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Abstract. Epstein‑Barr virus (EBV) is an oncovirus associ‑
ated with various neoplasms, including breast cancer (Bc). 
EBV‑associated oncogenesis requires the action of several 
viral molecules, such as EBV nuclear antigen 3c, latent 
membrane protein 1, microRNAs and long non‑coding 
RNAs, which are able of manipulating the cellular machinery, 
inducing an evasion of the immune system, blocking apoptosis 
processes, promoting cell survival and metastasis. The risk of 
developing cancer is associated with epigenetic alterations and 
alterations in various signaling pathways. The activation of all 
these molecules can modify the expression of EBV proteins 
with oncogenic activity, influencing the oncogenic process. 
It is clear that Bc, being multifactorial, presents a greater 
complexity; in numerous cases, the infection associated with 
EBV may be crucial for this neoplasia, if particular conditions 
for both the virus and host are present. In the present review, 
all these variables are analyzed in an aim to improve the 
understanding of the participation of EBV in Bc.
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1. Introduction

cancers attributable to infection have a higher incidence than 
any single type of cancer worldwide (1). In total, 11 pathogens 
have been classified as human carcinogens by the International 
Agency for Research on cancer (IARc). Infectious causes 
related to the development of cancer, with the exception of 
Helicobacter pylori, which is associated with 770,000 cases 
worldwide, are caused by viruses; these are namely human 
papillomavirus (HPV) with 640,000 cases, hepatitis B virus 
with 420,000 cases, hepatitis c virus with 170,000 cases and 
Epstein‑Barr virus (EBV) with 120,000 cases (2‑6). EBV was 
found in samples from patients with breast cancer (Bc) in 
the 1990s, followed by attempts to elucidate the possible role 
of EBV in this neoplasia, and an increase in aggressiveness 
was proposed when related to the presence of EBV (7). Several 
mechanisms are affected by the expression of viral proteins 
with oncogenic activity, such as EBV nuclear antigens (EBNAs), 
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which cause epigenetic alterations through histone acetylation 
and chromatin remodeling, contributing to immune system 
viral evasion (8). On the other hand, latent membrane protein 
(LMP)1 and LMP2A are associated with resistance to certain 
chemotherapeutic regimens through various epigenetic altera‑
tions, as well as with promoting changes at the mitochondrial 
level related to high rates of recurrence, since they promote 
cell migration and interfere with apoptosis (9). Moreover, it 
has been shown that long non‑coding RNAs (lncRNAs) of the 
virus cause less sensitivity to radiation therapy and affect the 
process of metastasis (10,11).

According to the literature, the influence of the various 
components of EBV and its effects on Bc are critical for 
the development and evolution of the disease, although it 
remains controversial since the behavior of the virus in 
various geographical areas and in various populations differs. 
Therefore, the aim of the present study was to unify and update 
the information by reviewing the literature and to help broaden 
the current understanding of the association of EBV with the 
evolution and development of Bc.

2. Epstein‑Barr virus and breast cancer

EBV is associated with epithelial malignancies, including 
nasopharyngeal cancer, gastric cancer and BC. The first two 
neoplasms have been extensively studied and linked to EBV, as 
aforementioned. However, in the case of Bc, it is not entirely 
clear how EBV can influence the development of the disease, 
since in some reports (12,13) its participation is controversial.

The role played by various microRNAs (miRNAs/miRs), 
lncRNAs and EBV proteins in the process of the malignant 
transformation of epithelial cells, including the mammary 
epithelium, appears to be related to the viral components 
involved. The participation of the virus is not the same in 
different types of cancer, suggesting that there are other 
factors that influence progression, immortalization or immune 
evasion (14,15).

According to Shannon‑Lowe et al (16), the association 
between epithelial cells and EBV infection is unclear, unlike 
the association between B‑cells and EBV. However, due to 
the common histological features, some similarities between 
nasopharyngeal carcinoma, gastric cancer and Bc would be 
expected. EBV binding to B‑cells is efficient due to the viral 
protein gp350 (which interacts with the EBV receptor), cell 
surface cd21 or cR2. Subsequently, another viral glyco‑
protein known as gp42, interacts with the cellular human 
leukocyte antigen (HLA). However, as regard the binding of 
EBV to epithelial cells, the process differs, since these cells 
lack the expression of cd21, although the same gp350/cd21 
interaction on B‑lymphocytes can expose more ligands on the 
viral envelope, allowing EBV entry into epithelial cells (16).

Likewise, other routes or pathways in the epithelial cell 
infection process have been described, such as transfer medi‑
ated by B‑cells (17‑19), cell‑to‑cell contact infection (20,21) 
and the direct infection of epithelial cells expressing the viral 
receptor, Ephrin A2 (22,23).

It should be considered that EBV can infect epithelial cells 
more easily as it has initially replicated in B‑lymphocytes. 
Shannon‑Lowe and Rowe (18) confirmed the above by 
demonstrating that viral gp42 interacts with HLA class II 

in the endoplasmic reticulum of B‑lymphocytes, causing the 
degradation of this viral protein. Thus, virions with little or no 
gp42 are not efficient at infecting B‑lymphocytes; however, the 
infection of epithelial cells is not compromised as other routes 
of infection exist. In this manner, EBV that has replicated in 
epithelial cells, where there is no expression of HLA class II, 
has a high expression of gp42, which is why it is capable of 
efficiently infecting B‑lymphocytes (18) (Fig. 1).

On the other hand, considering that the damage or modi‑
fications in the mammary epithelium are the initial part of 
the malignant process, other factors that influence it have 
been described. Examples of the above are the participation 
of other viruses that can contribute by causing the damage 
or infection of various epithelial cells (24,25), co‑infections 
such as Helicobacter pylori, as well as the role of various EBV 
miRNAs and lncRNAs that influence epithelial‑mesenchymal 
transition (EMT).

considering the various causal factors of Bc, there are 
several signaling pathways involved, such as the (human 
epidermal growth factor receptor (HER), NOTcH and 
β‑catenin pathways, which are linked to the evolution of the 
disease, as demonstrated in in vitro studies (26‑29) and in 
patient samples (30‑32). In turn, these pathways are related to 
EBV components, promoting progression and cell survival and 
in some cases, resistance to anthracycline‑based treatments. 
These pathways are critical, depending on the host character‑
istics, heredity and epigenetics, and may be determinants for 
the evolution of Bc (15,33‑35).

3. Role of Epstein‑Barr virus infection in breast cancer 
and its association with ethnicity

Although, as aforementioned, EBV is present in >90% of the 
world's population (10), there are geographical areas where its 
prevalence is higher. As regards its distribution, the presence 
of EBV is predominant in countries of North Africa and Asia, 
when compared to Europe and North America (36).

According to Zanella et al (36) and others, EBV type I is the 
most prevalent, and it is mainly located in Europe, Asia, North 
and South America, and type II is more frequent in Alaska, 
Papua New Guinea and central Africa, with a predominance 
in Kenya (36,37‑39). In particular, Asian countries, such as 
Syria, Iran and Qatar have reported the presence of EBV 
associated with Bc with poor responses to treatment, or with 
a more aggressive presentation of the disease (24,25,40‑42). In 
the case of countries such as Eritrea (Northeast Africa), more 
aggressive cases of Bc have also been reported and have been 
related to the presence of EBV, as described in the study by 
Fessahaye et al (43).

In other parts of Africa, this disease has been found to be 
associated with the presence of EBV. However, Nwagu et al (44) 
also reported more aggressive or poor prognosis phenotypes, 
such as triple‑negative carcinomas (where different rates of 
mutations in BRcA1 and 2 are also described), which increases 
the risk of developing ovarian cancer. countries such as Ghana 
and Senegal are an example (44).

In the case of America and Europe, despite having a high 
incidence of Bc according to global statistics, it does not 
appear to be associated with EBV viral components. However, 
according to these reports, there is no doubt that the African and 
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Asian populations are much more susceptible to the effects of 
EBV for the development and poor evolution of the disease (17).

Therefore, Bc is an entity whose incidence is closely 
linked to ethnicity (45). Although it is not entirely clear, 
there are studies that have demonstrated that some molecules 
determine biochemical and physiological changes that lead 
the cell to tumorigenesis (32,46,47) Some polymorphisms 
related to ethnicity have been observed in Bc, suggesting that 
they may be associated with it. For example, the c7T single 
nucleotide polymorphism can lead to the deregulation of the 
expression of miRNA196a, which can favor susceptibility to 
Bc. This polymorphism was detected in an ethnic group of a 
Pakistani population (48). This miRNA was found deregulated 
in gastric adenocarcinoma during an EBV infection; thus, it 
is possible to associate the influence of EBV in other types 
of tumors in which polymorphisms that deregulate miRNAs 
are involved (49). Other miRNAs have also been found to 
be deregulated in Bc, including hsa‑miR‑495, hsa‑miR‑592, 
hsa‑miR‑6501 and hsa‑miR‑937 (50); however, it has not yet 
been described whether EBV is involved in its deregula‑
tion, which cannot be ruled out. Therefore, it is necessary to 
continue studying possible associations.

Paradoxically, the current status of Bc with or without 
association with EBV in developed countries is the same as 
in undeveloped countries, being the number one cause of 
oncological morbidity and mortality in women, thus denoting 
the complexity and multifactorial nature that surrounds this 
entity (51). Although according to international statistics the 
difference between these countries is that the clinical stages 
of Bc are diagnosed early in developed countries, while in 
undeveloped countries it occurs in advanced stages, which 
affects the prognosis of Bc (52).

The above is reflected in Fig. 2, where, when evaluating BC 
mortality by country, central Africa and some Asian countries 
stand out. It is noteworthy that these countries coincide with 
a high incidence of EBV and that it has been related to the 
evolution of Bc in the reports mentioned above.

4. Role of Epstein‑Barr virus nuclear antigen in breast 
cancer

EBV encodes six genes for nuclear antigens (EBNA1, 2, 3A, 
3B, 3c and LP), which represent proteins with oncogenic 
activity involved in various cancers, including Bc (53).

Figure 1. Mechanisms of EBV infection in epithelial cells and B‑lymphocytes. In lymphoid tissue, EBV comes into contact with B‑lymphocytes (cd21+ cells) 
through the Gp350 protein. This union generates the interaction of another viral protein (gp42) with HLA of B‑lymphocytes, allowing entry into the host. In 
epithelial cells, the interaction (gp42‑HLA) causes more ligands to be exposed in the viral envelope, promoting the entry of EBV into the cells (A), another 
possible mechanism is cell‑cell contagion (B) and the third mechanism of contagion is carried out through the viral receptor of epithelial cells Ephrin A2 (c). 
Once the virus has infected the various cells, it can remain dormant or cause malignant tissue transformation favored by the effects of the various miRNAs and 
viral lncRNAs. EBV, Epstein‑Barr virus; HLA, human leukocyte antigen; miRNA, microRNA; lncRNA, long non‑coding RNA.
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EBNA1 has epigenetic functions by competitively 
binding a specific ubiquitin protease (USP7), resulting in an 
unstable, ubiquitinated p53 with altered tumor suppressor 
functions (54). EBNA2 acetylates histones in co‑partici‑
pation with EBNA3c, which leads to the activation of the 
HATs p300, cBP and KAT2B/PcAF pathways, resulting 
in chromatin remodeling. In Bc, EBNA3c can also bind 
to the non‑metastatic clone 23 of nucleoside diphosphate 
kinase‑H1 isoform (Nm23‑H1) causing downregulation 
of this enzyme, thus promoting cancer cell survival and 
progression (55).

5. Latent membrane protein and breast cancer

LMPs are the most notable from an oncological aspect (10). 
The LMP complex is comprised of a group of three genes 
(LMP1, 2A and 2B), which fulfill various functions in both 
the latent and lytic phases of EBV (56). LMP2A and LMP2B 
act as receptors for B‑cells, modulating their activity, which 
favors the survival of EBV, avoiding the apoptosis of infected 
cells and thus evading the immune system (57). LMP1 
mimics the function of cd40 through its carboxyl terminal 
residues (cTAR1 and cTAR2), activating intracellular 
pathways, such as NF‑κB, JNK, p38 and JAK/AP‑1/STAT, 
related to cell survival and proliferation (56). LMP1 can 
phosphorylate p53, preventing its tumor suppressor func‑
tion (54), but also acting as a tumor necrosis factor (TNF) 
homologue in epithelial cells and B‑lymphocytes (56). It 
has been described that LMP1 interacts with β1 integrin 
ligands through the anoikis pathway, promoting changes in 
epithelial cells and favoring the process of cell malignancy, 
a crucial mechanism in epithelial neoplastic processes, such 
as Bc (58). Finally, this viral protein contributes to tumori‑
genesis by activating proteins associated with mitochondrial 
dynamics (drp1), which in turn interact in pathways such as 

AMPK and cyclin β1/Cdk1, causing resistance to platinum, 
thereby reducing the control of entities managed with these 
drugs (59) (Fig. 3).

6. Epstein‑Barr virus miRNAs, lncRNAs and Epstein‑Barr 
virus‑encoded RNAs in breast cancer

EBV codes for various miRNAs in two regions: BART 
and BHRF1. These are expressed in large quantities in 
EBV‑infected malignant cells and are usually cell type 
specific (60). The miRNAs are recognized as participating 
in immune evasion and perpetuating latency phases. Recent 
studies have described a range of functions that directly influ‑
ence various malignant processes; for example, miRNA‑218 
is a tumor suppressor downregulated in fresh tissue samples 
of Bc and adjacent tissue, and it is associated with adverse 
clinical outcomes. On the other hand, miR‑BART9 suppresses 
the expression of E cadherin and acts as a negative regulator of 
miR‑200a expression, thus promoting the process of EMT (61).

The expression profile of EBV lncRNAs in its different 
phases is still not entirely clear. Some researchers have demon‑
strated that BART‑lncRNAs and BHLF1‑lncRNAs affect 
various cytokines and favor their immune evasion ability. 
BHLF1‑lncRNAs influence viral replication, contribute to 
viral latency and immortalize B‑cells (61). Additionally, host 
lncRNAs are regulated directly or indirectly in cells infected 
with EBV and participate in proliferation, invasion, metas‑
tasis and immune escape, such as lncRNA NAG7, cYTOR, 
NORAd, SNHG8, MINcR, lncRNA‑Bc200, LINc00672, 
MALAT1, LOc100128494, lncRNA RP4‑794H19.1, 
LOc553103, TP73‑AS1 and RP5‑1039K5.19 (62) (Fig. 4).

The expression of EBV‑encoded RNAs (EBERs) induces 
tumor growth in vitro or in vivo, blocks apoptosis through the 
RNA‑dependent protein kinase pathway and cytokines, such 
as interleukin (IL)‑9 and IL‑10, favoring cell survival (63,64). 

Figure 2. International breast cancer‑related mortality among women of all ages (rate per 100,000 population). The areas with the highest mortality rate 
coincide with the highest prevalence of Epstein‑Barr virus infection (central Africa and some Asian countries). GLOBOcAN 2020 (51).
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They also participate in the activation of signaling pathways 
such as NF‑κB and IRF‑3 mediated by a retinoic acid induc‑
ible gene and the induction of IFN type I (63,65).

All the effects of EBERs on various pro‑inflammatory path‑
ways or molecules are related to the tumor environment and 
peritumoral tissue in BC, where the role of tumor‑infiltrating 
lymphocytes, as well as various peritumoral proinflammatory 
components, may allow tumor progression.

Taking into consideration all the aforementioned infor‑
mation, the role of EBV‑miRNAs, EBV‑lncRNAs and 
EBERs in the various signaling pathways associated with 
the oncogenesis process, represents multiple possibilities for 
approaching the molecular biology of the tumor, in this case 
for Bc. However, there are reports in which due to the effect 
of viral elements, such as LMP1, the host expresses miRNAs 
with effects on various platinum‑based treatments, through 

Figure 3. Effects of EBV components on mitochondrial reactions. (A) LMP1 favors fusion reactions through drp1, interacting with various cyclin and cdk1 
pathways, causing a lack of response to treatment with platinum in various neoplasms. (B) EBNA1 causes epigenetic alterations together with BARF, blocking 
the caspase‑9 pathway and phosphorylating p53, thus inhibiting cell death. (c) In the lytic phase, BZLF1 inhibits mitochondrial dNA copy number replication. 
EBV, Epstein‑Barr virus; LMP1, latent membrane protein 1; EBNA1, Epstein‑Barr virus nuclear antigen 1.

Figure 4. Oncogenic effects of EBV‑miRNAs and lncRNAs. miRNAs perform their functions by silencing various genes, mainly tumor suppressors. For lncRNAs, 
their effects are through post‑translational changes. Together they are attributed functions such as control of apoptosis, cell proliferation, metastasis transformation 
of the mesenchymal epithelium and evasion of the immune system. EBV, Epstein‑Barr virus; miRNA, microRNA; lncRNA, long non‑coding RNA.
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the PI3K/AKT/FOXO3a pathways, such is the case of the 
expression of miRNA‑21 that blocks the effect of this type 
of chemotherapy. This compound is used in nasopharyngeal 
carcinoma and triple‑negative varieties of Bc, suggesting a 
chemoresistance effect induced by miRNAs encoded by the 
EBV genome (66), with host miRNA‑21 being one of the most 
prominent in this disease (67).

Therefore, the importance of the influence of viral 
components that promote resistance to platinum‑based Bc 
treatments lies in the fact that one of the molecular subtypes of 
this disease, triple‑negative, uses this treatment alternative. In 
addition, these viral components as mentioned, can intervene 
in the AKT/PI3K pathways, indirectly altering the response 
not only those based on platinum, but also those aimed at 
blocking these pathways. These drugs are currently among 
the most innovative in Bc for varieties with the expression of 
positive hormone receptors and negative HER2 neu (68,69), 
denoting again possible causes of chemoresistance attributed 
to EBV.

7. Co‑infections

There is evidence that the simultaneous expression of viral 
proteins and inflammatory factors could modify the behavior 
of the disease in viruses such as Human Papilloma Virus 
(HPV) in Bc (70‑72). EBV has been described in various 
neoplasms in co‑infection with other viruses, mainly with 
HPV (1,8,73,74). Some studies have linked EBV‑HPV 
co‑infection with benign and malignant breast tumors and 
thyroid cancer, denoting the role of viral proteins such as 
E2, E6 and E7 for HPV as well as LMP1 and LMP2A for 

EBV (70). This suggests that in co‑infection, the viral protein 
expression of both entities, contribute simultaneously to the 
progression of these neoplasms. On the other hand, it has been 
described that Asian and African populations have higher 
incidences of EBV associated with Bc, but are also carriers of 
EBV‑PHV co‑infections (75). EBV‑HPV co‑infection in Bc, 
appears to be associated to more aggressive varieties, such as 
of triple‑negative tumors (41,76) (Fig. 5).

8. Epstein‑Barr virus reactivation

Since EBV is not cleared from the body after primary infec‑
tion, it can remain dormant in various tissues and cells such as 
B lymphocytes, and can be reactivated in certain situations.

The reactivation or lytic phase of EBV is multifactorial 
and does not occur in the same manner in all cases, and it 
is dependent on the proper functioning of the host's immune 
system and on the external stimuli it is exposed to. during 
the viral reactivation process, EBV encodes two early genes, 
BZLF1 (Z, Zta, ZEBRA or EB1) and BRLF1 (R or Rta), 
which are suppressed in the latent phase. Both genes are 
required for reactivation as the lytic cycle is blocked by either 
gene inactivation, although BZLF1 is considered the master 
regulator (77). In some cases, there may be BZLF1 or BRLF1 
exogenous overexpression in latently infected cells, which also 
initiates the process of viral reactivation.

cell culture analysis has been fundamental in corroborating 
factors associated with viral reactivation, such as phorbol ester, 
calcium ionophore and biological stimulation through TGF‑β, 
anti‑immunoglobulin, hypoxia, reactive oxygen species (ROS) 
and temperature changes. Likewise, various epigenetic factors 

Figure 5. Interaction of EBV‑HPV co‑infection and various signaling pathways associated with breast cancer. HPV oncoproteins (E6 and E7) act by blocking tumor 
suppressor pathways, such as p53 and pRb. EBV oncoproteins (LMP and EBNA) activate signaling pathways that are related to tumor growth in Bc such as AKT, 
PI3K, mTOR, β‑catenin/E cadherin, NOTCH, epidermal growth factor‑related pathways such as ERK and RAS. All these pathways are interrelated, favoring cell 
growth processes, changes in the transition of the mesenchymal epithelium and blocking the action of tumor suppressor genes, causing breast cancer presentations to 
be more aggressive. EBV, Epstein‑Barr virus; HPV, human papillomavirus; LMP, latent membrane protein 1 EBNA, Epstein‑Barr virus nuclear antigen.
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also influence the EBV lytic activation process, mainly histone 
methylation in different promoters of early virus genes (78). It 
has been described that plasmodium falciparum can trigger the 
reactivation process, with the participation of the interdomain 
region, rich in 1α cysteine, in its membrane protein‑1, since it 
is responsible for activating memory B lymphocytes infected 
with EBV (79).

Other co‑infections favor the EBV reactivation process, 
such as HPV and cytomegalovirus. Since the recent pandemic 
caused by severe acute respiratory syndrome coronavirus 2 
(SARS‑CoV‑2), it has also been described that it can influence 
the reactivation of EBV, not only in the acute phase of the 
disease, but also in already recovered patients (80).

On the other hand, ROS are considered a cellular stress 
factor which cause EBV reactivation. Moreover, LMP1 has 
been reported to increase ROS production (81). Another 
mechanism of EBV reactivation is radiation, and it has been 
reported that a dose of 2 Gy of γ‑radiation induces BZLF1 
transcription (82).

In addition to the cellular stress factors already mentioned, 
other stressors have been reported, such as psychosocial ones 
(mood changes, exposure to excessive noise, family dysfunc‑
tion) that influence the proper functioning of the immune 
system via various mechanisms, and may thus also be related 
to the EBV reactivation process (83) (Fig. 6).

9. Immune response and breast cancer

The transformation of the cells to a phenotype and genotype 
different from that of their normal lineage, acquire antigenicity 
that is detected by the immune system, generating a specific 
antigenic response through the proliferation of lymphocytes. 

This immunity is acquired when antigen‑presenting cells 
(dendritic cells, cd4+ helper T‑cells, and cd8+ cytotoxic 
T‑cells) detect the transformed cells, triggering the release of 
cytokines, chemokines and lymphokines that contribute to the 
regulation of immune and inflammatory reactions. There is 
increasing evidence to indicate that the tumor microenviron‑
ment (TME) and inflammation are crucial in the initiation, 
progression, and response to cancer treatment.

TME elements have cellular components (e.g., fibroblasts, 
endothelial cells, immune cells, adipocytes) and non‑cellular 
components (e.g., extracellular matrix, growth factors, 
cytokines, pH), that are critical for understanding tumor 
biology (84). It is important to analyze the effect of all these 
immune molecules involved in the oncological process and 
their value as therapeutic targets in Bc, as this may provide 
valuable information for the development of personalized 
therapeutic strategies.

TME, inflammation and cytokines. Tumors are known to evade 
the immune response through the expression of factors that 
first attract immune cells and subsequently disrupt their recog‑
nizing ability, in order to contribute to tumor survival. It has 
been documented that the human breast tumor microenviron‑
ment generates T helper type 2 (Th2) inflammation, a chronic 
inflammation that promotes the survival and metastasis of 
cancer cells, through regulation of Toll‑like receptor signals, 
ligands and cytokines (85,86). Tumor‑infiltrating CD4+ T‑cells 
that produce type 2 cytokines, such as IL‑4, IL‑5, IL‑9, and 
IL‑13, have an impact on the progression to metastatic Bc (87).

Tumor‑derived IL‑1α is able to induce the expression of 
a critical factor for tumor survival and metastasis, the cyto‑
kine thymic stromal lymphopoietin (TSLP), derived from 

Figure 6. Factors associated with EBV reactivation. For the reactivation of EBV, various factors directly related to the virus are described (EBV factors), others 
are attributable to the host, others due to specific infections or states of immunosuppression (immune), some aspects involved in psychosocial development 
(psychological) and finally the factors determined by the environment are contemplated (environmental). EBV, Epstein‑Barr virus; ROS, reactive oxygen 
species; miRNA, microRNA; LMP, latent membrane protein.
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infiltrating myeloid cells, which results in higher expression of 
Bcl‑2 (anti‑apoptotic molecule) (88). The other effect of TSLP 
is to induce OX40L expression in dendritic cells, promoting the 
development of IL‑13‑producing inflammatory Th2 cells and 
tumor necrosis factors in vitro (86). On the other hand, high 
levels of IL1‑β in tumor‑associated inflammation in BC, are 
produced in cd11c+ cells that infiltrate the tumor, increasing 
the risk of resistance to treatment and metastasis (89). Immune 
cells, including macrophages, T‑lymphocytes and natural 
killer cells, produce IL‑10, an immunoregulatory cytokine 
with immunosuppressive and antiangiogenic functions, which 
promotes tumor cell proliferation and metastasis through the 
synthesis of TNF, IL‑1, IL‑12 and chemokines. IL‑10 also 
induces the downregulation of the surface costimulatory 
molecules, cd80 and cd86, in tumors (82). However, IL‑10 
inhibits tumorigenesis through the downregulation of VEGF, 
IL‑1b, TNF‑α, IL‑6 and MMP‑9, and additionally inhibits the 
translocation of NF‑κB. Therefore, IL‑10 has multifunctional 
properties, with a dual function, namely as a tumor promoter 
and inhibitor (90). The activation of this pathway through 
tripartite motif protein (TRIM47) overexpression in estrogen 
receptor‑positive Bc, suggests that protein kinase c epsilon 
(PKC‑ε) and protein kinase D3 (PKD3), known as NF‑κB acti‑
vating protein kinase, are directly associated with TRIM47. 
The ternary complex with PKC‑ε and PKD3, as well as their 
associated kinases, facilitates the proliferation of Bc, confer‑
ring resistance to endocrine therapy (tamoxifen); therefore, 
these molecules can be considered as a future therapeutic 
target in Bc refractory to endocrine therapy (91).

GP130 co‑receptor is utilized by IL‑6, for the activation 
of signaling pathways, such as NOTcH, estrogens, P13K and 
HER2 neu, to favor cell proliferation and metastasis in Bc. It 
has been documented that estrogen‑negative Bc tumors have 
higher expression levels of IL‑6 compared to estrogen‑positive 
ones (92).

It has been reported that immune dysfunction goes beyond 
the tumor and can affect distant lymphoid organs. Reports show 
that cytokine signaling (IFNγ) induces monocyte differentia‑
tion into the M1 immunostimulatory phenotype and reverses 
the immunosuppressive functions of tumor‑associated macro‑
phages. IFNγ signals, through the IFNγR1/IFNγR2 complex, 
activate immune cells through STAT1 phosphorylation, which 
causes IFN dimerization and translocation to the nucleus to 
activate IFN‑stimulated gene transcription. These findings 
suggest that cancer‑induced systemic immunological changes 
cause impaired cytokine signaling in peripheral blood mono‑
cytes and T‑cells at their site of origin, and as a consequence, 
a possible relapse in Bc (93).

The majority of drugs used in chemotherapy for Bc are 
metabolized by cytochrome P450 (cYP), although some 
epigenetic factors (age, sex, obesity and exercise, among 
others) have been shown to modify the effectiveness of this 
enzymatic group, modifying response rates to chemotherapy. 
It has been verified that, in obese patients, higher levels of IL‑6, 
TNF‑α and IL‑1β cause modifications in the TME, favoring 
metastasis and a decreased response to conventional thera‑
pies (94). Further studies are required to determine whether 
cYP expression and activity inhibition is caused by high levels 
of circulating inflammatory cytokines during chemotherapy 
in Bc.

10. Therapeutic targets and personalized medicine

In the search for novel alternative therapies for drug‑resistant 
tumors, Bc stem cells (BcSc) have emerged as targets. 
cytokines in the TME can regulate BcSc self‑renewal and 
survival via various mechanisms; therefore, the blocking of 
certain cytokines (IL‑6 and IL‑8) may be a novel therapeutic 
strategy (95). On the other hand, tumor‑associated macrophages 
in Bc that present a high expression of insulin‑associated 
growth factors type I and II are the main source for primary 
and metastatic tumor growth. All these molecules represent 
potential therapeutic targets, since blocking them, plus 
conventional chemotherapy with taxanes can lead to improved 
results (96). cases of Bc with a poor response to treatment and 
metastasis have been related to IL‑1β overexpression (89). In 
this regard, studies blocking this cytokine (pilot clinical trial 
NcT01802970) have been carried out, although in phase I, it 
has shown encouraging results (89). As already mentioned, 
the molecular process mediated by IL‑1 include the inflam‑
matory reactions of organs and cells, immune responses and 
homeostatic regulation, which confirms its participation in 
oncogenesis, invasion, and metastasis through a perpetuating 
condition with chronic proinflammatory state. due to the 
immense therapeutic potential attributed to it, IL‑1 inhibition 
has been used in Bc, where gevokizumab, bermekimab and 
nidanilimab antibodies stand out with promising results in 
metastatic Bc (97).

IL‑1‑mediated inflammatory signaling is involved in immu‑
nosuppression and immune escape through the production and 
maintenance of an inflammatory microenvironment, which 
leads to the progression of Bc. Thus, blocking abnormal IL‑1 
signaling caused by a tumor can be used as immunotherapy or 
adjuvant immunotherapy to reduce inflammation/immunosup‑
pression and enhance antitumor immunity.

The expression by cancer cells of programmed death 
ligand 1 (Pd‑L1), also known as cd274, plays a crucial role 
in the suppression of the immune system response; thus, it has 
been considered a therapeutic target in Bc when overexpres‑
sion is identified. However, PD‑L1 is still under investigation 
due to the variability in expression and results as shown in 
different studies (98).

Intracellular adhesion molecule 1 (IcAM1) is overex‑
pressed in triple‑negative and HER2 neu Bc as part of the 
response in the TME; however, its expression also increases 
by TNFα, IL‑1β and IFNγ stimulation in normal mammary 
cells. IcAM1 is a critical pathway involved in cell prolifera‑
tion, adhesion and dissemination in high‑grade breast tumors 
through its interaction with tertiary lymphoid structures 
that are responsible for tumor neovascularization in Bc and 
multiple solid tumors. According to this, although IcAM1 
biological importance remains controversial, it is considered 
a promising future therapeutic target in triple‑negative and 
HER2 neu Bc (99).

Finally, it is important to emphasize the necessity of studies 
including gene and epigenetic regulatory mechanisms, as well 
as those using multi‑omics technology approaches to know the 
immuno‑oncological interactions and the mechanisms at the 
cellular, molecular and nuclear level exerted by the cytokines 
involved, to promote the development of more effective thera‑
pies for Bc (100).
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The scenario of EBV‑related Bc is very broad. Known risk 
factors for this neoplasm are involved, in addition to those that 
add up once the malignant process has started, affecting the 
development of the disease.

11. Summary of Epstein‑Barr virus‑associated oncogenesis

Although several decades have passed since EBV and its asso‑
ciation to various diseases were first described, information 
about the virus continues to increase, demonstrating multiple 
functions of the various viral components and how they influ‑
ence various relationships with associated diseases, which 
undoubtedly improves the understanding in this regard.

EBV presents various adaptation mechanisms that make it a 
perfect tiny machinery to evade the host's defense mechanisms 
and thus perpetuate its effects. A number of these mechanisms 
are not entirely clear and some are even currently unknown; 
these include not only EBV but most viruses; proof of this 
is the devastating effect or damage they can cause in human 
beings, as evidenced by the SARS‑coV‑2 pandemic.

despite the fact that EBV has one of the highest prevalence 
in worldwide, only a very low percentage of individuals will 
present clinical manifestations, which reveals that a competent 
immune system in the host is crucial to limit EBV pathogenic 
or oncogenic potential. The foregoing is related to the latency 
pattern that the virus acquires or presents in each of the cases, 
since the greater the participation or expression of the majority 
of the viral genes, the greater the effect or repercussions on 
the host. However, these latency phases, being different for 
each disease or associated neoplasia, may be the indicator of 
the requirements that the virus needs or establishes. Leaving 
as a common denominator, the role of viral components for 
immune evasion, it may manifest itself or wait for the ideal 
conditions or necessary stimuli.

EBV is considered an oncovirus in Bc, due to the epigenetic 
and genetic functions of its multiple miRNAs and lncRNAs, 

exerting its effects in a timely manner with various mecha‑
nisms to evade the immune system, infecting epithelia and, 
together with other factors, promoting malignant processes.

In Bc, as an epithelial neoplasm, the mechanism of infec‑
tion is more complex than that of lymphoproliferative diseases. 
It has been given a specific latency pattern; nonetheless, since 
there are no conclusive references in this regard, due to the 
fact that the majority of studies are not specific, it leaves open 
the possibility that the virus may present variants in terms of 
latency states and that this may influence disease behavior. 
Even if this multifactorial disease is influenced by genetic, 
epigenetic, hormonal and environmental aspects, among 
others, it may present multiple latency patterns or at least one 
that is not conventional to what has been described.

For all of the above, some reports even consider EBV 
infection to be an added risk factor for developing Bc, 
with shorter disease‑free periods and being associated 
with high‑grade tumors and greater aggressiveness, such as 
triple‑negative and HER 2 neu Bc. In this regard, the studies 
by Farahmand et al (101) and Jin et al (102) stand out, with an 
odds ratio of 4.7 (both studies), which appears to be conclusive 
for this disease.

However, the behavior of the virus or its influence is not 
similar in all populations, highlighting that for very particular 
geographical areas in Asia and Africa, the population appears 
to be more susceptible to this infection. Perhaps the type 
of EBV that prevails in these areas should be considered as 
a first possibility, as well as the multiple co‑infections that 
prevail in these developing countries. A study conducted in 
Mexican women did not reveal an association between Bc 
and the presence of EBV (103). However, one of the limita‑
tions was that it only involved the detection of the virus 
without considering a latency analysis and evidence of the 
expression patterns of viral proteins with tumor activity. On 
the other hand, the sample is small, so it was not conclusive 
for Mexican population (103).

Figure 7. Factors involved in EBV infection and its implications in breast cancer. EBV and/or HPV co‑infections plus risk factors for breast cancer, can modify 
disease development by influencing oncogenes or tumor suppressor genes. Likewise, the genes of EBV infection phases plus viral miRNAs and lncRNAs effects, 
induce a tumor‑promoting environment that affect disease's behavior, making it more aggressive and increasing treatment resistance. EBV, Epstein‑Barr virus; 
miRNA, microRNA; lncRNA, long non‑coding RNA.
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In addition, the effects of another virus, including 
SARS‑coV‑2, will have to be added, which will become 
evident as time goes by.

due to the high prevalence of EBV in the global population, 
variants or mutations in its genome undoubtedly represent one 
of the possible causes for which clinical or oncogenic manifes‑
tations only occur in some hosts. dNA viruses such as EBV 
generally have fairly stable genomic sequences, but there are 
some variations between different parts of the world that may 
explain the different incidences of EBV‑associated diseases, 
including cancer. There is evidence of virus reassortment 
in EBV, although it is difficult to define EBV evolutionary 
lineages due to the uneven distribution of polymorphisms and 
recombination between strains (104,105).

Variation at defined nucleotide positions in the EBV 
genome is known to be characteristic of the geographic 
region of origin of EBV strains, although there is uncertainty 
about the factors that are responsible for these differences. 
It is useful to note that the direct sequencing of EBV dNA 
from healthy, normal and persistently infected individuals has 
revealed that they usually contain a predominant single EBV 
sequence, although there may also be low levels of alternative 
sequences, indicating strain mixtures in some individuals. It is 
not known whether these mixtures result from initial infection 
with a mixture of strains or are due to superinfection during 
normal social contact (106).

The foregoing denotes the importance and complexity 
generated by EBV mutations or polymorphisms, and how 
this could have direct repercussions on the manifestations or 
presentations of the various diseases or neoplasms associated 
with this virus.

Undoubtedly, the prevalence of EBV in numerous 
geographical settings is related to socioeconomic status, since 
in certain regions of the planet, it is inherent to high rates of 
malnutrition. This goes hand in hand with a weak immune 
system, limited access to or no health systems, together repre‑
senting ideal conditions for the invasion with other viruses, 
including EBV and other diseases.

The scenario for EBV‑related Bc is very broad, in which 
known risk factors for this neoplasm are involved, in addition 
to those that are added once the malignant process has begun, 
such as the effects of infection or co‑infections that favor the 
lytic phase and affect the behavior of the disease (Fig. 7).

12. Conclusions and future perspectives

The present review described the role of miRNAs, lncRNAs 
and the various EBV genes that involve various epigenetic 
processes, such as the silencing of tumor suppressor genes, the 
regulation of apoptosis and the control of oncogenic proteins, 
establishing a tumor‑promoting environment and resistance to 
conventional treatments. It is demonstrated that the interac‑
tion of various additional factors (environmental and host) 
is required in the evolution and presentation of Bc associ‑
ated with EBV infection, highlighting the predisposition by 
heredity, race, co‑infections and the immunological status of 
the host.

It is necessary to consider other factors, such as individual 
genetic features, the possible association between proteins and 
molecules expressed from tumor cells, elements of the tumor 

environment, plus epigenetic alterations and/or polymor‑
phisms of tumor suppressor genes, as well as immunological 
mechanisms affecting the ability of recognition of the immune 
response and population/ethnicity characteristics.

currently, research is leading to immunopharmacology and 
pharmacogenetic development, since the knowledge generated 
using technology with multi‑omics approaches has the purpose 
of creating new therapeutic schemes based on personalized 
medicine. In this sense, immunotherapy in Bc appears prom‑
ising, since several therapeutic targets have been identified. 
Although these targets are not yet fully validated, the encour‑
aging results shown are worthy of further in‑depth study.

There is still a long way to go, since these personalized 
therapies will require innovative drug delivery systems, as well 
as the generation of knowledge leading to more and precise 
understanding of mechanisms involved in oncogenesis, metas‑
tasis and non‑response to Bc therapies.

The process of lytic reactivation, with inherent gene 
expression, may or may not be necessary to modify the course 
of EBV‑associated disease. Therefore, it would be crucial 
to determine, as far as possible, the latency pattern for Bc. 
Finally, although the role played by the association between 
EBV and Bc has been studied, it remains controversial and 
the findings reported on the viral components that participate 
in the evolution of the disease should not be ignored, and the 
investigation should continue.
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