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Abstract. Hypoxia is a characteristic feature of numerous 
diseases, including metabolic bone disease, solid tumors, 
cardiovascular diseases, neurodegeneration and inflammation. 
It is also a risk factor for a poor prognosis in various diseases. 
Hypoxia‑inducible factor‑1α (HIF‑1α) is activated by hypoxia 
to regulate a series of pathophysiological pathways, which is 
of utmost significance for maintaining body homeostasis. The 
present review highlights the role of the HIF‑1α in oxygen, bone 
and iron homeostasis, and alludes on the biological complexity 
and dual functions of HIF‑1α regulation. In addition, the 
pathophysiological significance of HIF‑1α in bone formation, 
bone absorption, angiogenesis, erythropoiesis, oxidative stress, 
energy metabolism, iron death, etc., is discussed An accurate 
understanding of all these processes may aid in the identifica‑
tion of possible therapeutic targets that may then be used in 
the treatment of related diseases. However, further studies are 
required to unravel the extensive complexity of HIF‑1α regula‑
tion and to develop more precise treatment strategies.
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1. Introduction

Hypoxia‑inducible factor (HIF) heterodimers consist of 
one of three α‑subunits (HIF‑1α, HIF‑2α and HIF‑3α) and 
one β‑subunit. HIF‑1α, a 120 kDa polypeptide subunit that 
heterodimerizes with HIF‑1β (a 91  to 94 kDa polypeptide 
subunit), is a transcription factor regulated by hypoxia (1). 
Under normoxic conditions, HIF‑1α is hydroxylated to interact 
with von Hippel‑Lindau (VHL) protein for ubiquitination and 
proteasomal degradation. HIF‑1a is expressed in almost all 
cell types, whereas HIF‑2a has a more limited distribution. 
Under hypoxic conditions, HIF‑1α plays a crucial role in the 
body's metabolic and functional adaptation to these condi‑
tions. All these observations have allowed the identification 
of HIF‑1a as a critical factor in the regulation of homeostasis. 
It is worth noting that in the field of integrative physiology, 
research on baroreflex, chemoreflex, glucose regulation and 
temperature regulation is essentially the study of a series 
of homeostasis (2‑4). Among these, oxygen, bone and iron 
homeostasis are involved in various critical functions of the 
body, including bone resorption and formation, mesenchymal 
stem cell (MSC) homing, angiogenesis, erythropoiesis, oxida‑
tive stress, iron metabolism and ferroptosis.

Bone homeostasis is maintained by a balance between 
osteoblast‑mediated bone formation and osteoclast‑driven 
bone resorption (5). Under hypoxic conditions, HIF‑1α exerts 
a series of direct and indirect effects on this balance  (6). 
Further studies have indicated its critical role in the manipula‑
tion of bone mass accrual, bone material properties as well as 
micro‑structures, including bone mineralization, bone collagen 
fiber formation and bone remodeling (7). Moreover, HIF‑1α is 
a master regulator of oxygen homeostasis in the body, which 
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can induce the expression of angiogenic factors, promote 
glycolysis, increase the delivery of oxygen and nutrients (8). 
HIF‑1α also plays a key role in iron homeostasis by activating 
the transcription of iron metabolism genes, such as transferrin 
(Tf), transferrin receptor (TFR), ceruloplasmin and heme 
oxygenase 1 (HO‑1) (9,10). Roxadustat, a HIF‑prolyl hydroxy‑
lase inhibitor, has been shown to improve iron metabolism in 
phase 3 trials (11,12).

However, over the years, although the association between 
HIF‑1α and oxygen, bone and iron homeostasis has been 
the subject of increasing attention, no consensus has yet 
been reached on the role of HIF‑1α, at least to the best of 
our knowledge. Research into its effects on osteocyte apop‑
tosis and osteocyte‑mediated osteoclasts has also yielded 
non‑univocal results (13‑15). In addition, the local activation 
of HIF‑1α is required for chondrocyte survival in the center 
of the expanding growth plate; however, the cellular‑intrinsic 
mechanisms remain unclear  (16) The expression of the 
majority of HIF‑1α‑dependent genes contributes to the adap‑
tion of hypoxic environments in the human body. For example, 
the increase in the delivery of oxygen to hypoxic tissues is 
associated with the expression of erythropoietin (EPO) and 
glycolytic enzymes, which allows for the increased conversion 
of glucose to produce energy (17). However, HIF‑1α can also 
play a negative role in the hypoxic process.

Overall, considering the numerous processes in which 
HIF‑1α is involved and the yet not fully defined underlying 
mechanisms, the present review focused on the intimate 
association between HIF‑1α and bone homeostasis, oxygen 
homeostasis, as well as iron homeostasis. In addition, the 
pathophysiological significance of HIF‑1α in bone formation, 
bone absorption, angiogenesis, erythropoiesis, oxidative stress, 
energy metabolism, iron death, etc. is also discussed (Fig. 1). 
HIF‑1α is a promising target for the treatment of related 
diseases, and further information is required to determine the 
clinical utility of this factor.

2. Oxygen homeostasis

HIF‑1α, mediating the expression of a series of genes, has 
been strongly established as a critical factor for maintaining 
oxygen homeostasis. The regulation of oxygen homeostasis 
is considered to be achieved by oxygen delivery and oxygen. 
Oxygen delivery is involved in the control of erythropoiesis, 
angiogenesis and vascular remodeling. Oxygen utilization is 
implicated in the regulation of glucose metabolism and redox 
homeostasis (18).

Oxygen delivery. Vascular endothelial growth factor (VEGF) 
is the most potent proangiogenic factor. EPO, a glycoprotein, 
is considered as the principal stimulator for erythropoiesis 
primarily. The expression of HIF‑1α is induced by a hypoxic 
environment, and it subsequently upregulates downstream key 
factors, such as EPO and VEGF, which promote angiogenesis 
to adapt to the environment and recover the oxygen content.

The primary cause of the ectopic overexpression of VEGF 
in tumors is the dysregulated expression of HIF‑1α involving 
the c‑X‑c chemokine receptor type 4 (CXCR4)/stromal‑derived 
cell factor‑1 (SDF‑1) axis  (19). The study by Li et al  (20) 
conducted on cerebral ischemic rats, found that HIF‑1α 

attenuated neuronal apoptosis, partially by upregulating EPO 
expression. There is a novel molecular mechanism for the 
anti‑angiogenic effects of peroxisome proliferator‑activated 
receptor α, which are achieved by inhibiting ischemia‑induced 
EPC mobilization and homing through the inhibition of the 
HIF‑1α/SDF‑1 pathway  (21). Rankin et al  (22) found that 
osterix‑VHL mice with a deficiency in VHL in osteoblasts 
exhibited overexpressed HIFs, accompanied by a significant 
increase in circulating red blood cells. Gerri et al (23) reported 
that HIF‑1α regulated hematopoietic stem cells upstream of 
the Notch signaling pathway.

Oxygen utilization. HIF‑1α, in response to hypoxic irritation, 
participates in the regulation of glucose transporters and 
glycolytic enzymes, which are key genes in energy metabo‑
lism and exert critical effects on cell survival (24). Moreover, 
HIF‑1α inhibits pyruvate dehydrogenase by activating pyru‑
vate dehydrogenase kinase 1 (PDK1), and thereby, pyruvate 
is redirected from the tricarboxylic acid (TCA) cycle and 
converted into lactate (25).

The overexpression of constitutive cardiac‑specific 
HIF‑1α leads to changes in cellular metabolism and 
increased glucose utilization, subsequently resulting in 
cardiomyopathy in aging mice (26). On the other hand, the 
deletion of HIF‑1α in cardiomyocytes results in decreased 
ATP, lactate and phosphocreatine levels, and inn an impaired 
myocardial contractility (27). Chondrocytes maintain an 
optimal energy balance during endochondral ossification, 
which is achieved by confined HIF‑1α signaling  (28). 
However, it is only under hypoxic conditions that glucose 
uptake and bone resorption can be affected by HIF‑1α 
knockdown. HIF‑1α promotes glycolysis during hypoxia; 
however, it also affects metabolism under normoxic condi‑
tions. A decreased HIF‑1α activity also has effects on 
mitochondrial metabolism that results in mitochondrial loss 
and lipid accumulation, along with reduced oxidative phos‑
phorylation and fatty acid metabolism (26,29). In addition, 
studies have demonstrated that HIF‑dependent metabolic 
processes can also modulated by dimethyloxalylglycine, 
desferrioxamine, prolyl hydroxylase (PHD) and other small 
molecules (30,31).

Oxidative stress. HIF‑1α is an endogenous anti‑oxidative 
stress modulator. The oxidative stress pathway induces 
the activation of HIF‑1α, and increases the production 
of mitochondrial complex II‑mediated reactive oxygen 
species (ROS) (32,33). Moreover, it has been demonstrated 
that increased superoxide anion radicals induce PHD 
inactivation, resulting in the stabilization and accumula‑
tion of HIF‑1α  (34). Under hypoxic conditions, HIF‑1α 
dynamically regulates glucose flux through the glycolytic 
pathway to resist the increased risk of ROS production and 
confers protection against apoptosis and renal injury in 
diabetes (35,36).

In recent years, increasing evidence has indicated that 
HIF‑1α can enhance antioxidant activity and neuroprotec‑
tion (37,38). HIF‑1α has the ability to mitigate this toxicity 
or regulate redox homeostasis by limiting TCA activity, 
regulating the levels of NADPH and glutathione (GSH), and 
reducing mitochondrial mass through the upregulation of the 
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mitochondrial proteins, PDK1 and Bcl‑2 interacting protein 3 
(BNIP3) (39). Furthermore, HIF‑1α may be an indirect player 
in the promotion of mitochondrial‑selective autophagy and 
may subsequently lower the mitochondrial mass, which 
inhibits the oxidation of both glucose and fatty acids, and 
reduces mitochondrial ROS production under hypoxic condi‑
tions (40). A previous study revealed that HIF‑1α can activate 
the nuclear factor erythroid 2‑related factor 2 (Nrf2)/ARE 
pathway to protect against ischemia‑reperfusion cardiac and 
skeletal muscle injuries (41).

3. Bone homeostasis

Bone formation. Previous research has indicated that HIF‑1α 
may affect the osteogenesis of osteoblasts through the preven‑
tion of chondrocyte cell death in the growth plate, and also 
via direct or indirect actions on the delivery of oxygen and 
nutrients, together with metabolic adaptations  (8). It has 
been reported that the overexpression of HIF‑1α, through its 
downstream marker, BNIP3, reduces the inhibitory effects of 

dexamethasone on hypoxia‑induced mitophagy and protects 
osteocytes from apoptosis  (42). There is also evidence to 
suggest that miRNA‑21, by upregulating the activation of 
HIF‑1α and p‑Akt, can promote the osteogenic ability of bone 
MSCs (BMSCs) (43). HIF‑1α does not only promote osteo‑
genesis, but also has repairing effects on bone (44). Moreover, 
it has been demonstrated that prolonged HIF‑1α signaling 
in chondrocytes, interfering with cellular bioenergetics and 
biosynthesis, results in skeletal dysplasia by collagen over‑
modification (27).

Bone resorption. The delicate balance between osteoblastic 
bone formation and osteoclastic bone resorption is a key 
factor in the regulation of mature bone tissue formation (45). 
Nevertheless, no consensus has yet been reached on the role of 
HIF‑1α in regulating osteoclast differentiation, at least to the 
best of our knowledge.

Promotion of osteoclast dif ferentiation. HIF‑1α 
expression has been proposed to increase bone erosion in 
rheumatoid arthritis (46). HIF‑1α is involved in the increase 

Figure 1. Role of the HIF‑1α in oxygen homeostasis, bone homeostasis, and iron homeostasis. +, indicates increased expression; ↑, promoting function; ↓, 
inhibitory function; HIF‑1α, hypoxia‑inducible factor 1 α; BNIP3, Bcl‑2 interacting protein 3; CT‑1, cardiotrophin‑1; RANKL, receptor activator of nuclear 
factor κΒ ligand; OPG, osteoprotegerin; ROS, reactive oxygen species; SDF‑1, stromal cell‑derived factor‑1; CXCR4, c‑X‑c chemokine receptor type 4; 
MSC, mesenchymal stem cell; BMSCs, bone mesenchymal stem cells; VEGF, vascular endothelial growth factor; EPO, erythropoietin; PDK1, pyruvate 
dehydrogenase kinase 1; GSH, glutathione; TCA, tricarboxylic acid; Dcytb, duodenal cytochrome B; DMT1, divalent metal transporter 1; FPN1, ferroportin1; 
iASPP, inhibitor of apoptosis‑stimulating protein of p53; Nrf2, nuclear factor erythroid 2‑related factor 2; Tf, transferrin.
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of osteoclastogenesis and bone resorption, since it has 
recently been shown to enhance the osteoclast‑mediated 
stimulation of BMSC differentiation by secreting cardiotro‑
phin‑1  (47). Moreover, HIF-1α functions by activating 
the JAK2/STAT3 pathway, promoting the expression 
of RANKL, and thus enhancing the differentiation of 
osteocyte-mediated osteoclastic in vitro (48). HIF‑1α also 
plays a pro‑apoptotic role in JNK/caspase‑3 signaling 
pathway activation. Osteocyte‑mediated osteoclastogenesis 
has been shown to be reduced with a concomitant decrease 
in HIF‑1α and caspase‑3 expression (49). A previous study 
demonstrated that the deceleration of osteoclastogenesis 
occurred under conditions of HIF‑1α deficiency, by inhib‑
iting AMPK signaling under anoxic conditions  (50). Of 
note, HIF‑1α knockdown reduces bone resorption under 
both normoxic and hypoxic conditions. Thus, the targeting 
of HIF‑1α may prove to be of value in th treatment of osteo‑
porosis (13).

Inhibition of osteoclast differentiation. Both the VHL/HIF 
and PHD/HIF signaling pathways in osteoblasts have been 
shown to reduce osteoclastogenesis by increasing osteoprote‑
gerin expression and inhibiting sclerostin expression, resulting in 
increased bone formation and decreased resorption (14,51). In 
addition, it has been suggested that the activation of osteoblast 
HIF‑1α contributes to the inhibition of osteoclastogenesis, by 
increasing IL‑33 expression (52).

Angiogenesis. A vital role in bone remodeling and vasculariza‑
tion is attributed to the HIF‑1α/VEGF signaling pathway (53). 
The study by Kusumbe et al (54) demonstrated endothelial 
HIF‑1α as a critical promoter of type H vessel formation 
in the metaphysis. HIF‑1α has also been implicated in the 
increased number of type‑H vessels and the restoration of bone 
mass (55‑57). The miR‑497B195 cluster has been proposed 
to regulate angiogenesis during coupling with osteogenesis, 
by maintaining endothelial Notch and HIF‑1α activity (58). 
Furthermore, HIF‑1α may have a dual function in the regula‑
tion of osteogenesis‑angiogenesis coupling of long bone via 
the ROS‑HIF1α/p53 axis (59).

MSC migration. HIF‑1α has also been demonstrated to trigger 
wound healing and functional recovery by regulating corre‑
sponding stem cells (60,61). BMSCs, a class of heterogeneous 
cells, have a series of feasible and diverse clinical values for 
generating stroma which can support hematopoiesis, bones, 
adipocytes and cartilage (62).

HIF‑1α regulates the expression levels of surface 
molecules, such as SDF‑1, a downstream gene of HIF‑1α, 
which binds to its specific receptor, CXCR4, forming a pair 
of coupling molecules and promoting stem cell migration 
to ischemic and hypoxic sites (63). Guo et al (62) demon‑
strated that the HIF‑1α/SDF‑1/CXCR4 axis enhanced BMSC 
migration, and alleviated neuronal damage and apoptosis. 
Moreover, there is evidence to suggest that the increased 
secretion of HIF‑1α induced by the hypoxic conditions of 
surrounding brain tissue accelerates the fracture repair 
process via chemotaxis due to the SDF‑1/CXCR4 axis. In 
addition, the silencing of HIF‑1α has been shown to decrease 
MSC migration, as well as the mRNA and protein levels of 
SDF‑1 and CXCR4 in MSCs (64).

4. Iron homeostasis

Iron metabolism. HIF‑1α is a vital factor in iron metabolism by 
regulating the expression of iron‑related proteins, such as diva‑
lent metal transporter 1, ferroportin 1, duodenal cytochrome B 
and TFR (65,66). An overload of iron has been found to be 
related to the dysfunction of MSCs and to the damage of the 
microenvironment that may be involved in the pathogenesis 
of myelodysplastic syndromes, and which may be achieved by 
the regulation of cytokine of MSCs through the ROS/HIF‑1α 
pathway (67). It has been demonstrated that HIF‑1α induces 
TFR1 expression, thereby increasing iron uptake  (68). In 
addition, it has been suggested that HO‑1, induced by HIF‑1α, 
degrades heme into biliverdin, carbon monoxide and iron (69). 
Weinreb et al (70) and Guo et al (71) demonstrated that in 
various brain regions of adult mice, the upregulation of HIF‑1α 
by the iron chelator, M30, results in differentially induced 
levels of TFR, tyrosine hydroxylase and EPO (72).

Ferroptosis. Ferroptosis is a new form of regulated cell death 
as a result of iron‑dependent lipid peroxidation (73). Moreover, 
HIF‑1α downregulation also promotes ferroptosis by inducing 
ferritin heavy chain degradation in RANKL‑stimulated bone 
marrow‑derived macrophages. A previous in  vitro study 
demonstrated that the overexpression of inhibitor of apop‑
tosis‑stimulating protein of p53 inhibited ferroptosis through 
the Nrf2/HIF‑1α/TF signaling pathway (74). In another study, 
following pre‑treatment with roxadustat (an inhibitor of HIF 
prolyl hydroxylase), the risk of ferroptosis was correspondingly 
reduced, along with increased levels of antioxidant enzymes 
and GSH, and decreased iron accumulation (75).

5. Summary and future perspectives

Constant oxygen supply is essential for proper tissue function, 
development and homeostasis. Hypoxia is a distinctive feature 
of diseases, including solid tumors, metabolic bone disease, 
cardiovascular diseases, neurodegeneration, inflammation 
and other chronic diseases (76,77). It is also a risk factor for 
a poor prognosis in various diseases. For example, hypoxia 
is responsible for the failure of the majority of solid tumors 
to respond to treatment, and promotes drug resistance (78). 
Under normoxic conditions, HIF is rapidly degraded by 
the high activity of PHDs. However, under hypoxic condi‑
tions, the shortage of oxygen results in the dimerization of 
non‑hydroxylated and non‑degradable HIF‑1α with HIF‑1β, 
which binds to hypoxia‑responsive elements in the regula‑
tory regions of oxygen‑sensitive genes. Given the ubiquitous 
localization of HIF‑1α, HIF‑1α acts as a main regulator in the 
expression of several thousand genes coding, including growth 
factors, enzymes, transcription factors, cytokines, hormones, 
receptors, solute transporters, ion channels and other essential 
regulators, which are involved in almost every cell function or 
dysfunction (79).

There is no doubt that bone, oxygen and iron homeostasis 
are of utmost significance to the human body, and the role 
of HIF‑1α in the maintenance of homeostasis cannot be 
ignored. Although HIF‑1α plays a beneficial role in the regu‑
lation of bone homeostasis, the degree of HIF‑1α pathway 
activation must be fine‑tuned to avoid the disruption of 
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homeostasis  (8,80). Previous studies have confirmed that 
osteoblastic HIF‑1α affects bone formation (81‑83); however, 
its role in osteoclasts remains controversial. An interesting 
aspect is that HIF‑1α has minimal effects on osteoclast differ‑
entiation, although it predominantly functions as a regulator 
of osteoclast‑mediated bone resorption (84). Similarly, the 
knockdown of HIF‑1α does not affect the process of osteo‑
clast differentiation, although it prevents the increased bone 
resorption under hypoxic conditions (6). Moreover, HIF‑1α 
has been demonstrated to regulate osteogenesis‑angiogenesis 
coupling bidirectionally, and the effect is age‑related (56). 
There is also evidence to suggest that HIF‑1α functions by 
increasing EPO levels directly or indirectly, inducing the 
expression and processing of fibroblast growth factor23 
(FGF23), and thus affecting mineral homeostasis and 
vitamin D metabolism (8). Of note, increased serum FGF23 
levels have been reported to be associated with the reduc‑
tion of serum phosphate or 1,25(OH)2D, which in turn may 
alter bone homeostasis, although further confirmation is 
required (85,86).

Taken together, HIF‑1α expression is mainly induced 
by hypoxic stress and is common during the development 
of various diseases. The present review mainly focused 
on the role of HIF‑1α in regulating oxygen, bone and 
iron homeostasis. Although significant progress has been 
made in the understanding of the pathogenesis of diseases, 
such as atherosclerosis and emerging drug treatments, 

the current treatment options continue to have a number 
of deficiencies. Regulating the expression and signaling 
pathways of HIF‑1α may be a promising strategy for the 
treatment of diseases involving the pathophysiology of 
hypoxia (Table I). To date, a number of active ingredients 
of traditional Chinese medicine and natural products 
have been found to regulate the HIF‑1α content  (87). At 
present, HIF‑1α inhibitors have been used to treat various 
diseases, such as tumors, leukemia, diabetes, ischemic 
cardiovascular and brain diseases, etc. Manassantin A and 
Manassantin B exert potent inhibitory effects on the secre‑
tion of hypoxia‑induced VEGF, cyclin‑dependent kinase 
inhibitor 1 and GLUT‑1 genes (88,89). Lificiguat (YC‑1) is a 
targeted HIF‑1α inhibitor, which can reduce HIF‑1α protein 
expression and is associated with the enhancement of EGFR 
degradation, thereby exerting antitumor effects (90). The 
benefit of S‑nitrosoglutathione on traumatic brain injury is 
mediated by S‑nitrosylation to stabilize HIF‑1α (91).

Notably, immense efforts and resources have been invested 
in identifying possible effective and specific small‑molecules 
inhibitors of HIF‑1α. HIF‑1α, as a common pathophysiological 
mechanism of numerous diseases, plays an exploratory role 
in the treatment of comorbidities. However, there are several 
questions and challenges involved in translating the findings 
from mechanobiological studies into novel HIF‑1α‑targeted 
therapeutics. The potential interaction network of multiple 
molecules regulates the expression of important genes. 

Table I. Mechanisms and effects of HIF‑1α on various diseases.

Differential expression
at protein/gene levels	 Mechanisms	 Effects	 (Refs.)

VEGF	 Chemokine receptor 4/stromal‑derived cell	 Promotes tumor angiogenesis	 (19)
	 factor 1 (CXCR4/SDF‑1) axis
EPO	 Upregulating EPO	 Attenuates neuronal apoptosis	 (20)
SDF‑1	 HIF‑1a/SDF‑1 pathway	 Anti‑angiogenic effect	 (21)
PDK1	 Inactivates pyruvate dehydrogenase (PDH)	 Increases ATP levels and prevents toxic ROS	 (39)
		  production
NADPH and GSH	 Switches cells from oxidative to glycolytic	 Maintains redox homeostasis	 (40)
	 metabolism, to reduce mitochondrial 
	 superoxide generation
Nrf2	 Nrf2/ARE pathway	 Protects against ischemia‑reperfusion cardiac	 (41)
		  and skeletal muscle injuries
BNIP3	 Reduces the inhibitory effects of DEX on	 Protects bone cells from apoptosis	 (42)
	 hypoxia‑induced mitophagy
CT‑1	 Enhances the osteoclast‑mediated stimulation	 Bone resorption	 (47)
	 of BMSC differentiation
RANKL	 JAK2/STAT3 pathway	 Enhances the differentiation of 	 (48)
		  osteocyte‑mediated osteoclastic
IL‑33	 Acts on bone marrow‑derived monocytes 	 Contributes to osteoclastogenesis inhibition	 (52)
SDF‑1	 HIF‑1α/SDF‑1/CXCR4 axis 	 Alleviates neuronal damage and apoptosis	 (62)

VEGF, vascular endothelial growth factor; EPO, erythropoietin; PDK1, pyruvate dehydrogenase kinase 1; DEX, dexamethasone; 
CT‑1, cardiotrophin‑1; IL‑33, interleukin‑33; SDF‑1, stromal cell‑derived factor‑1; CXCR4, c‑X‑c chemokine receptor type 4; RANKL, receptor 
activator of nuclear factor kappa‑B ligand; GSH, glutathione; BNIP3, Bcl‑2 interacting protein 3; Nrf2, nuclear factor erythroid 2‑related 
factor 2; RANKL, receptor activator of nuclear factor κΒ ligand.
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Important interactions between NF‑κB and HIF‑1α (92‑94) 
have been described recently. In addition, efficacy needs to be 
supported by high‑quality clinical trial evidence.

HIF‑1α is a master regulator of homeostasis, and plays 
critical roles in physiological and pathological processes. 
Understanding the roles and regulation mechanisms of HIF‑1α 
in bone, oxygen and iron homeostasis may open a new era in 
the development of therapeutic strategies against a variety 
of pathologic conditions, such as metabolic bone disease, 
ischemic/hypoxic injuries, tumor growth, wound healing and 
cardiovascular remodeling.
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