an immune regulator, contributing to the devel‑
opment and function regulation of B‑cells, T‑lymphocytes and 
dendritic cells, as a pro‑inflammatory mediator, modulating 
the generation and preservation of inflammatory processes, 
or as an apoptotic inducer, promoting cell death (1,2). TNF‑α 
is involved in the pathogenesis of numerous autoimmune 
disorders, such as rheumatoid arthritis (RA) (3), inflamma‑
tory bowel disease (4,5), psoriatic arthritis (6) and multiple 
sclerosis (7,8); however, its role in systemic lupus erythema‑
tosus (SLE) disease remains unclear. From the genetic point of 
view, several investigations have demonstrated a link between 
the TNF‑α gene polymorphism and the susceptibility to 
SLE (9‑11). Furthermore, there is a strong connection between 
TNF‑α gene expression and clinical manifestations in patients 
with SLE (12).

Furthermore, TNF‑α is a growth factor for B‑lymphocytes, 
which can produce large quantities of TNF‑α in an autocrine 
loop (13‑15). Serum levels of TNF‑α have been discovered to 
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be high in patients with SLE and have been linked to disease 
activity and several systemic manifestations, such as SLE‑related 
cardiovascular disease and lupus nephritis  (12,16‑20). The 
dysregulation of TNF‑α is clearly linked to tissue destruction 
observed in lupus organ disease, to the death of lymphocytes 
and to the impaired clearance of apoptotic cells, resulting 
in the presentation of self‑antigens and autoantibody 
formation  (21). However, TNF‑α has pro‑apoptotic and 
anti‑apoptotic properties, depending on the underlying contex‑
tual circumstances (22‑24). Treatment with anti‑TNF drugs or 
recombinant TNF has been demonstrated to have conflicting 
results in murine models of SLE. As previously demonstrated, 
TNF‑competent New Zealand Black (NZB) mice displayed an 
autoimmune phenotype, whereas TNF‑deficient New Zealand 
Black (NZB) mice developed severe lupus‑like disease (25,26).

Moreover, the disease was shown to be reversible by 
the administration of recombinant TNF; indeed, the early 
application of TNF in NZB/White (NZB/W) mice postponed 
the development of autoantibodies and lupus nephritis (25,27). 
In addition, TNF‑blocking therapies have sometimes induced 
the production of antinuclear antibodies and IgM antibodies 
to double‑stranded DNA in individuals with RA or Crohn's 
disease, suggesting the potential propensity of anti‑TNF agents 
to stimulate pathogenic autoantibody production (28,29). These 
patients rarely exhibited a reversible drug‑induced lupus‑like 
syndrome (29). In this context, a critical view of the relevance 
of TNF in SLE is necessary. The present review article thus 
aimed to enhance the understanding of the functions of TNF‑α 
in the pathogenesis of SLE and discuss the benefits associated 
with anti‑TNF therapies in patients with SLE.

2. TNF‑α: Structure and function 

TNF‑α, also known as cachectin, was first defined by 
Carswell et al (30) several decades ago as an endotoxin‑inducing 
autoantibody molecule that leads to tumor necrosis. The 
human gene for TNF‑α is located on the short arm of chromo‑
some 6 between 6p21.1 and 6p21.3, which is within the human 
leukocyte antigen (HLA) class III region in humans (31). It 
includes exons, interrupted via 3 introns and is ~3 kb in length. 
Of note, >80% of the mature TNF‑α sequence is encoded in 
exon 4. Exons 1 and 2 mainly include the sequence of leader 
peptides  (32). In addition, multiple regulatory sites with 
sequences corresponding to the transcription factors, activator 
protein (AP‑1/2), NF‑κB and the cAMP‑response element 
(CRE) have been identified on the 5'b‑end of the TNF‑α gene. 
TNF‑α exists in two types, as a membrane‑bound trimeric 
ligand (tmTNF) and as a soluble trimeric molecule (sTNF), 
each of which probably play a different physiological role. The 
sTNF‑α is formed from tmTNF‑α via the extracellular domain 
of the matrix metalloproteinase (MMP) TNF‑α‑converting 
enzyme (TACE). tmTNF‑α can function as ligand‑bound 
TNFR or as an intermediate receptor in transmitting external 
signals. The human TNF‑α protein contains 233 amino 
acids with a predicted molecular weight of 25.6 kDa, which, 
following proteolytical cleavage by a specific protease, 
generates an active protein of 17 kDa. The hydrophobic trans‑
membrane region includes 26‑44 amino acids of the TNF‑α 
pre‑sequence, and the intracytoplasmic region comprises 
50‑76 amino acids (33). The soluble and membrane‑bound 

forms function as biological homotrimers (similar to a 
triangular cone), each molecule interacting the other two 
substances. Each monomer includes two packed β‑pleated 
sheets that are formed via eight antiparallel β‑strands arranged 
in a β‑jellyroll topology (34). It has also been reported that 
TNF‑α undergoes post‑translational alterations, including 
phosphorylation. The initial sequence of TNF‑α indicates the 
existence of several phosphorylation consensus sites, providing 
a possible mechanism for regulating trimer formation and/or 
receptor binding. In addition, a previous study demonstrated 
that membrane‑bound TNF‑α was phosphorylated via creatine 
kinase (CKI) and dephosphorylated through phosphatase acti‑
vation (35). TNF‑α production has been detected in a wide 
range of cells, such as normal, malignant, hematopoietic and 
non‑hematopoietic cells (36). Several factors can induce the 
production of TNF‑α, including bacterial lipopolysaccharide 
(LPS, endotoxin), viral antigens, immune complexes, IL‑1 and 
TNF‑α itself via autocrine mechanisms. In addition, certain 
pathophysiological conditions, such as previous infection and 
inflammation, trauma, infarction and heart failure, can also 
induce the production of TNF‑α (37,38). TNF‑α performs 
its biological activities by interacting with two membrane‑
dependent receptors, TNF receptor (TNFR)1 and TNFR2, 
and via triggering a number of secondary proteins that elicit 
various responses in the cell, such as transcription factors, 
protein kinases and phospholipases (36,39‑41).

It has been demonstrated that TNF‑α functions as a 
multifunctional cytokine which plays a vital role in control‑
ling inflammation, secondary and tertiary lymphoid tissue 
development, and immune regulation  (42). The functional 
mechanisms of TNF‑α are highly diverse and somewhat 
complex. This protein plays conflicting roles: On the one 
hand, it combats certain types of infections and, on the other 
hand, induces pathological complications. This may be due 
to the stimulation of various signaling pathways involved in 
diverse cellular reactions, such as survival, differentiation, 
cell proliferation and cell death (43). A recent study indicated 
that TNF‑α deregulation was directly associated with chronic 
inflammation, autoimmune diseases and other pathologies, 
such as neuroinflammation (44). Therefore, understanding the 
exact mechanisms of action of the TNF‑α signaling pathways 
may lead to the development of effective therapies for the 
treatment of immune diseases.

3. TNF receptors: TNFR1 and TNFR2

The TNFR1 gene (also known as p55, p60, CD120a or 
TNFRSF1A), located on chromosome 12p13, has 10 exons and 
produces a 60‑kDa protein (45). TNFR2 (also known as p75, p80, 
CD120b or TNFRSF1B) encoded via the gene located on chro‑
mosome 1p36.2, consists of 10 exons and gives rise to a protein 
of 80 kDa (46,47). These receptors are membrane glycopro‑
teins and members of the TNF receptor superfamily (48). They 
are crucial to the development and homeostasis of the immune 
and neurological systems, and ectodermal organs (49,50). The 
extracellular domain is very similar between these two recep‑
tors and consists of multiple cysteine‑rich domains involved 
in ligand binding; however, the intracellular domains clearly 
differ; thus, they can activate different signaling pathways by 
interacting with a variety of cytosolic proteins (51). Receptors 
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are dependent on adapter proteins, including TNFR‑associated 
death domain protein (TRADD), Fas‑associated protein 
with death domain (FADD) and the TNFR‑associated factor 
(TRAF)‑1 to activate intracellular signaling pathways and 
induce a biological response. These proteins form a scaffold 
that allows other proteins to be absorbed to trigger the signaling 
pathway (52,53). TNFR1 expression has been observed in a 
number of cell types; however, TNFR2 expression has been 
observed in a small number of cells, such as T‑cells and endo‑
thelial cells (54). TNF‑α strongly binds to both receptors, and 
the differential engagement of the receptors is associated with 
distinct functions. sTNF interacts with both TNF receptors, 
while tmTNF mainly activates TNFR2 (51). TNFR2 has a lower 
affinity for TNF‑α than for TNFR1, suggesting that TNFR2 
can momentarily bind and can subsequently be release, playing 
a role in amplifying or synergizing TNFR1 signaling (55,56). 
The stimulation of TNFR1 is responsible for several biological 
effects of TNF‑α, such as cytotoxicity and proliferation. The 
activation of TNFR1 stimulates various cellular responses, 
such as the induction of proliferation processes, apoptosis, or 
necroptosis, depending on the cell type and environmental 
conditions (56). TNFR1, in its cytoplasmic part, has a death 
domain (DD) related to TNF‑α‑mediated cytotoxicity, while 
TNFR2 lacks this domain (57). The engagement of TNF with 
TNFR1 leads to the successive formation of two different TNF 
receptor signaling complexes (complex I and complex II) that 
are separated both temporally and spatially. Complex I induces 
the expression of anti‑apoptotic genes, which inhibit cell death 
processes mainly by activating transcription factors, such as 
NF‑κB, whereas the second signaling pathway (complex II) 
leads to apoptosis or necroptosis (1). Compared to TNFR1, 
knowledge of TNFR2 signaling pathways is limited. Since 
TNFR2 lacks the DD, it cannot directly induce cell death. In 
contrast to the functions of TNFR1, which is able to induce 
inflammation or apoptotic responses, TNFR2 engagement 
significantly enhances cell stimulation, migration and propa‑
gation (58). The binding of TRAF2 to TNFR2 activates the 
canonical and non‑canonical NF‑κB signaling pathways (59). 
However, TNFR is able to activate NF‑κB slowly, although with 
a longer activation time compared to TNFR (60). In addition, 
it has been shown that TNFR2 can induce cell survival (61). 
Other researchers have indicated that TNFR2 is required for 
antigen‑associated differentiation and T‑cell survival. TNFR2 
regulates several adhesion molecules, including intercellular 
adhesion molecule‑1 and selectin‑E, which are central mole‑
cules in angiogenesis (62).

4. Downstream signaling of the TNF and TNFR axis

TNF signaling appears to be quite complex and can cover 
various downstream signaling pathways. TNFR1 is triggered 
through both membrane‑bound and soluble TNF (51) (Fig. 1). 
The TNFR1 cytoplasmic DD allows interactions with other 
DD‑containing proteins, including TRADD, E3 ubiquitin 
ligases, cellular inhibitor of apoptosis protein (cIAP)1/2, the 
receptor‑interacting serine/threonine‑protein kinase (RIPK)1 
and TRAF2, resulting in complex I signaling  (52,53). In 
turn, polyubiquitinated RIPK1 and cIAP1/2 proteins have a 
crucial function in the uptake of other proteins, such as the 
TGF‑β‑activated kinase 1 (TAK1) in the TAK1‑binding 

protein (TAB)2/3 complex and the linear ubiquitin chain 
assembly complex (LUBAC), respectively (63,64). LUBAC can 
polyubiquitinate numerous molecules, such as LUBAC itself 
and NF‑κB essential modulator (NEMO) in the IκB kinase 
(IKK) complex comprised of IKK1/IKKα, IKK2/IKKβ and 
NEMO/IKKγ (64,65). Furthermore, TAK1 phosphorylates 
IκB, a prerequisite for its ubiquitylation and proteasome 
degradation. NF‑κB then translocates to the nucleus and 
prompts the transcription of target genes involved in inflam‑
mation and cell survival (64). In addition, TAK1 in complex 
with TAB2/TAB3 can also induce the triggering of AP‑1 tran‑
scription factor through the phosphorylation of MAP kinases, 
such as cJun NH2‑terminal kinase (JNK) and p38 (66,67). 
This signaling pathway activates the transcription of various 
pro‑inflammatory genes. Moreover, TNF‑TNFR1 interaction 
can activate other signaling pathways involved in programmed 
cell death, such as apoptosis and necroptosis through 
complex II and IIb signaling, respectively (68,69). In this case, 
the separation of RIPK1 and TRADD from complex I leads to 
the instability of complex I and in the formation of complex II, 
which includes FADD, cellular FLICE‑inhibitory protein and 
pro‑caspase‑8 molecules, thus inducing apoptosis  (70). In 
addition, when caspase is inhibited, the interaction of TNF 
with TNFR1 induces the formation of complex IIb, leading 
to the activation of the cell death pathway known as necrop‑
tosis. Complex IIb consists of the phosphorylated molecules, 
RIPK1 and RIPK3, and mixed lineage kinase domain‑like 
pseudokinase (MLKL). Thereafter, MLKL oligomerization 
occurs, and phosphorylated MLKL is translocated to the 
plasma membrane, which is disrupted to stimulate necrop‑
tosis (71). In contrast to TNFR1, the interaction of TNFR2 
with TNF (Fig. 2) causes the direct recruitment of TRAF1 or 
TRAF2 together with cIAP1/2 and LUBAC molecules (72,73). 
Subsequently, this signaling pathway may, similar to the 
TNFR1 signaling pathway, recruit the TAK1/TAB2/TAB3 and 
NEMO/IKKα/β complexes, resulting in the downstream stim‑
ulation of the canonical NF‑κB pathway (60). Alternatively, 
the only membrane‑bound TNF and non‑soluble TNF trimers 
can activate, via TNFR2, the non‑canonical NF‑κB pathway 
via the TRAF2/cIAP1⁄2 complex interaction, resulting in the 
accumulation of NF‑κB‑inducing kinase (NIK). NIK phos‑
phorylates the NF‑κB precursor protein p100, thus eliciting 
its proteasomal proteolysis to p52, which results in the tran‑
scription of p52/RelB‑containing NF‑κB heterodimer (74,75). 
Under normal conditions, the basal level of NIK is maintained 
at a low level by TRAF3, which induces NIK ubiquitination 
and constitutive degradation by the proteasome. In response to 
tmTNF, NIK becomes stabilized due to TRAF3 degradation, 
and its accumulation activates non‑canonical NF‑κB signaling, 
resulting in autoimmune and inflammatory diseases (75).

In contrast to the common belief that TNFR1 signaling trig‑
gers apoptosis and TNFR2 signaling promotes pro‑survival, 
there is increasing evidence to indicate that exclusive TNFR2 
stimulation can induce apoptosis (despite the fact that TNFR2 
does not contain a DD) through crosstalk among the two 
receptors and TRAFs, which are involved in initiating TNFR1 
and TNFR2 signaling (60). Moreover, TNFR2 can enhance 
TNFR1‑mediated apoptosis, despite the enhanced NF‑κB 
activation (22,76‑80). The upregulation of TNFR2 induces 
proteasomal degradation and the consequent depletion of 
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TRAF2 (77,78). Upon the activation of TNF, a member of 
the MAPK kinase family termed apoptosis signal‑regulating 
kinase‑1 is activated by TRAF2, and induces p38 and JNK 
activation (81). This pathway is triggered by stress stimuli 
and results in the regulation of apoptosis and inflammatory 
cytokine expression (66).

5. Role of TNF‑α and TNFRs in autoimmune diseases

TNF‑α is associated with the pathogenesis of various autoim‑
mune diseases (Fig. 3), such as RA (3), inflammatory bowel 
disease, including ulcerative colitis and Crohn's disease (4,5), 
psoriatic arthritis (6) and multiple sclerosis (8). Along with 
IL‑1β, TNF‑α is involved in the onset and progression of 
RA  (82). Elevated levels of TNF‑α have been detected in 
the synovial fluid and synovium of patients with RA (82), 
causing local inflammation and ‘pannus’ structure forma‑
tion, leading to tissue necrosis, cartilage erosion and bone 
destruction (82). In this context, synovial fibroblasts secrete 
IL‑1β, monocyte chemoattractant protein‑1, macrophage 
inflammatory protein‑1α, MMP‑1 and MMP‑3, and receptor 
activator of nuclear factor‑kB ligand, an osteoclastogenic 
cytokine, resulting in recruitment of immune cells (B‑cells, 
T‑cells, macrophages and neutrophils) and the perpetuation 

of the production of pro‑inflammatory cytokines and media‑
tors, such as IL‑2, IL‑1β and TNF‑α (82‑84). Several studies 
using mouse models have demonstrated the interplay between 
TNF‑α and IL‑1β in vivo, and their crucial function in the onset 
and evolution of RA (85‑88). In addition, TNF‑α reduces the 
frequency and function of regulatory T‑cells in autoimmune‑
prone mice (89) and in patients with RA, and this effect has 
been shown to be reverted by TNF‑α blockade (90).

A similar role is played by TNF‑α in the gastrointestinal 
tract in patients with ulcerative colitis and Crohn's. TNF‑α acti‑
vates macrophages, enhances the T‑cell response, induces the 
expression of adhesion molecules by the vascular endothelium, 
and the recruitment of neutrophils to local sites of inflam‑
mation, promotes tissue remodeling, edema and granuloma 
formation (4,5). TNF‑α‑dependent inflammation is extended 
through triggered NF‑κβ‑dependent pathways, which provide 
the release of MMPs with the consequent degradation of the 
mucosa and ulceration (91).

In patients with psoriatic arthritis, elevated levels of 
TNF‑α stimulate DCs and macrophages to secrete high 
amounts of TNF‑α and IL‑23, promoting the differentiation 
of naive T‑cells into Th17 cells, with the consequent over‑
production of the pro‑inflammatory cytokine, IL‑17. IL‑17 
and TNF‑α trigger the NF‑κB signaling pathway, leading to 

Figure 1. TNFR1 signaling pathway. TNF, tumor necrosis factor; TNFR, TNF receptor; TACE, TNF‑α‑converting enzyme; sTNF‑α, soluble form of TNF‑α; 
tmTNF‑α, membrane‑bound trimeric ligand form of TNF‑α; AP1, activator protein 1; TAK1, TGF‑β‑activated kinase 1; TAB, TAK1‑binding protein; RIPK1, 
receptor‑interacting serine/threonine‑protein kinase 1; TRADD, TNFR‑associated death domain protein; TRAF2, TNFR‑associated factor 2; cIAP, cellular 
inhibitor of apoptosis protein; FLIP, FLICE‑inhibitory protein; MLKL, mixed lineage kinase domain‑like pseudokinase.
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keratinocyte activation and proliferation, the recruitment of 
inflammatory cells, epidermal hyperplasia and microabscess 
development (92).

There is also emerging evidence to support the involve‑
ment of TNF‑α in the pathogenesis of SLE, which is discussed 
in the following section (Fig. 3).

6. Systemic lupus erythematosus and TNF‑α

SLE is a systemic autoimmune disease featured by 
heterogeneous clinical manifestations and immunological 
abnormalities. Its pathogenesis remains poorly understood, 
and even though the etiology of SLE is undetermined, multiple 
elements are associated with disease development, including 
genetic  (93‑95), epigenetic  (96), immunoregulatory  (97), 
ethnic (98), hormonal (99) and environmental factors (100‑103). 
The role TNF‑α in the pathogenesis of SLE is controversial; 
some investigators have found that TNF‑α confers SLE 
susceptibility  (10,11,18,104), while others have described 
a protective role of TNF‑α in patients with SLE (105,106). 
Multiple have studies indicated that TNF‑α, along with other 
cytokines, such as IFN‑α, IL‑12, IL‑4, IL‑10, IL‑6, A prolif‑
eration‑inducing ligand (APRIL) and B cell‑activating factor, 

IL‑17 and IL‑21 are the main SLE‑related cytokines (107‑111). 
In particular, Svenungsson et al (19,20) emphasized the high 
triglyceride and low HDL levels as disease activity markers, and 
the elevated levels of TNF‑α/TNFR in patients with SLE, as 
well as the link between inflammation, dyslipoproteinemia and 
cardiovascular disease in patients with SLE. Furthermore, an 
increased TNF‑α concentration has been observed in the blood 
and in the inflamed kidneys of patients with SLE (112‑116). 
Further studies have also demonstrated a significant genetic 
relation between TNF‑α promoter polymorphism and SLE 
susceptibility (9‑11,117‑121). Increased levels of TNF‑α have 
been found to be associated with disease severity in patients 
with SLE (18,107,122). Higher serum levels of TNF‑α and its 
soluble receptors have been observed in patients with SLE 
with active disease compared with SLE patients with inactive 
disease (122). Moreover, patients with SLE with high TNF‑α 
levels present T‑lymphocytes which are more susceptible 
to apoptosis than T‑cells from healthy controls (104). This 
enhanced TNF‑α‑induced apoptosis increases the autoan‑
tigen load, promoting autoimmune responses in patients with 
SLE  (104). This enhanced TNF‑α‑induced apoptosis also 
increases the load of autoantigens, promoting autoimmune 
responses in patients with SLE (104).

Figure 2. TNFR2 signaling pathway. TNF, tumor necrosis factor; TNFR, TNF receptor; tmTNF‑α, membrane‑bound trimeric ligand form of TNF‑α; IKK, IκB 
kinase; NIK, NF‑κB‑inducing kinase; TRAF, TNFR‑associated factor; TAK1, TGF‑β‑activated kinase 1; TAB, TAK1‑binding protein; cIAP, cellular inhibitor 
of apoptosis protein; LUBAC, linear ubiquitin chain assembly complex; NEMO, NF‑κB essential modulator; ASK1, apoptosis signal‑regulating kinase‑1.
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Moreover, genetic variation at TNF alpha induced protein 3 
(TNFAIP3) and TNF superfamily member 4 (TNFSF4) have 
been associated with lymphocyte dysregulation and different 
SLE ethnic groups (123‑126). Polymorphisms in TNFR2 may 
also play a role in the genetic susceptibility to SLE. A previous 
genotype analysis manifested that the existence of one 196R 
allele was sufficient for delivering SLE susceptibility in the 
Japanese population (127). Both TNFR1 and TNFR2 expres‑
sion levels are highly enhanced in active the serum of patients 
with SLE (122,128,129), and sTNFRs are crucial modulators 
of the inflammatory responses in lupus nephritis (130,131). In 
Japanese patients, a mutation in exon 3 in position 61 of the tumor 
necrosis factor receptor superfamily 1A gene (TNFRSF1A) was 
shown to be associated with SLE. These patients were charac‑
terized by a high concentration of serum TNF, sTNFRSF1B 
and a low concentration of sTNFRSF1A (132).

On the contrary, some researchers have observed decreased 
levels of TNF‑α in patients with SLE, particularly in patients 
with severe disease (105). Zhu et al (106) indicated that the 
expression levels of TNF‑α adapter proteins TRADD, FADD, 
TRAF‑2 and RIPK‑1 in peripheral blood mononuclear cells 
were markedly diminished in patients with SLE and were 
negatively associated with the SLE activity index. Reduced 

levels of TNF‑α adapter proteins have been shown to be 
related to advanced lymphocyte apoptosis and enormous 
autoantibody secretion, resulting in immune‑pathogenic 
injury in patients with SLE (106). Moreover, several studies 
did not demonstrate any association between polymorphisms 
in the TNFR2 gene and SLE (133‑135). Sullivan et al (135) 
analyzed the frequency of genetic polymorphisms in the 3' 
untranslated region of the TNFR2 gene in patients with SLE 
and did not find an association, although the study examined 
only Caucasian patients. Furthermore, Chadha et al (134) did 
not find any association between TNFRSF14, TNFRSF8, 
TNFRSF1B locus and SLE in European‑Caucasian families. 
In line with this, Al‑Ansari et al did not find any connection 
between the TNFRII 196R allele and SLE neither in Spanish 
or in UK populations (133).

7. Blocking of TNF: Therapeutic approaches in SLE; animal 
models and clinical trials

Murine disease models are genetically homogeneous popula‑
tions used to research disease initiation and progression (136). 
There are different mouse models for lupus; some of them 
develop lupus spontaneously [e.g., NZB/W F1hybrid mice, 

Figure 3. Role of TNF‑α in systemic lupus erythematosus and other autoimmune diseases. TNF, tumor necrosis factor; Treg, regulatory T‑cell; MCP1, 
monocyte chemoattractant protein‑1; MIP1α, macrophage inflammatory protein‑1α; MMP, matrix metalloproteinase; RANKL, receptor activator of nuclear 
factor‑κB ligand; RIPK1, receptor‑interacting serine/threonine‑protein kinase 1; TRAF2, TNFR‑associated factor 2; TRADD, TNFR‑associated death domain 
protein; FADD, Fas‑associated protein with death domain.
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medical research laboratory lymphoproliferation (MRL/lpr) 
mice, BXSB/Yaa mice], and in others, lupus is induced in the 
animals (e.g., pristane‑induced lupus) (137). Due to the dual 
function of TNF‑α (mediator of inflammation and regulator 
of autoimmunity), the efficacy of TNF‑based therapies in SLE 
is controversial and can vary, depending on the subsets of 
patients (138). TNF‑α is well observed in NZB/W F1 hybrid 
mice, MRL/lpr and C3H.SW lupus‑prone mouse models. The 
NZB/W F1 lupus model denotes an F1 cross between the NZB 
and NZW strains (139). In 1988, Jacob and McDevitt  (25) 
demonstrated that, unlike NZW mice (healthy mouse strains), 
NZB/W mice were defective in TNF‑α production and devel‑
oped severe lupus‑like phenotypes. They also noted that the 
early application of recombinant TNF‑α to NZB/W mice 
attenuated the progression of lupus nephritis (25). In 1989, 
Gordon et al (27) continued research on NZB/W mice, demon‑
strating that the use of TNF‑α, even following the onset of 
renal symptoms, increased survival, reduced the progression 
of kidney damage and delayed the emergence of lupus in these 
mice. In 2000, the study by Kontoyiannis and Kollias (26) 
demonstrated that NZB mice with an engineered heterozygous 
TNF deficit developed lupus nephritis and autoimmunity due 
to a lower production of TNF. Contrary to these findings, 
Brennan et al (140) found high steady‑state levels of TNF‑α 
and IL‑1 β in the renal cortices of NZB/W mice with lupus 
nephritis. They also noted that the administration of a lower 
dose of TNF‑α increased kidney injury (140). Furthermore, 
in MRL/lpr mice, an elevation in TNF‑α expression was 
previously detected, which was linked to the degree of inflam‑
mation and organ dysfunction (141‑143). The upregulation of 
TNF mRNA was discovered in the lungs of MRL/lpr mice 

in the study by Deguchi and Kishimoto (144). Overall these 
findings suggest that TNF‑α may have both beneficial and 
harmful effects in experimental lupus models, based on its 
concentration and ability to play both immune‑regulatory 
and pro‑inflammatory functions (116). Thus, this cytokine 
can be considered as a therapeutic target in SLE. Rabbit 
anti‑mouse TNF‑α immunoglobulin (Ig)G antibody therapy 
has been shown to reduce autoimmune pulmonary inflamma‑
tion in lupus‑prone mice (144). It has been demonstrated that 
therapies directed at blocking TNF/TNFR interactions, such 
as soluble, dimericTNFR I (sTNFRI), which binds to TNF‑α 
with high affinity, thus neutralizing it, reduce the infiltration of 
mononuclear cells into joints, lungs and skin in NZB/W mice, 
improving the symptoms of the disease and extending the 
lifespan (145). Bethunaickan et al (146) used a NZB/W murine 
model of IFN‑induced lupus nephritis and treated mice with 
recombinant fusion proteins, such as TNFR2‑Ig. They revealed 
that TNFR2‑Ig treatment reduced the renal inflammatory 
response to immune complex deposition, stabilizing nephritis, 
thus prolonging survival (146).

Given the promising results of TNF blockade in SLE 
mouse models, the inhibition of this cytokine was previously 
investigated in patients with SLE. Clinically authorized 
TNF‑α suppressors have been revealed to be effective in 
several autoimmune disorders, and novel TNF‑α signaling 
blockers are currently being investigated in clinical trials. 
Infliximab (Remicade), adalimumab (Humira), certolizumab 
pegol (Cimzia), golimumab (Simponi) and etanercept (Enbrel) 
are the five anti‑TNF drugs approved by the US Food and 
Drug Administration (FDA) for the treatment of rheumatic 
inflammatory diseases, such as RA, psoriasis, psoriatic 

Table I. FDA‑approved TNF‑α inhibitors.

			   FDA approval data (https://www.accessdata.
Drug 	 Trade name	 Type of agent	 fda.gov/scripts/cder/daf/index.cfm)

Infliximab 	 Remicade®	 Chimeric mouse/human mAb	 August, 1998
Etanercept 	 Enbrel®	 A human soluble TNF‑α receptor	 November, 1998
Adalimumab 	 Humira®	 A fully human anti‑TNF‑α mAb	D ecember, 2002
Certolizumab pegol 	C imzia®	 A PEGylated, Fab'‑only, 	 April, 2008
	 	 recombinant humanized mAb	
Golimumab 	 Simponi®	 A human IgG1κ anti‑TNF‑α mAb	 April, 2009

TNF‑α, tumor necrosis factor‑α; mAb, monoclonal antibody; PEG, polyethylene glycol.

Table II. Clinical trials of TNF‑α/TNFR inhibition in SLE patients. 

Intervention	 Phase	 Enrollment	 Status	 Study start date	 National clinical trial no.

Infliximab + azathioprine	 II/III	 One participant	 Terminated	 September, 2006	 NCT00368264
Etanercept + lupus treatment‑ 	 II	 One participant	 Terminated	 February, 2008	 NCT00447265
standard of care + placebo					   
Etanercept	 II	 25 participants	C ompleted	 February, 2016	 NCT02656082
Etanercept	 II	 20 participants	 Unknown	 October, 2008	 NCT00797784
Brentuximab vedotin + placebo	 II	 20 participants 	 Terminated	 July, 2015	 NCT02533570
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arthritis and Crohn's disease (Table  I) are currently being 
studied in patients with SLE (44,147).

However, these agents may induce autoimmunity, 
leading to the production of antinuclear antibodies and/or 
anti‑double‑stranded DNA antibodies, and may occasionally 
trigger the anti‑TNF‑α‑induced lupus‑like syndrome (ATIL) 
defined by clinical features suggestive of SLE  (148). The 
majority of cases occur in patients with RA, inflamma‑
tory bowel disease and ankylosing spondylitis (29,149‑152). 
Previous studies have demonstrated that nephritis may occur 
following the administration of anti‑TNF‑α drugs (153,154).

Infliximab is a chimeric genetically modified monoclonal 
antibody that includes a murine variable region and a human 
IgG1 constant region. It is particular for all types of TNF 
in humans and effectively prevents TNF from attaching to 
both transmembrane and soluble receptors (147). Due to its 
chimeric structure, infliximab is the anti‑TNF‑α molecule 
with a larger degree of immunogenicity (152). Nevertheless, 
open‑label studies and case reports have reported the effective‑
ness, acceptable safety and tolerability profile of infliximab 
in patients with SLE. Aringer et al (155‑157) observed that 
short‑term induction therapy with infliximab along with 
azathioprine or methotrexate elicited long‑term improvement 
in individuals with lupus nephritis. The majority of patients with 
SLE exhibited a transient elevation in autoantibodies against 
phospholipids and nuclear antigens, which was not associated 
with disease flares (NCT00368264) (155‑157). Other studies 
have confirmed the safety and efficiency of infliximab in 
patients with difficult‑to‑treat lupus nephritis (158,159). Hayat 
and Uppal (159) also demonstrated the efficacy of infliximab 
in a patient with difficult‑to‑treat active non‑renal SLE. In a 
pilot study, Uppal et al  (160) demonstrated that infliximab 
significantly decreased the SLE disease activity index 
(SLEDAI) without raising any safety concerns.

Etanercept is a full human monoclonal antibody with 
reduced immunogenicity. It is a fusion protein consisting of 
two equal extracellular regions of TNFR2 linked to the Fc 
fragment of human IgG1 and strongly binds to sTNF‑α or 
tmTNF‑α (161,162). The FDA has approved the therapeutic 
application of this drug for the treatment of RA, polyar‑
ticular juvenile idiopathic arthritis (JIA), psoriatic arthritis, 
ankylosing spondylitis and plaque psoriasis (44). Although 
the FDA has not yet approved etanercept for the treatment 
of SLE, it has been used in several clinical studies, including 
a randomized, double‑blind, phase II, multi‑center study for 
the treatment of lupus nephritis (NCT00447265), and in two 
phase II open‑label trials for the treatment of discoid lupus 
erythematosus (NCT02656082 and NCT00797784). In an 
observational study, long‑term treatment with etanercept was 
revealed to be relatively safe and efficacious in refractory lupus 
arthritis (163). In a previous case report study, an enhancement 
of clinical symptoms and the quality of life were described 
in subacute cutaneous lupus erythematosus individuals by 
etanercept treatment (164). The efficacy and the acceptable 
safety profile of etanercept were also shown to treat rhupus, 
a disease with characteristics of both RA and SLE (165,166). 
Micheloud et al (167) described a pregnant woman with SLE 
with a severe diffuse proliferative nephritis who was success‑
fully treated with etanercept, plasmapheresis and high‑dose 
intravenous gammaglobulin.

Using molecular docking approach, a recent study inves‑
tigated the potential of selected anti‑inflammatory peptides 
from plant and animal sources as novel inhibitors for the treat‑
ment of SLE. Protein‑ligand and peptide‑protein docking of 
twenty anti‑inflammatory peptides targeting IFN‑γ, IL‑3 and 
TNF‑α were developed to reduce inflammatory events which 
lead to autoantibody production. The study represents an 
initial step for employment of these peptides in the treatment 
of autoimmune disorders (168).

8. Blocking of TNFRs: Therapeutic approaches in SLE; 
animal models and clinical trials

The present review article has noted the paradoxical involve‑
ment of TNF‑α in lupus and explained the advantages and 
disadvantages of blocking this cytokine in preclinical and 
clinical studies. In addition to inducing ATIL, and autoan‑
tibodies to dsDNA and phospholipids, TNF‑α inhibitors can 
increase the risk of infections, malignancies  (169), central 
nervous system demyelinating disorders, and other autoim‑
mune diseases, such as type I diabetes, psoriasis and multiple 
sclerosis (53,170‑172). A probable cause of these side‑effects 
is that prevailing TNF‑α suppressors prevent the engage‑
ment between TNF‑α and the receptors TNFR1 (with 
pro‑inflammatory and pro‑apoptotic role) and TNFR2 (with 
a regulatory function), leading to a loss of TNFR2 signaling 
regulatory function (173). Van Hauwermeiren et al (174) noted 
that TNFR1+/‑ mice, which express 50% of TNFR1 on cells, 
were highly resistant to lethal TNF‑induced inflammation. 
Moreover, the decrease in p55TNFR mitigated TNF toxicity 
without compromising effectiveness  (174), suggesting that 
TNFR can be considered as a therapeutic target  (175). In 
SLE, the significance of TNF‑α‑TNFR1 interaction has been 
emphasized (176). Wu et al (177) demonstrated that the TNFR1 
levels in the urine of mice and individuals with lupus nephritis 
increased; sTNFR1 and sTNFR2 levels have also been shown 
to be higher in patients with lupus nephritis (131). According to 
Deng et al (178) TNFR1 is abundantly expressed in skin lesions 
of MRL/lpr mice, unlike TNFR2, and the inhibition of TNFR1 
signaling relieved skin lesions. On the other hand, thye acceler‑
ation of the disease course occurred in NZB/F1 mice defective 
in both TNFR1 and TNFR2 (179). However, the lack of the 
p55TNFR has been shown to lead to significantly increased 
lymphoproliferation and autoimmune disorder in the Fas defi‑
cient MRL‑lpr/lpr mouse (180). Aderka et al (128) suggested 
that elevated serum sTNFR levels may be a valuable marker for 
assessing the progression of SLE. The effect of Brentuximab 
Vedotin targeting TNFR was investigated in adults with active 
SLE in a phase II, multi‑center, randomized, double‑blinded, 
multiple‑ascending‑dose study (NCT02533570) (Table II).

9. Conclusions and future perspectives

TNF‑α is a potent pleiotropic cytokine with multiple cellular 
activities, also involved in developing autoimmune disorders. 
The impact of TNF‑α on these diseases is not yet completely 
understood. On the one hand, TNF‑α can play a pro‑inflam‑
matory and pro‑apoptotic role, and on the other hand, it has a 
regulatory function. Currently, therapeutic strategies that target 
TNF‑α are clinically utilized for the treatment of inflammatory 
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and autoimmune diseases, such as RA, inflammatory bowel 
disease and psoriasis. However, notwithstanding their clinical 
achievement, the application of anti‑TNF drugs is restricted due 
to severe side‑effects and ATIL development. Alternative thera‑
peutic strategies that selectively target TNFRs have exhibited 
immense therapeutic potential. Thus, the majority of available 
evidence suggests that the usability of anti‑TNF drugs could be 
broadened. Understanding the dual role of TNF‑α in autoimmu‑
nity is difficult, particularly in a complex disease, such as SLE. 
The use of drugs targeting TNF‑α and TNFRs in SLE remains 
controversial. Further investigations are thus required to establish 
the favorable therapeutics benefits/risk ratio associated with the 
use of anti‑TNF‑α drugs, as well as to determine the treatment's 
effectiveness and side‑effects in patients with SLE.
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