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Abstract. Histone chaperones serve a pivotal role in 
maintaining human physiological processes. They interact 
with histones in a stable manner, ensuring the accurate and 
efficient execution of DNA replication, repair and transcrip‑
tion. Retinoblastoma binding protein (RBBP)4 and RBBP7 
represent a crucial pair of histone chaperones, which not only 
govern the molecular behavior of histones H3 and H4, but 
also participate in the functions of several protein complexes, 
such as polycomb repressive complex 2 and nucleosome 
remodeling and deacetylase, thereby regulating the cell cycle, 
histone modifications, DNA damage and cell fate. A strong 
association has been indicated between RBBP4/7 and some 
major human diseases, such as cancer, age‑related memory 
loss and infectious diseases. The present review assesses the 
molecular mechanisms of RBBP4/7 in regulating cellular 
biological processes, and focuses on the variations in RBBP4/7 
expression and their potential mechanisms in various human 

diseases, thus providing new insights for their diagnosis and 
treatment.
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1. Introduction

Histone chaperones serve a pivotal role in histone metabolism, 
facilitating histone binding to DNA during processes such as 
DNA replication and repair (1). Originally, Laskey et al (2) 
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revealed that nucleophosmin in Xenopus eggs can bind 
histones and promote nucleosome formation independently of 
ATP. These two properties remain the only shared, and thus 
defining, characteristics of histone chaperones. Currently, 
histone chaperones are deemed to aid histone transfer but 
remain separate from the final histone‑DNA complex (3). 
Extensive research has been conducted on the relationship 
between histone chaperones and human diseases (3‑5). Their 
abnormal expression patterns, not only in tumors, but also in 
cardiovascular diseases, autoimmune disorders and neurode‑
generative diseases, highlight their prognostic value in various 
human diseases. Given their role in chromatin dynamics and 
disease contexts, they present potential therapeutic targets and 
diagnostic markers in various human diseases.

Retinoblastoma binding protein (RBBP)4 and RBBP7 are 
recognized as histone chaperones, both of which belong to the 
WD40 family (6). The WD40 domain is a distinct protein motif 
that typically adopts a β‑propeller architecture, mediating 
protein‑protein interactions (PPIs). RBBP4/7 typically exist in 
complexes, such as the nucleosome remodeling and deacety‑
lase (NuRD) complex (7) and polycomb repressive complex 2 
(PRC2) (8), to regulate chromatin remodeling and gene expres‑
sion through the interactions of their WD40 repeats with the 
H4 α1 helix and H3 tail (9,10). Dysregulation of RBBP4/7 may 
disrupt the normal chromatin remodeling process, resulting in 
altered gene expression patterns that contribute to the initia‑
tion and progression of cancer and other human diseases (11). 
Notably, alterations in the expression levels of RBBP4/7 have 
been observed in different types of human disease, such as 
esophageal squamous cell carcinoma (ESCC) and colorectal 
cancer (CRC). These changes are closely related to clinico‑
pathological features (12‑15).

The present review summarizes the pivotal role of 
RBBP4/7 in regulating cell fate, assessing their expression, 
functions, clinical features and associated mechanisms in 
human diseases.

2. Molecular structure of RBBP4 and RBBP7

RBBP4, also known as RbAp48 or NURF55, is integral to 
multiple chromatin‑modifying and remodeling complexes. It 
was originally discovered as a binding partner of the tumor 
suppressor retinoblastoma protein (RB) in yeast (16), and 
subsequently revealed to cofractionate with histone deacety‑
lase (HDAC)1 (17). Located on chromosome 1p35.1, the 
RBBP4 gene encodes a 425‑amino acid protein ubiquitously 
present across human tissues (18). The molecular structure of 
the RBBP4 protein is shown in Fig. 1A.

RBBP7, alternatively known as RbAp46, is a nuclear protein 
ubiquitously expressed across various cell types. Located on 
chromosome 3p25.1, the RBBP7 gene encodes a 425‑amino 
acid protein that is universally expressed in human tissues (18). 
RBBP4 and RBBP7 are 92% identical (9); however, they differ 
in certain amino acid sequences, which may lead to subtle 
structural variations, especially in domains that interact with 
other proteins. The molecular structure of RBBP7 is displayed 
in Fig. 1B. Structurally, both RBBP4 and RBBP7 possess a 
seven‑bladed WD40 repeat domain, indicating that RBBP4 
and RBBP7 can serve multiple roles in chromatin remodeling, 
histone modification and transcriptional regulation (19). 

Notably, both RBBP4 and RBBP7 are integral subunits of the 
NuRD complex (7), the switch‑independent 3A complex (20) 
and PRC2 (8). Additionally, RBBP4 has been identified 
as a subunit of the chromatin assembly factor 1 (CAF‑1) 
complex (21) and a core component of the MuvB complex (22), 
while RBBP7 is known to be an essential component of the 
histone acetyltransferase 1 (HAT1) complex (23). As part of 
these multisubunit protein complexes, RBBP4 and RBBP7 are 
believed to function as chromatin adapters, mediating direct 
interactions with histone H3/H4 (24).

3. The biological functions of RBBP4/7

The functions of RBBP4/7 in the cell cycle. RBBP4/7 have a 
pivotal role in cell cycle regulation, with their absence leading 
to dysregulation of cell cycle genes and cycle arrest (25). 
Specifically, RBBP4 deficiency results in S phase defects 
and inhibits mitotic exit (M to G1 transition) (26), whereas 
RBBP7 deficiency causes G2/M phase arrest in 293 cells (27). 
In addition, RBBP4/7 (LIN‑53) are crucial for centromere 
protein A (CENP‑A) localization to centromeres (28). It has 
also been suggested that the Cullin‑4 (CUL4) RING ligase 
(CRL4) complex containing RBBP7 might regulate mitosis by 
promoting ubiquitin‑dependent loading of newly synthesized 
CENP‑A during the G1 phase (29).

RBBP4/7 are members of the RB family (30). Studies 
conducted in yeast and cultured cells have shown that 
RBBP4 appears to function as a tumor suppressor along with 
RB, leading to inhibition of cell cycle progression and cell 
growth (16,18). Nevertheless, Schultz‑Rogers et al (31) indi‑
cated that RBBP4 is essential for the cell cycle progression of 
neural progenitor cells and the initiation of G0, irrespective 
of the involvement of RB. The E2F family plays a key role 
in cell cycle regulation, and all RB family members interact 
with typical E2F proteins to form transcriptional inhibition 
complexes (32). RB primarily inhibits E2F transcription factor 
1, whereas RBBP4 can be directed to RB via HDAC1 (33). In 
the G1 phase, RBBP4/7 and RB inhibit E2F target gene activa‑
tion, preventing entry into S phase. Cyclin D‑cyclin‑dependent 
kinase (CDK)4/6 can monophosphorylate RB, whereas 
cyclin E‑CDK1/2 are involved in poly‑phosphorylation or 
hyper‑phosphorylation of RB (34). Once hyperphosphorylated, 
RBBP4/7 and RB dissociate from E2F, activating target genes 
and recruiting chromatin remodelers (35) (Fig. 2A).

In addition, RBBP4 is a core component of the MuvB 
complex, collaboratively working with LIN9, LIN37, LIN52 
and LIN54 to regulate the cell cycle (22). During the G0/G1 
phase, the RBBP4‑containing MuvB complex associates with 
p130/E2F4/DP1 to form the dimerization partner, RB‑like, 
E2F and MuvB (DREAM) complex (36), which inhibits 
expression of cell cycle regulatory genes, maintaining the cell 
in a quiescent state. Within the DREAM complex, RBBP4 
directly binds to LIN9 and LIN37 within the complex, playing 
a pivotal role in its assembly process (22). Additionally, 
RBBP4 collaborates with p130, E2F4 and DP1 to inhibit the 
transcriptional activity of E2F target genes (36). As the cell 
cycle progresses, phosphorylation by CDK leads to the disas‑
sembly of the DREAM complex, releasing p130/E2F4/DP1 
from MuvB. Subsequently, the MuvB complex, inclusive of 
RBBP4, interacts with activated transcription factors B‑MYB 
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(also known as MYB proto‑oncogene like 2) and forkhead 
box M1 (FOXM1), culminating in the formation of the acti‑
vated MYB‑MuvB‑FOXM1 complex. This complex further 
regulates the expression of cell cycle genes, especially during 
the G2 phase and mitosis (37) (Fig. 2B). Thus, RBBP4, through 
its positioning and recruitment roles in the MuvB complex, 
serves a critical role in the regulation of various stages of cell 
cycle gene expression. Notably, the DREAM complex collabo‑
rates with RB during quiescence to suppress cell cycle gene 
expression (38,39). Furthermore, in response to the p53 tumor 
suppressor and genotoxic stress, the involvement of RBBP4 
within the DREAM complex and its collaboration with RB 
becomes evident. Specifically, the DREAM complex and RB 
utilize the p53‑p21 pathway to induce p21 and consequently 
arrest the cell cycle (39,40). The dual association of RBBP4 
with the RB family and the DREAM complex indicates that it 
has a crucial role in maintaining cell cycle arrest.

Finally, RBBP4/7 serve as components of chro‑
matin‑remodeling complexes, such as NuRD and PRC2, 
further modulating the cell cycle via nucleosome acetylation 
and methylation regulation (8,41).

In summary, RBBP4/7, as components of the RB family 
or MuvB complex, have a pivotal role in cell cycle regulation. 
Their association with chromatin remodeling further influ‑
ences cell cycle progression. While the role of RBBP4/7 in the 
cell cycle is evident, the specifics of their mechanism require 
further exploration.

The multifaceted role of RBBP4/7 in chromatin remodeling. 
Chromatin remodeling is a critical process that governs the 
accessibility of DNA to various cellular machineries, influ‑
encing gene transcription, replication and repair (42). RBBP4/7 
can affect histone conformation by directly binding to histone 
H4 and H3 (43).

The NuRD complex, comprising several subunits, including 
the HDAC complex, chromodomain helicase DNA binding 
protein 3/4 ATPase, methyl‑CpG binding domain protein 2/3, 
RBBP4/7, metastasis associated 1/2/3 (MTA1/2/3) and GATA 
zinc finger domain containing 2A/B, is a multifunctional entity 

with nucleosome remodeling and deacetylase activities (44). 
These activities enable the NuRD complex to alter chromatin 
structure, thereby regulating gene expression. Mu et al (45) 
suggested that RBBP4 may contribute to controlling the 
acetylation (ac) of lysine 27 on histone H3 (H3K27ac) levels 
at enhancer elements by promoting the deacetylase activity 
of the HDAC complex, effectively removing acetyl groups 
from H3K27 (Fig. 3A). RBBP4/7 also have regulatory chro‑
matin remodeling effects independent of NuRD complexes. 
RBBP4 promotes H3K27ac by maintaining p300 levels (46), 
and together with RBBP7, mediates H4K5ac and H4K12ac to 
enable CENP‑A deposition into centromeres (47). A network 
including SIN3 transcription regulator family member 
A‑HDSAC3‑RBBP4‑H4 recognizes and deacetylates histones 
during chromatin assembly (48). RBBP4 also controls histone 
deacetylation at H3K4, H4K8, H4K12 and H4K16 during 
meiosis I (49). Additionally, RBBP4/7 collaborate with HAT1 
in the site‑specific de novo acetylation of histone H4 (50), 
facilitating its nuclear delivery and folding (51), which may be 
crucial in chromatin assembly and gene expression regulation.

PRC2, consisting of core subunits SUZ12 polycomb 
repressive complex 2 subunit (SUZ12), embryonic ectoderm 
development (EED), RBBP4/7 and enhancer of zeste homolog 
(EZH)2 or EZH1, is the sole confirmed methyltransferase 
responsible for the mono‑, di‑ and trimethylation of H3K27, 
generating the H3K27me3 mark (52). RBBP4/7 interact with 
various molecules to facilitate PRC2 recruitment and activity 
modulation. Studies have shown that RBBP4 can recruit 
SUZ12 to PRC2 target sites, and methylate H3K27 or H1K26 
with the histone lysine N‑methyltransferase EZH2 (45,53). 
Simultaneously, EED can interact with the H3K27me3 mark, 
thereby activating the methyltransferase activity of EZH2 
and influencing the overall activity of PRC2. Consequently, 
this process promotes the ‘spreading’ of H3K27me3 (54) 
(Fig. 3B). Notably, the absence of the SUZ12‑RBBP4 
complex influences H3K27me3 (55). Therefore, as pivotal 
constituents of PRC2, RBBP4/7 emerge as determinants 
of site‑specific H3K27me3 and other histone methylations 
across the genome.

Figure 1. Crystal structure of histone‑binding protein RBBP4/7. (A) Crystal Structure of RBBP4 (PDB ID: 3GFC). (B) crystal structure of the Apo form of 
human RBBP7 (PDB ID: 7M3X). RBBP, RB binding protein; PDB, Protein Data Bank.
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RBBP4/7 also exhibit methyltransferase activity inde‑
pendent of PRC2. Kitange et al (56) showed that RBBP4 
knockdown can enhance the levels of H3K9 trimethylation. 

RBBP4/7 interact with SUV39H1 to specifically methylate 
lysine 9 on histone H3, leading to heterochromatin silencing 
or RB transcriptional repression (57). Furthermore, RBBP7 

Figure 2. Molecular mechanism underlying how RBBP4/7 affects the cell cycle. (A) Involvement of RBBP4/7 in cell cycle regulation via RB interaction: 
Guided by HDAC1, RBBP4/7 is oriented to interact with RB. During the G0/G1 phase of the cell cycle, RB restrains the expression of genes regulated by tran‑
scription factors of the E2F family via binding to them, thus the dephosphorylated RB prevents cell entry into S phase. As the cell prepares to transition from 
the G1 phase to the S phase, RB is phosphorylated by CDKs, and cyclins D/E. This phosphorylation leads to the disassociation of RB together with RBBP4 from 
E2F and gene promotors. Through dephosphorylation, RB regains its activity, binds to E2F once again, and inhibits excessive progression of the cell cycle. 
(B) During the G0/G1 phase, the MuvB complex, composed of LIN9, LIN37, LIN52, LIN54 and RBBP4, forms the DREAM complex through association with 
the RB‑like protein p130, E2F4 and DP1 under quiescent conditions. This complex suppresses the expression of cell cycle regulatory genes during the G0 phase. 
RBBP4, through its interactions with complex members, modulates the localization of the MuvB complex and suppresses the transcription of specific genes. 
When transitioning to the S phase, the p130/E2F4/DP1 module dissociates from the DREAM complex, resulting in the loss of suppression. Subsequently, the 
MuvB complex, with RBBP4 as the core complex, cooperates with B‑MYB to form the MMB complex, activating the expression of genes required for the S/G2 
phase. FOXM1 is then recruited to MMB, forming the MMB‑FOXM1 complex during the transition of S/G2. B‑MYB undergoes phosphorylation during the 
late S phase, leading to its dissociation from the MMB‑FOXM1 complex as the cell cycle advances, while MuvB and FOXM1 persist in the DNA until mitosis. 
RBBP, RB binding protein.
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inhibits DNA methyltransferase 1, affecting DNA methylation 
and limiting transcription factor access to promoters (58).

In summary, RBBP4/7 serve an important role in regu‑
lating histone deacetylation and methylation, which are key 
processes in chromatin remodeling and the regulation of 
gene expression. The precise mechanisms underlying these 
regulatory activities of RBBP4/7 both inside and outside the 
aforementioned complexes remain an area of ongoing research 
and exploration.

The role of RBBP4/7 in the DNA damage response. RBBP4/7 
have been identified as crucial components of several protein 
complexes involved in DNA repair, making them essential 
players in maintaining genome integrity.

The NuRD complex governs gene expression and DNA 
damage repair by modulating nucleosome RNA polymerase 
accessibility at transcription factor binding sites, enhancers 
and promoters (59). RBBP4/7, as subunits of the NuRD 
complex, mediate the interaction of NuRD with histone tails 
and transcription factors (59). Yang et al (60) showed that 
breast cancer (BC) anti‑estrogen resistance 1 and RBBP4 can 
form a complex, be recruited to chromatin, and jointly occupy 
the promoter regions of some DNA repair genes, and promote 
DNA damage repair. Similarly, RBBP4/7 specifically interact 
with the C‑terminal domain of BC type 1 susceptibility 

protein (BRCA1) and inhibit its transactivation activity (61). 
The association between BRCA1 and RBBP7 is disrupted in 
cells treated with DNA‑damaging agents (62). Therefore, the 
interaction between RBBP4/7 and BRCA1 might be the key to 
regulating DNA damage repair.

Li et al (63) demonstrated that RBBP4 disruption results 
in heightened DNA damage and apoptosis in glioblastoma 
(GBM) cells post‑temozolomide (TMZ) and radiotherapy. 
Additionally, in MCF10AT3B cells, which are neoplastigenic 
breast epithelial cells derived from a model of human prolif‑
erative breast disease, high levels of RBBP7 might induce 
the growth arrest‑ and DNA damage‑induced (GADD) gene, 
GADD45 (64). Consequently, aberrant expression of RBBP4/7 
has implications for the DNA damage repair response.

In summary, RBBP4/7 serve a pivotal role in DNA damage 
repair and gene regulation, particularly in collaboration with 
BRCA1. Their interaction with BRCA1 facilitates DNA repair, 
and aberrant expression may affect this response, leading to 
the accumulation of DNA damage, as cell cycle progression 
and increased carcinogenic risk (Fig. 4). The complexity of 
these interactions warrants further investigation.

The role of RBBP4/7 in cell development, differentiation, matu‑
ration and senescence. In mouse oocytes, RBBP4 is crucial for 
bipolar spindle formation, and its deficiency can lead to mitotic 

Figure 3. Mechanism of RBBP4/7 in chromatin remodeling. (A) Deacetylation: RBBP4/7 interacts with the tails of histones H3 and H4, promoting the 
deacetylase activity of the HDAC complex, resulting in the removal of acetyl groups from H3/H4. This leads to chromatin compaction, preventing gene 
promoter transcription and inhibiting gene expression. (B) Methylation: In PRC2, RBBP4 recruits SUZ12 to PRC2 target sites. The EZH2 subunit serves as the 
methyltransferase active center, performing primary, secondary and tertiary methylation on the 27th lysine of histone H3, resulting in H3K27me3 formation. 
EED binds to the H3K27me3 mark and further enhances the methyltransferase activity of EZH2. PRC2‑mediated methylation induces chromatin compaction, 
limiting the binding of transcription factors and RNA polymerases, thus enabling gene silencing. RBBP, RB binding protein.
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abnormalities (49), suggesting its importance in cell division, 
a fundamental process of cell growth. RBBP7 is strongly 
expressed in the kidneys and brain from embryonic day 9.5 (65), 
regulating Kisspeptin‑1 expression to participate in reproduc‑
tive development (66). Giri et al (67) revealed that RBBP7 can 
be suppressed in relation to Ras‑associated cell proliferation 
through stabilization by small ubiquitin like modifier 1.

RBBP4 is indispensable in heterochromatin assembly 
and serves as a crucial barrier in inducing cell fate transition 
from pluripotency to totipotency. Ping et al (68) demonstrated 
that the deletion of RBBP4 enhances the transition of mouse 
embryonic stem cells to trophectoderm cells. In the NuRD 
complex, RBBP4/7 and MTA interact with friend of GATA 
protein 2 (FOG‑2) and are involved in FOG‑2‑mediated 
inhibition of GATA binding protein 4 activity, preventing the 
aberrant cell differentiation that leads to cardiac malforma‑
tions (69). Moreover, the RBBP4 homolog DjRbAp48 in 
planarians (Dugesia japonica) regulates stem cell differentia‑
tion (70). In addition, notable discoveries have been made in 
the study of RBBP7. RBBP7 is involved in regulating histone 
acetylation and the expression of cyclin D3 in post‑implantation 
trophoblast matrix cells (71), and it interacts with the preg‑
nancy‑induced non‑coding RNA, inhibiting the differentiation 
of alveolar cells during pregnancy (72). Xin et al (73) showed 
that RBBP4/7 may be indirectly involved in the differentia‑
tion process of bone marrow cells by affecting the expression 
of the long noncoding RNA HOTAIRM1. Finally, in kidney 
development, RBBP7, as a target gene of the transcription 
factor Wilms tumor 1, exhibits decreased expression, reflecting 

podocyte dedifferentiation (74). These data suggested that 
RBBP4/7 may have a key role in cell differentiation processes.

During cell growth, RBBP4 influences cell morphology 
and cytoskeleton organization by enhancing K‑Ras activity 
and mitogen‑activated protein kinase signaling (75). 
Gasca et al (76) proposed that RBBP7 is involved in the matu‑
ration of oocytes. Likewise, RBBP7 also contributes to histone 
deacetylation during oocyte maturation (77). By contrast, 
Guan et al (78) showed that RBBP7 has strong growth inhibi‑
tory activity in the developing kidney and gonads. In summary, 
RBBP4/7 play diverse roles in cell maturation, influencing cell 
morphology, oocyte maturation and organ growth.

In aging human fibroblasts, a decrease in RBBP4 expression 
leads to chromatin defects (79). Concurrently, Hunt et al (80) 
demonstrated that ubiquitin protein ligase E3 component 
N‑recognin 4 deficiency prevents skeletal muscle cell aging 
and atrophy by reducing the ubiquitination and degrada‑
tion of the HAT1/RBBP4/RBBP7 histone‑binding complex. 
Additionally, decreased RBBP4 expression in the aging hippo‑
campus is associated with memory loss (81). Tsujii et al (82) 
further illustrated that RBBP4 knockdown might inhibit 
nuclear transport and induce cellular aging. Furthermore, 
RBBP7 has been reported to be consistently upregulated in 
the lobules of degenerated mammary glands and to be associ‑
ated with hormone induction (83). Collectively, RBBP4/7 are 
closely associated with cellular senescence, affecting chro‑
matin defects, skeletal muscle cell aging and memory loss.

In summary, RBBP4/7 exhibit diverse functions throughout 
cell growth and development, impacting essential cellular 

Figure 4. RBBP4/7 participate in the DNA damage response. As a subunit of the NuRD complex, RBBP4/7 facilitate DNA repair, especially in collaboration 
with BRCA1 at chromatin promoter regions. Disruption of RBBP4/7 can lead to accumulated DNA damage during the cell cycle, potentially giving rise to 
cancer cells. RBBP, RB binding protein.
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processes and providing valuable insights into cellular differ‑
entiation, aging and chromatin regulation.

4. Expression and function of RBBP4/7 in diseases

Aberrant expression of RBBP4/7 has been observed in several 
diseases. The present review summarizes the various diseases 
regulated by RBBP4/7 (Fig. 5), the clinical characteristics 
of RBBP4 and RBBP7 in human diseases (Tables I and II), 
and their roles and mechanisms in disease development 
(Tables III and IV).

Respiratory system
Lung cancer (LC). RBBP4 is associated with genetic suscep‑
tibility to LC (84). Elevated RBBP4 expression in non‑small 
cell LC (NSCLC) tissues amplifies cell proliferation and 
invasion, and is concomitantly linked to an adverse clinical 
outcome (13,84). RBBP4 is also increased in cisplatin‑resistant 
NSCLC, affecting drug resistance (85), and is associated 
with enhanced DNA damage sensitivity and repair pathway 
activity (86). Additionally, in lung adenocarcinoma (LUAD) 
cells, RBBP4 interacts with chromobox homolog 3, which 
is found to be upregulated in current smokers with LUAD, 

thereby promoting LUAD progression (87). Thus, RBBP4 
could be a potential biomarker or therapeutic target for LUAD 
recurrence and prognosis post‑platinum treatment.

Research has revealed that the expression levels of RBBP7 
in NSCLC are higher than those in normal lung tissues, and this 
elevated expression is associated with distant metastasis, poor 
prognosis and tumor immune response in NSCLC, serving as 
a predictor for the recurrence of early‑stage NSCLC (88‑90).

Despite these significant findings, the understanding of 
the functions of RBBP4/7 in LC is limited and more in‑depth 
research is needed to develop new treatment strategies.

Malignant pleural mesothelioma (MPM). MPM has an 
average survival of 1 year post‑diagnosis, urgently necessi‑
tating improved treatment methods (91). Vavougios et al (92) 
showed that RBBP4/7 interact with Parkinson disease protein 7 
and are upregulated in an array of 18 different sarcoma types. 
However, the mechanism by which RBBP4/7 functions in 
MPM remains unknown.

Nervous system
GBM and other brain tumors. RBBP4 plays an indispens‑
able role in the disease development of GBM (93), with its 
mRNA expression universally upregulated in GBM tissues 

Figure 5. Human diseases associated with RBBP4/7. The diseases associated with RBBP4/7 are distributed across multiple systems, including the respiratory 
system, nervous system, digestive system, endocrine system, hematological system, reproductive system and urinary system. RBBP4/7 are also associated with 
infectious diseases. RBBP, RB binding protein.
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Table I. Expression of RB binding protein 4 in human diseases and relative clinical significance.

First author, year Disease type Expression Samples Clinical characteristics (Refs.)

Gao M, 2023 NSCLC Upregulated LUAD: 54 adjacent normal,  Poor prognosis (84)
   497 tumor tissues; LUSC: 49 
   adjacent normal, 502 tumor 
   tissues
Cao X, 2021 NSCLC Upregulated / / (13)
Hao D, 2023 NSCLC Upregulated 54 NSCLC tissues and 54 / (85)
   adjacent normal tissues
Wang N, 2021 NSCLC / mRNA expression profiles of Poor prognosis, tumor (86)
   43 patients with NSCLC recurrence
Vavougios GD,  MPM Upregulated 40 MPM tissues and 9 control / (92)
2015   tissues (5 pleura tissues and 
   4 lung tissues)
Shou J, 2021 GBM Upregulated 33 GBM tissues and adjacent / (94)
   normal tissues
Li J, 2023 GBM Upregulated / Poor prognosis (63)
Li D, 2018 NB Upregulated Tissues from 42 primary Poor prognosis, (97)
   cases of NB tumor stage, survival rate
Pavlopoulos E,  Age‑related Downregulated Entorhinal cortex and DG Memory loss (81)
2013 memory loss  of 10 healthy human brains, 
   mouse DG tissues
Kosmidis S, 2018 Discriminative  Downregulated Mouse DG tissues Discriminative memory,  (100)
   memory deficits spatial memory
Khateb A, 2021 AML Upregulated / Overall survival, tumor (106)
    development
Casas S, 2003 AML Upregulated Bone marrow aspirate of / (107)
   15 patients with AML and 
   5 healthy individuals
Sakhinia E, 2005 AML Upregulated Bone marrow aspirate of AML remission (108)
   26 patients with AML, 
   12 patients with AML in 
   remission and 9 individuals 
   with morphologically normal 
   bone marrow
Sakhinia E, 2005 ALL Upregulated Bone marrow aspirate of / (108)
   5 patients with ALL and 
   9 individuals with 
   morphologically normal 
   bone marrow
Li YD, 2019 CRC Upregulated Colon cancer tissues, para‑colon Haptic metastases,  (117)
   cancer tissues and haptic  poor prognosis
   metastatic cancer tissues 
   from 80 patients with CRC
Ding L, 2019 GC Upregulated 142 GC tissues and / (120)
   adjacent normal tissues
Song H, 2004 HCC Upregulated Tissue from a patient with / (124)
   primary HCC
Zhi S, 2022 NAFLD Downregulated Liver tissues of patients / (130)
   with NAFLD
Chen L, 2022 ESCC Upregulated ESCC tissues and / (131)
   corresponding normal 
   tissues from 111 patients
Pacifico F, 2007 TC Upregulated / / (135)
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where it acts as an oncogene to promote GBM malignancy, 
countering the tumor‑suppressive effects of microRNA 
(miR)‑885‑5p (94). In GBM cells, the RBBP4/p300 complex 
governs pro‑survival genes and influences the responsive‑
ness to TMZ (95). This suggests that disrupting RBBP4 or 
p300 might enhance sensitivity to TMZ. In addition, RBBP4 
increases TMZ resistance by regulating the expression of 
the MRN complex (MRE11 homolog, RAD50 double‑strand 
break repair protein, and nibrin), thereby reducing sensitivity 
to radiotherapy and TMZ (63). Therefore, RBBP4 potentially 
enhances cancer progression or drug resistance through DNA 
repair and might be considered a new therapeutic target for 
future GBM treatment.

RBBP4 is required during brain development, and 
RBBP4 is upregulated in RB1‑mutated embryonic brain 
tumors, serving as a potential target for inducing apoptosis in 
RB1‑mutated brain cancer cells (96). Additionally, in neuro‑
blastoma, RBBP4 is upregulated and is associated with poor 
patient prognosis (97).

By contrast, limited research has been conducted on the 
involvement of RBBP7 in GBM. Notably, Crea et al (98) 
explored the Oncomine database and observed an upregula‑
tion of RBBP7 in anaplastic astrocytoma and anaplastic 
oligodendroglioma.

Age‑related memory loss. Loss of RBBP4 is key to 
age‑related memory decline. Its expression in human and 
mouse brains declines with age, affecting memory forma‑
tion (81). Another study demonstrated that RBBP4 regulates 
the expression of brain‑derived neurotrophic factor and G 
protein‑coupled receptor 158, key components of the mouse 
hippocampal osteocalcin (OCN) signaling pathway (99). 
Inhibition of RBBP4 disrupts the cognitive benefits of OCN and 
leads to discriminative memory deficits (100). Furthermore, 
certain genetic variants in a cAMP element binding 
protein‑dependent histone acetylation pathway, associated 

with RBBP4, influence memory performance in cognitively 
healthy elderly individuals (101). Therefore, RBBP4 could 
serve as a potential therapeutic target for age‑related memory 
loss.

Current research has explored RBBP4/7 as therapeutic 
targets to address age‑related memory loss. The functional 
role of RBBP4 in Alzheimer's disease (AD) might be influ‑
enced by the instability of the RBBP4‑FOG1 complex (102). 
Huang et al (103) identified three traditional Chinese 
medicine compounds (bittersweet alkaloid ii, eicosanedioic 
acid and perivine), which could enhance the stability of the 
RBBP4‑FOG1 complex, offering potential therapeutic benefits 
for AD. However, another study showed that RBBP4/7 did not 
contribute to the neuroprotective effects of green tea polyphe‑
nols (104). Thus, the mechanism of RBBP4/7 as a target for 
age‑related memory loss requires further investigation.

Dave et al (105) discovered that RBBP7 mRNA expression 
is diminished in AD cases, with significant negative correla‑
tions with the Consortium to Establish a Registry for AD and 
Braak stage. Moreover, this previous study revealed that high 
RBBP7 expression mitigates tau acetylation and phosphoryla‑
tion, thereby preventing tau pathologies (105).

In summary, RBBP4/7 play crucial roles in age‑related 
memory deficits, and present promising therapeutic targets for 
future interventions in cognitive aging and associated diseases.

Hematological (blood and bone marrow) system diseases
Acute myeloid leukemia (AML). In AML, elevated RBBP4 
expression is linked to poorer survival and disease progres‑
sion (106‑108). Moreover, AML primary blasts with lower 
levels of ring finger protein 5/RBBP4 have demonstrated 
increased sensitivity to the HDAC inhibitor FK228. These 
findings suggest that the abundance of RBBP4 may serve as 
valuable marker to stratify patients with AML who might 
benefit from treatment with HDAC inhibitors (106). However, 

Table I. Continued.

First author, year Disease type Expression Samples Clinical characteristics (Refs.)

Guo Q, 2020 BC Upregulated 240 BC tumor tissues Overall survival, lymph (141)
    node metastasis, 
    tumor development
Gong X, 2020 BC Upregulated / / (142)
Zheng Z, 2022 TNBC Upregulated / / (144)
Barreiro‑Alonso PCa Upregulated 494 prostate Progression‑free survival (160)
A, 2021   adenocarcinoma tissues
Lohavanichbutr OSCC Upregulated 124 OSCC patient tissues and Radiosensitivity,  (174)
P, 2009    45 normal tissues chemosensitivity
Wurlitzer M,  HPV‑positive Upregulated 8 HPV‑positive and / (175)
2020 OPSCC  9 HPV‑negative 
   oropharyngeal tumor tissues

NSCLC, non‑small cell lung cancer; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MPM, malignant pleural mesothe‑
lioma; GBM, glioblastoma; NB, neuroblastoma; DG, dentate gyrus; AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; CRC, 
colorectal cancer; GC, gastric cancer; HCC, hepatocellular carcinoma; NAFLD, non‑alcoholic fatty liver disease; ESCC, esophageal squamous 
cell carcinoma; TC, thyroid cancer; BC, breast cancer; TNBC, triple‑negative BC; PCa, prostate cancer; OSCC, oral squamous cell carcinoma; 
HPV, human papillomavirus; OPSCC, oropharyngeal squamous cell carcinoma; / indicates data not specified or applicable in the sources.
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Table Ⅱ. Expression of RB binding protein 7 in human diseases and relative clinical significance.

First author, year Disease type Expression Samples Clinical characteristics (Refs.)

Wang CL, 2009 NSCLC Upregulated 154 lung cancer tissues and Distant metastasis (90)
   adjacent normal tissues
Wang H, 2022 LUAD Upregulated 334 LUAD samples and Relapse‑free survival,  (89)
   59 adjacent normal lung  poor prognosis, TNM
   samples, and 23 cancer tissues stage
   and adjacent normal tissues 
   from patients with LUAD
Zhu H, 2022 LUAD / / Poor prognosis (88)
Vavougios GD,  MPM Upregulated 40 MPM tissues and / (92)
2015   9 control tissues (5 pleura 
   tissues and 4 lung tissues)
Crea F, 2010 Anaplastic Upregulated / / (98)
 astrocytoma
Crea F, 2010 Anaplastic Upregulated / / (98)
 oligodendroglioma
Dave N, 2021 AD Downregulated 89 AD brain tissues and CERAD (neuritic plaque (105)
   98 normal brain tissues density), Braak stage, 
    brain weight
Hu SY, 2005 AL Upregulated Bone marrow cells from / (113)
   98 patients with AL, 
   5 patients with relapsing 
   AL, 8 patients with 
   CR‑AL and 
   32 healthy individuals
Hu SY, 2005 CML‑BC Upregulated Bone marrow cells Tumor progression (113)
   from 13 patients with 
   CML‑CP,   patients with
   CML‑BC and 
   32 healthy individuals
Yu N, 2018 ESCC Upregulated 126 ESCC tissues,  Poor differentiation,  (14)
   72 of which had adjacent lymph node invasion
   non‑neoplastic tissues and progression, 
    pathological TNM 
    stage, poor prognosis, 
    overall survival
Wang R, 2022 EC Upregulated 182 EC tissues and Overall survival,  (133)
   286 normal tissues relapse‑free survival, 
    tumor stage
Thakur A, 2007 BC Upregulated 20 breast cancer / (150)
   and adjacent benign 
   or normal breast tissue
Ebata A, 2012 pDCIS Upregulated 53 pDCIS and 27 IDC tissues / (151)
Barreiro‑Alonso PCa Upregulated 494 prostate Progression‑free (160)
A, 2021   adenocarcinoma tissues survival
Riera‑Escamilla Azoospermia / X‑linked protein‑coding Spermatogenesis (163)
A, 2022   genes in 2,354 men with 
   idiopathic NOA/
   cryptozoospermia
Yeh HH, 2015 Bladder cancer Upregulated Tissues from 4 patients  / (166)
   with clinical bladder cancer
Wang Y, 2022 BKVN Upregulated / Immune cell infiltration,  (167)
    graft rejection, 
    diagnosis
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to the best of our knowledge, there is no currently research 
indicating an association between RBBP7 and AML.

Multiple myeloma (MM). Gao et al (109) showed that 
RBBP4 is a core gene in MM, and its dysregulation is evident 
in the epigenetic modifications of MM. Thus, RBBP4 emerges 
as a potential focal point in MM research, providing promising 
avenues to understand the pathogenesis of MM and develop 
more effective therapeutic strategies. However, to the best of 
our knowledge, no studies have revealed a role for RBBP7 in 
MM.

Chronic myeloid leukemia (CML). CML is a malignant 
hematological disorder. It has been shown that BMI1 (encoding 
B lymphoma Mo‑MLV insertion region 1 homolog) transcript 
levels are significantly increased in CML cells, and the expres‑
sion of RBBP4 is decreased after BMI1 silencing (110). In 
addition, RBBP7 in K562 leukemic cells inhibits growth by 
inducing IGFBP7 expression (111). These findings revealed 
that RBBP4/7 might serve an important role in the biological 
process of CML. However, the expression levels of RBBP7 
were significantly elevated in patients with acute leukemia 
and CML in blast crisis compared with healthy donors and 
those with CML in chronic phase, indicating that it might be 
involved in the occurrence of leukemia (112,113). In addition, 
RBBP7 overexpression slows growth in the U937 leukemia 
cell line (114).

Osteosarcoma. Osteosarcoma originates from primitive 
mesenchymal cells in the bone, rarely in soft tissue, and if 
untreated, can lead to local and often metastatic progres‑
sion (115). Zhang et al (116) showed that the inducible 
expression of RBBP7 can activate the c‑Jun N‑terminal kinase 
signaling pathway, and trigger apoptosis in Saos‑2 osteosar‑
coma cells, while also strongly suppressing the formation 
of tumor grafts in nude mice and significantly reducing the 
growth of established osteosarcoma xenografts.

Digestive system
CRC. RBBP4 has been identified as a key factor in CRC, with 
studies showing its upregulation in colon cancer tissues, and 
linking increased RBBP4 expression to poor prognosis and 
liver metastasis (117). Reducing RBBP4 levels can hinder 
the growth and migration, and increase the apoptosis of 
HCT116 and SW620 colon cancer cells, and also suppress the 
Wnt/β‑catenin pathway (12). Concurrently, knocking down 

RBBP4 also inhibits H3K27ac acetylation and HSPB8 gene 
transcription (118). Another study demonstrated that RBBP4 
is a key target of protopanaxadiol (PPD), a major ginseng 
metabolite (119), suggesting its potential as a new diagnostic 
and therapeutic target for CRC.

RBBP7 has been reported to form a trimeric complex with 
long non‑coding RNA FIT and p53, enhancing p53‑mediated 
FAS gene transcription, which promotes CRC cell apop‑
tosis (15). This suggests the apoptosis‑inducing role of RBBP7 
in CRC, which differs from the role of RBBP4. However, the 
precise expression and mechanism of RBBP7 in CRC warrant 
further investigation.

Gastric cancer (GC). Ding et al (120) revealed that the 
expression of RBBP4 is increased in GC tissues, and knocking 
down RBBP4 can significantly inhibit GC cell proliferation, 
migration and invasion, and promote cell apoptosis. Radiation 
can also increase RBBP4 expression in AGS GC cells, leading 
to G2 phase arrest. Moreover, RBBP4 enhances the radiosensi‑
tivity of these cells by inhibiting the PI3K/Akt pathway (121). 
These results underscore the potential of RBBP4 as a promising 
target for future gene therapy interventions in the treatment of 
GC.

Currently, research on the role of RBBP7 in GC is limited. 
Src‑suppressed C‑kinase substrate (SSeCKS), a crucial 
substrate for protein kinase C, is significantly downregulated 
in GC (122). Liu et al (123) demonstrated that the re‑expression 
of SSeCKS induces RBBP7, suggesting a potential connection. 
However, the specific function and significance of RBBP7 in 
GC remains to be further determined.

Hepatocellular carcinoma (HCC). It has been shown 
that RBBP4 is highly expressed in liver tumor tissues, and is 
associated with clinical severity and disease prognosis (124). 
In HCC cells, Liu et al (125) identified that RBBP4 interacts 
with the N‑terminal peptide of Sal‑like protein 4 (SALL4), 
contributing to the silencing of tumor suppressor genes, such 
as PTEN. Furthermore, a potent SALL4 peptide antagonist 
(FFW) targeting RBBP4 significantly inhibits HCC cell 
growth. These studies have shown that RBBP4 plays a role in 
promoting HCC, which is expected to be a potential target for 
future HCC treatment.

By contrast, Li et al (126) observed a decrease in RBBP4 
expression in HCC tissues; it was revealed that RBBP4 knock‑
down may enhance the self‑renewal and tumorigenic potential 

Table Ⅱ. Continued.

First author, year Disease type Expression Samples Clinical characteristics (Refs.)

Wurlitzer M,  HPV‑positive Upregulated 8 HPV‑positive / (175)
2020 OPSCC  and 9 HPV‑negative 
   oropharyngeal tumor 
   tissues

NSCLC, non‑small cell lung cancer; LUAD, lung adenocarcinoma; TNM, tumor‑node‑metastasis; MPM, malignant pleural mesothelioma; 
AD, Alzheimer's disease; CERAD, Consortium to Establish a Registry for AD; AL, acute leukemia; BM, bone marrow; CR‑AL, complete 
remission acute leukemia; CML‑CP, chronic myeloid leukemia in chronic phase; CML‑BC, chronic myeloid leukemia in blast crisis; ESCC, 
esophageal squamous cell carcinoma; EC, esophageal cancer; BC, breast cancer; pDCIS, pure ductal carcinoma in situ; IDC, invasive ductal 
carcinoma; PCa, prostate cancer; NOA, non‑obstructive azoospermia; BKVN, BK virus‑associated nephropathy; HPV, human papillomavirus; 
OPSCC, oropharyngeal squamous cell carcinoma; / indicates data not specified or applicable in the sources.
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of epithelial cell adhesion molecule‑positive liver tumor‑initi‑
ating cells, suggesting that RBBP4 serves as a downstream 
target of miR‑429. Furthermore, epigallocatechin gallate 
(EGCG) can reverse multidrug resistance (MDR) in HCC, 
and RBBP4 has been reported to be significantly upregulated 
after EGCG treatment (127), suggesting that RBBP4 could be 
a potential anti‑MDR target in HCC.

Nonalcoholic fatty liver disease. Hepatic steatosis, crucial 
in nonalcoholic steatohepatitis development, elevates the risk 
of cirrhosis and HCC (128). Within the NuRF complex, the 
subunit RBBP4 assumes a role in the regulation of lipid droplet 
size by transcriptionally suppressing target genes (129). 
Zhi et al (130) suggested that RBBP4 exerts a favorable influ‑
ence on liver cell steatosis by promoting the expression of 
genes associated with fatty acid β‑oxidation. These findings 
illustrate a protective role of RBBP4 in the context of hepatic 
steatosis.

Esophageal cancer (EC) and hypopharyngeal carcinoma. 
Research has shown that RBBP4 is upregulated in ESCC 
and promotes the epithelial‑mesenchymal transition (EMT) 
process (131). By contrast, Bai et al (132) demonstrated that 
in hypopharyngeal carcinoma, a distinct squamous cell 
carcinoma impacting the upper aerodigestive tract, RBBP4 
overexpression curtails proliferation, colony formation and 
tumorigenesis in the FaDu hypopharyngeal carcinoma cell 
line. The role of RBBP4 in hypopharyngeal carcinoma growth 
appears linked to its modulation of tumor suppressors. This 
contrasting role of RBBP4, from facilitating tumor progression 
in ESCC to inhibiting growth in hypopharyngeal carcinoma, 
demonstrates its functional variability across different types of 
cancer, highlighting its potential complexity as a therapeutic 
target.

Yu et al (14) observed that higher RBBP7 expression in 
ESCC tissues is correlated with poor differentiation, advanced 
lymph node involvement, higher tumor‑node‑metastasis stage, 
reduced survival, and increased cell invasion and migra‑
tion. Mechanistically, hypoxia can induce high expression 
of RBBP7, which in turn upregulates CDK4 expression and 
promotes tumor progression (133). Furthermore, RBBP7 is 
upregulated in EC. As a target of miR‑384, RBBP7 mRNA 
levels are elevated by circ_0006168 through its interaction 
with miR‑384. This, in turn, promotes cell proliferation, 
migration, invasion and glycolysis in EC (134).

Collectively, RBBP4/7 are crucial in EC progression and 
prognosis, with their complex molecular interactions making 
them promising for future therapeutic and diagnostic develop‑
ments in esophageal oncology.

Endocrine system
Thyroid cancer (TC). Pacifico et al (135) detected increased 
RBBP4 expression in primary human TC via immunohisto‑
chemical analysis, particularly in undifferentiated TC samples 
and cell lines. In addition, RBBP4 knockdown was shown to 
reduce FRO anaplastic thyroid carcinoma cell colony forma‑
tion, suggesting RBBP4 as a target of nuclear factor (NF)‑κB 
and a potential therapeutic target for NF‑κB‑dependent TC. 
Therefore, RBBP4 might be a potential target for TC therapy, 
particularly for NF‑κB‑dependent cases.

Postmenopausal osteoporosis (PMOP) and other 
estrogen‑influenced conditions. PMOP represents a significant 
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global public health concern. RBBP4 expression is elevated 
in estrogen‑deficient rats and patients with PMOP, decreasing 
after treatment with Liuwei Dihuang pills (136,137). Moreover, 
RBBP4 has been reported to be upregulated in the blood of 
patients with PMOP, suggesting that it could serve as a potential 
diagnostic biomarker of PMOP (138). The interaction between 
RBBP4 and estrogen receptor 1 (ESR1) is believed to serve a 
crucial role in the pathogenesis of PMOP (138). In summary, 
RBBP4 serves as a potential biomarker for PMOP diagnosis 
and its interaction with ESR1 suggests a fundamental mecha‑
nism in PMOP pathogenesis.

Additionally, estrogen deficiency‑induced overexpression 
of RBBP4 triggers p53‑mediated apoptosis in exocrine cells, 
implying a link to autoimmune exocrine disorders in post‑
menopausal women (139,140). Therefore, RBBP4 represents 
a novel immunotherapeutic target for preventing the develop‑
ment of sex‑based autoimmune exocrine disorders.

Reproductive system
BC. RBBP4 is highly expressed in BC and is associated with 
poorer overall survival and a greater likelihood of lymph node 
metastasis (141). Knockdown of RBBP4 inhibits the prolifera‑
tion, migration and invasion of BC cells, while affecting the 
transcription of tumor‑related genes, such as microfibril‑asso‑
ciated protein 2, which is activated via the interaction between 
RBBP4 and the long noncoding RNA LCPAT1 (142). Another 
study showed that RBBP4/7 interact with DNA‑bound estrogen 
receptor α to alter the expression of estrogen‑responsive genes 
in MCF‑7 cells (143). Thus, RBBP4 is implicated in BC 
progression, in which it influences survival, metastasis and 
estrogen‑responsive gene expression.

RBBP4 expression has also been shown to be significantly 
elevated in triple‑negative BC (TNBC) cells and tissues; and 
its knockdown markedly inhibits TNBC cell proliferation, 
invasion and migration, and concurrently downregulates EMT 
regulatory activities (144). In addition, Moody et al (145) 
demonstrated that BCL11 transcription factor A (BCL11A), 
which possesses the ability to promote BC progression, can 
interact with RBBP4/7; therefore, targeting RBBP4‑BCL11A 
binding may have therapeutic potential.

The role of RBBP7 in BC appears complex and contra‑
dictory. Zhang et al (146) observed decreased expression 
levels of RBBP7 in BC cell lines, and its dysregulation was 
shown to contribute to BC tumorigenesis. Further research 
has revealed that RBBP7 is related to estrogen regulation 
and may affect the early development of BC (64,147). As 
a component of the Mi2/NuRD complex, RBBP7 regulates 
TWIST‑mediated repression of E‑cadherin expression 
and inhibits BC cell metastasis (148). By contrast, Li and 
Wang (149) found that recombinant RBBP7 induces EMT 
and enhances mammary epithelial cell migration. Thus, the 
mechanism of RBBP7 in BC progression and metastasis 
requires further investigation.

Notably, in contrast to the observation of Zhang et al (146) 
of decreased RBBP7 expression in BC, Thakur et al (150) 
showed that RBBP7 expression was upregulated in 79% of BC 
cases and its expression was positively correlated with malig‑
nancy. RBBP7 may also be involved in the pathogenesis of 
estrogen receptor‑positive pure ductal carcinoma in situ (151). 
In addition, Mieczkowska et al (152) found that RBBP7 was 

downregulated in parental G‑2 cells from the WAP‑T trans‑
genic breast cancer line after surviving traditional cytotoxic 
combination therapy, suggesting that RBBP7 might be consid‑
ered a potential therapeutic target for BC in the future.

In summary, both RBBP4 and RBBP7 have demonstrated 
significant roles in the progression, metastasis and therapeutic 
potentialities of BC; however, their precise mechanisms and 
interactions in various BC subtypes warrant deeper explora‑
tion.

Cervical cancer. Kong et al (153) observed that RBBP4 
overexpression inhibits cervical cancer growth and affects 
human papillomavirus (HPV)16 transformation by regulating 
tumor suppressors and oncogenes. Notably, 5‑aminole‑vulinic 
acid photodynamic therapy (ALA‑PDT), an effective treat‑
ment for HPV‑related conditions, has been reported to elevate 
RBBP4 expression in HPV16 immortalized cervical epithelial 
H8 cells (154). A subsequent decrease in RBBP4 can mitigate 
the inhibitory effects of ALA‑PDT‑induced cell proliferation 
and apoptosis in cervical cancer cells (155). These studies 
demonstrated that RBBP4 may function as a tumor suppressor 
in cervical cancer and could serve as a promising therapeutic 
target for future cervical cancer intervention.

However, studies have also indicated that RBBP4 
promotes cervical cancer, influencing EMT and radiotherapy 
outcomes (156,157). This implicates RBBP4 as a prospective 
target to boost radiotherapeutic outcomes in patients with 
cervical cancer. In addition, RBBP7 can be recruited by NK6 
homeobox 1, thereby inhibiting the invasive ability of cervical 
cancer cells (158).

In conclusion, RBBP4/7 have complex roles in cervical 
cancer and may be potential therapeutic targets. However, the 
role of RBBP4 in cervical cancer remains controversial, and its 
mechanism requires further study.

Prostate cancer. Cai et al (159) showed that there is a 
physical interaction between the tumor suppressor gene EAF2 
(encoding ELL associated factor 2) and RBBP4/7, where their 
overexpression induces cell death in LNCaP prostate cancer 
cells. High RBBP4/7 expression in prostate adenocarcinoma is 
also linked to shorter progression‑free survival, with RBBP7 
interacting with high mobility group box 1 to regulate RNA 
processing (160). Furthermore, overexpression of RBBP7 
suppresses SLUG1/EMT in DU145 cells and exerts tumor 
suppressive functions in presence of hepatocyte nuclear factor 
1β (161). Thus, RBBP4/7 are pivotal in prostate cancer progres‑
sion and potential therapeutic targets.

Azoospermia or cryptozoospermia. Male infertility, 
affecting ~7% of men in the general population, is often due 
to factors such as azoospermia or cryptozoospermia (162). 
The X chromosome is vital for male reproductive health. 
Riera‑Escamilla et al (163) linked RBBP7 mutations to 
early spermatogenic failure in an analysis of 2,354 men with 
azoospermia/cryptozoospermia, revealing that these mutations 
were more prevalent in this infertile group compared with in 
control individuals with normozoospermia. RBBP7 forms the 
CRL4B‑RBBP7 complex with CUL4B (encoded by another 
mutated gene found in infertile men), which contributes to the 
degradation of HUWE1 and is associated with non‑obstructive 
azoospermia (164). In conclusion, RBBP7 has a central role in 
male infertility, highlighting the importance of genetic factors 
in reproductive health.



INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE  53:  48,  2024 17

Urinary system
Bladder cancer. Bladder cancer, affecting >440,000 indi‑
viduals annually worldwide (165), shows high RBBP7 
expression in specimens. Mechanistically, RBBP7 can bind 
to HDAC1 and specificity protein 1 (SP1), and then bind to 
the RECK (encoding reversion inducing cysteine rich protein 
with kazal motifs) promoter at the SP1 site, thereby inhibiting 
the expression of RECK, which in turn leads to matrix metal‑
loproteinase‑9 activation and metastasis, thereby participating 
in Ras‑induced experimental lung metastasis (166). Therefore, 
RBBP7 could be used as a therapeutic target for Ras‑related 
cancer; however, to the best of our knowledge, there are 
currently no studies on RBBP4 in bladder cancer.

BK virus‑associated kidney disease. Wang et al (167) 
demonstrated that RBBP7 is highly enriched in BK 
virus‑associated nephropathy (BKVN) tissues and is associ‑
ated with alterations in various immune cells, such as CD8 
naïve cells, induced regulatory T cells, neutrophils and CD8+ 
T cells. Furthermore, RBBP7 serves as a molecular biomarker 
for the precise diagnosis of BKVN, effectively distinguishing 
transplant rejection responses. Thus, targeting RBBP7 as a 
diagnostic tool may offer novel therapeutic and prognostic 
opportunities for BKVN in transplant recipients.

Renal cell carcinoma (RCC). Kim et al (168) showed that 
RBBP7 is highly expressed in the chromaffin subtype of RCC, 
but not in traditional RCC. Therefore, RBBP7 could be used as 
a candidate biomarker in RCC, and its existence and expression 
patterns might be related to the pathological characteristics of 
RCC subtypes, providing a novel direction for the diagnosis 
and treatment of RCC.

Infectious diseases
HIV infection. Wang et al (169) reported increased RBBP4 
expression following HIV‑1 infection in cell culture models, with 
RBBP4 knockdown enhancing HIV infection and viral produc‑
tion. RBBP4 suppresses HIV‑1 transcriptionally by binding to its 
long terminal repeats, recruiting nuclear receptor subfamily 2 F 
group member 1 and HDAC1/2, leading to H3 deacetylation and 
replication control (170). Similarly, Biswas et al (171) observed 
elevated RBBP4 levels in HIV‑2‑infected monocyte‑derived 
macrophages, and Xu et al (172) reported that thieno[3,4‑d]
pyrimidine treatment in infected cells increases RBBP4 
levels and activates the NF‑κB pathway, suppressing HIV‑1. 
Collectively, these findings demonstrate a critical role for 
RBBP4 in the regulation of HIV infection and suggest its poten‑
tial as a therapeutic target for HIV management.

HPV infection. Oral squamous cell carcinoma (OSCC) and 
oropharyngeal squamous cell carcinoma (OPSCC) constitute 
a major global public health burden, and there is an associa‑
tion between infection with high‑risk types of HPV and OSCC 
risk (173). Lohavanichbutr et al (174) identified differential 
expression of RBBP4 in HPV‑positive vs. HPV‑negative 
oropharyngeal cancer. Wurlitzer et al (175) performed a mass 
spectrometric comparison of eight HPV‑positive and nine 
HPV‑negative OPSCC cases, and found that RBBP4/7 was 
expressed at higher levels in HPV‑positive OPSCC.

In cervical cancer, a major HPV‑related cancer, RBBP4 
mediates the transforming activity of HPV16 (153) and is 
upregulated by ALA‑PDT in HPV16 immortalized cervical 
cells (154). These findings indicated that RBBP4 plays a key 

role in HPV infection; however, the specific mechanism still 
needs further exploration. Moreover, current research on the 
role of RBBP7 in HPV infection is insufficient.

Plasmodium infection. Kaushik et al (176) discovered 
that the homologs of RBBP4/7 in Plasmodium falciparum 
(PfRBBP4/7, PF3D7_0110700) retain the β‑helical conforma‑
tion and binding interfaces, exhibit significant interspecies 
differences, and show stage‑specific expression in the asexual 
blood stages of the parasite, increasing from the ring stage to 
the schizont stage, and localizing in the nucleus. Furthermore, 
PfRBBP4/7 have been shown to interact with histone H4, 
suggesting their role in chromatin assembly and remodeling 
pathways in P. falciparum. As CAF‑1 family members, they 
show structural and functional consistency. PfRBBP4, central 
in malaria biology with 108 PPIs, emerges as a potential anti‑
malarial drug target (177). Thus, the function of PfRBBP4/7 
in P. falciparum illustrates their potential as targets to develop 
novel antimalarial interventions.

5. RBBP4/7 as potential targets for human disease 
treatment

In the realm of targeted therapy research focused on RBBP4/7, 
these proteins have demonstrated significant potential in the 
treatment of various diseases, particularly in modulating thera‑
peutic outcomes. For example, increased expression of RBBP4 
has been linked to mitigating lead‑induced neuronal apoptosis, 
suggesting a potential role in alleviating lead poisoning and 
related neurological disorders (178). Additionally, the interac‑
tion of RBBP4 with the efficacy of multiple drugs has been 
extensively studied, including its role in enhancing the sensi‑
tivity of GBM cells to TMZ (56,95), suppression of LC cell 
malignancy via ropivacaine by downregulating RBBP4 (179), 
and the identification of the circ‑0110498/miR‑1287‑5p/RBBP4 
axis as a novel target for overcoming cisplatin resistance in 
NSCLC (85). RBBP4 is also considered a potential target for 
treating CRC with PPD (119). In therapeutic contexts, RBBP4 
expression is significantly increased in cervical cancer cell 
lines treated with ALA‑PDT (155), and upregulation of RBBP4 
has been found to induce radiosensitivity in BC, melanoma 
and TNBC (180). Conversely, reduced levels of RBBP7 may 
be associated with survival rates and chemoresistance pheno‑
types in basal‑like BC (152).

PPIs play a pivotal role in cellular functions, and modulating 
PPIs offers a novel therapeutic avenue. It has been reported that 
blocking the interaction between BCL11A and RBBP4 reduces 
the cancer stem cell population in TNBC (145). Furthermore, 
compounds, such as bittersweet alkaloid II, may aid in AD 
treatment by stabilizing the RBBP4‑FOG1 complex (103). 
Additionally, peptides designed by Hart et al targeting the 
RBBP4/MTA1 interaction interface show potential as future 
therapeutic strategies for disrupting epigenetic regulation 
mechanisms in various types of cancer (181). Despite the 
potential of small molecules or peptides targeting RBBP4/7, 
challenges such as low oral bioavailability and poor in vivo 
stability remain, necessitating further research to overcome 
these obstacles.

Emerging research has consistently linked elevated 
RBBP4/7 expression to poorer prognosis across various 
cancer types (Table V), underscoring their pivotal role in 
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disease therapy. Despite the evident potential of RBBP4/7 in 
treating various diseases, the success of targeted strategies 
remains elusive, possibly due to the complex biological roles of 
RBBP4/7 and their involvement in multiple protein complexes. 
Future research should investigate the mechanisms of RBBP4/7 
to develop targeted and effective treatment approaches. This 
includes a deeper understanding of the specific roles of 
RBBP4/7 in different cell types and disease states, identifying 
the molecular networks interacting with RBBP4/7, studying 
their expression and functional variations across diseases, 
and validating therapeutic interventions targeting RBBP4/7 
in preclinical and clinical studies. Through these efforts, the 
scientific groundwork may be laid for novel treatment methods 
based on RBBP4/7, offering more personalized and effective 
therapeutic options for patients.

6. Conclusion and future perspectives

RBBP4/7 are conserved proteins ubiquitously present in 
various organisms, which function in chromatin modification 
and gene regulation across species. However, their specific 
structure, expression patterns and molecular mechanisms may 
differ depending on the organism. For example, in P. falci‑
parum, Drosophila, zebrafish and Saccharomyces cerevisiae, 
the structure of RBBP4 might resemble that in humans; 
however, there could be unique structural domains or adjust‑
ments (18,80,96,176). Moreover, in these organisms, RBBP4/7 
primarily function during developmental and reproductive 
stages. By contrast, in humans, RBBP4/7 are expressed across 
diverse cells and tissues, and are associated with cell cycle 
regulation and gene transcription.

As histone chaperones, RBBP4/7 regulate various cellular 
processes and are implicated in a variety of human diseases, 
thus the future of RBBP4/7 research is promising. However, 
the expression patterns of RBBP4/7 exhibit significant vari‑
ability in certain tumor types. This variability is attributed 
to the diverse roles of RBBP4/7 within multiple functional 
complexes, whose impact on tumorigenesis is intricately linked 
to the specific actions of these complexes, which vary with the 
cellular context and tumor type. In addition, research into gene 
mutations and DNA methylation abnormalities of RBBP4/7 in 
diseases remains limited, with mutations in RBBP7 identified 
only in cases of early spermatogenic failure (163). This under‑
scores an important area for further investigation. Further 
studies of the complex molecular functions of RBBP4/7 may 
improve the understanding of cellular processes and disease 
pathways, leading to the development of innovative therapies 
for a variety of human diseases and cancers. Furthermore, 
exploring RBBP4/7 as potential biomarkers could improve 
diagnostic accuracy, enabling early detection and personalized 
medicine approaches.
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