
Abstract. Compounds which induce toxicity through similar
mechanisms lead to characteristic gene expression patterns.
The concept that structurally similar compounds may have
similar biological profiles, the so-called generalized neigh-
borhood behavior, is less obvious to be demonstrated. We
screened 625 compounds from a fully combinatorial library
for their gene expression profiles in vitro over a selected
toxicity panel of 56 genes. We used the novel nanocapillary,
quantitative real-time PCR OpenArray™ technology that is
coupling outstanding analytical performance with the medium-
throughput ideal for such a sample-per-feature ratio. Applying
a hybrid clustering on the gene expression data, correlation
was analyzed between molecular scaffold and biological
fingerprint. Structurally highly dissimilar, but similarly
hepatotoxic compounds show similar fingerprint on our
toxicity panel, however compounds of the same scaffold and
of unknown biological effect do not always share similar
fingerprints. Out of 12 different scaffolds, 4 families show
non-correlating, uniform distribution among clusters whilst
8 families show neighborhood behavior of varying strength.
Structurally not similar compounds may have highly similar
biological activity, on the other hand, compounds of the same
scaffold family do not all share the same biological effects
based on toxicology related gene expression fingerprint.

Introduction

One of the biggest hurdles in drug development is the late-
stage attrition caused by toxicity of drugs. Established drugs,
such as Vioxx (Rofecoxib), Duract (Bromfenac), Pondimin

(Fenfluramine) have been withdrawn from the market because
of unforeseen human toxicity. Early evaluation of drug safety
during development through gathering predictive and causative
information about potential toxicity could significantly reduce
time, the later phase attrition and thus the overall expense of
drug development (1-4).

Toxicogenomics (5) is a scientific field that studies how the
genome is involved in responses to environmental stressors,
toxicants and in general xenobiotics. Toxicogenomics
combines studies of genomics, cell and tissue-wide protein
expression and metabonomics to understand the role of gene-
environment interactions in healthy and diseased samples.

Since the field of the ‘-omics’ research is still establishing
its own standards for both the preparative and the statistical
evaluation phases, its application in toxicology studies of
many variables and costly decisions is yet to be fully validated
and accepted. Medicinal chemists and bioinformaticians have
to closely cooperate and explore the confidence levels and
limits of the techniques applied.

It is believed that compounds which induce toxicity
through similar mechanisms lead to characteristic gene
expression patterns (6). By clustering the gene expression
profiles of well-characterized reference compounds and
correlating these changes to standard toxicity indices, a gene
expression fingerprint related to specific tissue or organ
toxicity could be determined and applied to predict the toxicity
of a candidate drug (5,6).

The concept of generalized neighborhood behavior that
structurally similar compounds may have similar biological
profiles have been demonstrated by a limited amount of studies
on multiassay high-throughput screening data analysis (7-9).
Yan et al (10) performed such analysis over the database of
the Genomics Institute of the Novartis Research Foundation.
Their objective was to identify results that are due to
technology-related artifacts and target family specific activities.
They also demonstrated the generalized neighborhood
behavior using an initial database on 33107 compounds over
74 assays, with the strong emphasis on the fact that not all
the structurally similar compounds can be expected to share
the same biological activity profile.

In order to prove that different mechanisms of toxicity
can be determined from gene expression fingerprints, Waring
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et al (11) have treated rats with 15 known hepatotoxins and
the gene expression data obtained by using microarray
technology was clustered and correlated to histopathology
and clinical chemistry results, which corresponded well.

Hamadeh et al (12,13) have tested in vivo the hypo-
thesis that cDNA microarrays are an applicable platform for
chemical-specific gene-expression profiling which profiles
are characteristic across and within the structurally unrelated
compound classes.

Van Delft et al (14,15) and colleagues investigated 20
chemical carcinogens over 597 toxicologically relevant
genes via microarrays to prove the profoundly distinct gene
expression patterns between genotoxic and non-genotoxic
chemicals, applicable for classification.

Toxicogenomics can also characterize certain populations
where the drug candidates could cause safety problems.
Thus, toxicogenomics can not only be applied to provide an
alert for potential toxicity but could differentiate between
patient groups based on their responses and will play an
important role in the development of personalized medicines.

Developments in biomarker research and in classification
algorithms for genomics data support the establishment of
large toxicogenomics databases, in fact more and more
pharmaceutical companies have started to build their own
database in hopes of predicting the potential toxicity of
compounds and identify clearly which patient group is
subjected by adverse effects. Publicly available databases, like
the Comparative Toxicogenomics Database are also a result
of this movement, and pharmaceutical companies are predicted
to shift towards sharing their data and thus their costs.

We screened 625 compounds from a fully combinatorial
library for their gene expression profiles in vitro, over 56
selected biomarkers. Our objective was to see to what extent
their highly similar chemical structures induce similarities in
their hepatotoxic fingerprints and to test the analytical
performance of the nanocapillary, quantitative real-time PCR
(QRT-PCR) technique and its general applicability for the
field of toxicogenomics.

Preliminary tests have been performed with our inhouse
ToxicoScreen DNA-microarrays (16) and with the traditional
QRT-PCR technique, following which we shifted to the
OpenArray nanocapillary QRT-PCR-technology (17) that has
meanwhile appeared on the market (BioTrove Inc., Boston,
MA, USA). This later technology merges the high-throughput
of DNA-microarrays with the sound characteristics of
QRT-PCR, therefore ideal for toxicogenomics screening of
chemical libraries.

After determining the gene expression pattern of each
compound we analyzed the results using hiearchical and
K-means clustering methods looking for correlation between
chemical scaffold and biological effect.

Materials and methods

Compounds. Using in-house validated chemical reactions
that are suitable for parallel synthesis and a collection of
multifunctional ‘drug-like’ building blocks, a dedicated
discovery screening library of 10000 compounds has been
enumerated by a cascading diversity building approach. For
synthesis of the generated library high-throughput parallel

synthesis technology was applied which combines conven-
tional medicinal chemistry practices with robot-assisted high-
throughput techniques (18). In this matrix technology the
intermediates are divided into small portions after each
diversity-building synthetic step and reacted with a pool of
different reagents in a parallel manner in isolated vessels.
The generated non-exclusive library consists of 18 sub-
libraries with an average 556 members in each (mininum 87,
maximum 1461). As part of a large open access library of
~200000 structures, it has been tested and ranked for its
medicinal chemistry attractiveness (19) and for its uniqueness
(20).

Based on the cytotoxicity measured in an MRC-5 human
fibroblast assay and the interpolated LD50 values (from 6
concentrations using triplicates, z'>0.4 for all plates), we
selected 3x500 compounds (toxic <5 μM, 5 μM < medium
toxic <100 μM, 100 μM < non-toxic) aiming maximal
diversity within each group. Cytotoxicity of the selected
1500 compounds were measured in a HepG2 human hepato-
carcinoma assay and out of these 625 structures were selected,
keeping the desirable maximal diversity in view. Table I shows
the scaffold structures of the major sublibraries (those with
<5 compounds not indicated) and the number of compounds
generated with each scaffold. These 625 compounds were
synthetized on a higher scale for gene expression analysis.

We used 8 commercially available compounds (pharma-
ceutical entities, pesticides) and 4 compounds presently
under development as anti-cancer drugs for preparing positive
control samples. These 12 compounds are listed in Table II.
The samples were prepared the exact same way, only we
applied several different concentrations of the compounds.

Cell treatment. HepG2 cells (European Collection of Cell
Cultures, ECACC, Salisbury, UK) (3x105 cells/plate) were
cultivated in DMEM medium (2% FBS) (Sigma-Aldrich
Co., St. Louis, MO, USA) at 37˚C in a humidified 5% CO2

incubator. After 1 day of incubation, different toxic compounds
(each compound was used approximately at one quarter of
the measured cytotoxic LD50 value) were added to the culture
medium in DMSO (final solvent concentration 1%). We used
an updated Beckman Biomek 2000 workstation for liquid
handling. We used 200 μl tips from MBP (Molecular
BioProducts Inc., San Diego, CA, USA). For the fluorescence
measurement we used a VICTOR2 1420 Multilabel Counter
from Perkin-Elmer (Perkin-Elmer Inc., Waltham, MA, USA).
After 12 h incubation, cells were harvested and washed with
PBS, 200 μl of RA1 (Macherey-Nagel GmbH & Co., Düren,
Germany) was added containing 1% of ß-mercaptoethanol.
Cells were stored at -80˚C until RNA purification procedure.

Cytotoxicity assay. Cytotoxicity was determined by using the
AlamarBlue method (21) (Invitrogen Co., Carlsbad, CA,
USA). During the assay optimization, we adjusted the
following parameters: plating cell density, incubation time
with AlamarBlue, medium composition, and tolerance of the
compounds' solvents. HepG2 cells were cultivated at 37˚C
under 5% of CO2 and 100% humidity. We used DMEM
medium supplemented with 10% FCS (Sigma-Aldrich), and
penicillin-streptomycin antibiotics. The initial cell number
was 105/well. During the assay, we reduced the FBS content
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Table I. Markush structure and number of screened compounds for each scaffold [1-12].
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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of the medium to 2% to avoid the masking effect on toxicity
by FBS. We used the final volume of 80 μl in a 384-well
plate. We incubated the cells for 24 h with the compounds
at various concentrations in the CO2 thermostat. The concen-
tration range of the compound depended on the compound Ls
toxicity behavior. We used 1% concentration of the solvent
(DMSO) and Triton X-100 (Merck & Co., Inc., NJ, USA) as
a positive control. After 4 h of incubation with AlamarBlue,
the fluorescence was measured by exciting at 544 nm and
measuring emission at 590 nm. We calculated the cell viability
and z' values. In all cases, the z' values were above 0.6. The
LD50 values were measured in six concentrations using
triplicates.

Sample preparation. We isolated the RNA from the cell-
samples using the ZR-96 Mini RNA Isolation Kit (Zymo
Research Corp., Orange, CA, USA) filters and the NucleoSpin
RNA elution liquids (Macherey-Nagel), with a DNase-
treatment (NucleoSpin DNase I Set, Macherey-Nagel) inserted
after desalting. The quantity and quality of RNA was assessed
spectrophotometrically by a NanoDrop instrument (Rockland,
DE, USA). Until cDNA conversion we stored samples at -80˚C
in the presence of 1 U/μl Prime Rnase inhibitor (Eppendorf
AG, Hamburg, Germany). The isolated RNA was brought to
the required 250 ng/μl concentration by lyophilization, then
randomly converted to primed first strand cDNA, using a
High Capacity cDNA Archive Kit (Applied Biosystems, Foster
City, CA, USA). To reduce non-specific product formation
during qPCR, the cDNA samples were heated to 75˚C for
10 min to inactivate the reverse transcriptase; snap chilled for
5 min then treated with 1.3 U/μl Exonuclease I (USB Europe
GmbH, Germany) for 1 h. The Exonuclease I was inactivated
at 85˚C for 10 min. The cDNA samples were stored at -20˚C.

QRT-PCR. The PCR master mix consists of 1X LightCycler
FastStart DNA Master SYBR Green I (Roche Applied
Science, Indianapolis, IN, USA), 0.2% (w/v) Pluronic F-68
(Gibco, Carlsbad, CA, USA), 1 mg/ml BSA (Sigma-Aldrich),
1:4000 SYBR Green I (Sigma-Aldrich), 0.5% (v/v) glycerol

(Sigma-Aldrich), 8% (v/v) formamide (Sigma-Aldrich), MgCl2

solution (Roche Diagnostics GmbH, Mannheim, Germany)
and nuclease-free PCR-grade H2O (Eppendorf) and sample.
To test 56 genes, 4.5 μl of reaction mix was prepared from
each sample which were subsequently loaded onto the PCR-
arrays.

Primers for the PCR reactions were designed using the
program ‘Primer Express’ setting the following criteria: primer
length 19-30, amplicon length maximum 150 nucleic acids,
design for SYBRGreen reactions.

The PCR array thermal cycling protocol consisted of
10 min, 92˚C polymerase activation step followed by 35 cycles
of 15 sec at 92˚C, 1 min at 55˚C and 1 min at 72˚C (imaging
step). Following amplification, amplicon dissociation was
measured by cooling the PCR array to 65˚C then slowly
heated to 92˚C at 1˚/min, with images collected every 0.25˚C.
The PCR experiments were done using the nanocapillary
QRT-PCR instrument developed at BioTrove Inc.

Statistics. We performed the following statistical evaluation
steps on the raw output data files for each open-array plate: i)
We transformed the data matrices (48* 8x8) and normalized
the Ct-values of the individual PCR runs (each sample) for
the average values of the housekeeping genes on each sub-
array (8x8, ΔCt) with our in-house developed software, thus
making these transformations automated, eliminating the
plausible human error. All values are in logarithmic values of
base 2, as inherent to the PCR technique. Data for cycles
where the Ct-values are above 28 and ΔCt-values are above
10 were eliminated from the evaluation. ii) In case too few
data points had been obtained for a gene throughout all
samples (i.e., <20% gave acceptable ΔCt), that gene was
excluded from further analysis. Similarly, samples that had
not given an acceptable ΔCt throughout >20% of all 56 genes
were excluded. iii) Having the raw data so transformed, we
merged all into one dabatabase. The average expression level
(cycle number) for all negative control (i.e., only vehicle-
treated) samples was calculated over each gene. This average
was substracted from each sample's expression level over
each gene, resulting in the ΔΔCt values. Missing data points
are omitted from clustering. This database is available online
at http://www.brc.hu/~chiplab/toxicogenomics/data.txt. iv)
We applied a hybrid clustering method: unsupervised
hierarchical clustering methods with uncentered correlation
similarity metrics, average linkage clustering, then based on
the achieved clusters, supervised k-means and k-mediods
clustering (for detailed description of these statistical methods
see 22,23). Clustering was performed by the software
‘Cluster’, output from the clustering was visualized by the
software ‘Treeview’, both programs developed for statistical
organization and graphical display of microarray data by
Eisen et al (24). Missing data points are omitted by the
clustering algorithms. Because the resulting clusters depend
on the initial random assignments, it is a common practice
to run the clustering algorithm several times and return the
best clustering found. v) Based on the scaffold structure or
the characteristic residues, we assigned the tested chemicals
into subgroups (hereinafter referred to as scaffold-libraries).
vi) We performed Pearson's ¯2 test on the obtained clusters,
using the statistical program ‘R’ (http://www.r-project.org).
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Table II. Compounds used as positive control samples.
–––––––––––––––––––––––––––––––––––––––––––––––––
Name/ID Application
–––––––––––––––––––––––––––––––––––––––––––––––––
K134
K138
Acetochlor Pesticides
Dimetachlor
Doxorubicin Chemotherapy drug
Ivermectine Anti-parasite medication
Sulfasalazine Discontinued, drug for colitis ulcerosa
ß-estradiol Sex hormone
Ac201
Ac202 Potential anti-cancer drugs under 
Ac203 development
Ac204
–––––––––––––––––––––––––––––––––––––––––––––––––
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Table III. The discovery gene set of 56 toxicology marker genes (‘Tox-I’ OpenArray Plate, Avidin Ltd.).
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
No. Gene product Accession no.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

1 GDF15 growth differentiation factor 15 NM 004864
2 SOD1 superoxide dismutase 1 NM 000454
3 PRDX1 peroxiredoxin 1 NM 002574
4 UDP-glucose dehydrogeanse UGDH NM 003359
5 HSPE1 heat shock 10 kDa protein 1 NM 002157
6 EPHX1 epoxide hydrolase 1 NM 000120
7 PPIA peptidylprolyl isomerase A (cyclophilin A) NM 021130
8 GSTP1 glutathione-S-transferases NM 000852
9 HSPCA heat shock 90 kDa protein 1 · NM 005348

10 HSPA1A heat shock 70 kDa protein 1A NM 005345
11 CAT catalase NM 001752
12 RAD50 homolog NM 005732
13 CYP20A1 cytochrome P450 monooxygenase NM 020674
14 GLUL glutamate-ammonia ligase NM 001033044
15 PPARA peroxisome proliferative activated receptor · NM 005036
16 CPT1A carnitine palmitoyltransferase NM 001031847
17 TPMT thiopurine S-methyltransferase NM 000367
18 GSTT1 glutathione S-transferase ı 1 NM 000853
19 RPLP0 ribosomal protein large P0 NM 001002
20 PRDX2 peroxiredoxin 2 NM 181737
21 TP 53 tumor protein p53 NM 000546
22 NQO1 NAD(P)H dehydrogenase quinone 1 NM 001025434
23 GADD45A growth arrest, DNA-damage-inducible · NM 001924
24 GSR glutathione reductase NM 000637
25 FTL ferritin light polypeptide NM 000146
26 LTA4H leukotriene A4 hydrolase NM 000895
27 HOX1heme oxygenase 1 NM 002133
28 GPX1 glutathione peroxidase 1 NM 000581
29 PPARG peroxisome proliferative activated receptor Á NM 138711
30 COMT catechol-O-methyl transferase NM 000754
31 POR cytochrome P450 reductase NM 000941
32 PCNA proliferating cell nuclear antigen NM 002592
33 GPX4 glutathione peroxidase 4 NM 002085
34 SOD2 superoxide dismutase 2 mitochondrial NM 000636
35 CYP1B1 cytochrome P450 1 B1 NM 000104
36 IL6 interleukin 6 NM 000600
37 IGFBP6 insulin-like growth factor binding protein 6 NM 002178
38 OAT ornithine aminotransferase NM 000274
39 GSTM3 glutathione S-transferase M3 NM 000849
40 CASP3 caspase 3 apoptosis-related cysteine peptidase NM 032991
41 PGK1 phosphoglycerate kinase 1 NM 000291
42 CYP1A1cytochrome P450 1 A1 NM 000499
43 CYP1A2 cytochrome P450 1 A2 NM 000761
44 CYP2C9 cytochrome P450 2 C9 NM 000771
45 CYP2E1 cytochrome P450 2 E1 NM 000773
46 CYP3A5 cytochrome P450 3 A5 NM 000777
47 CYP19A1 cytochrome P450 19 A1 NM 031226
48 UGT1A4 UDP glycosyltransferase 1 A4 NM 007120
49 MT2A metallothionein 2A NM 005953
50 MT3 metallothionein 3 NM 005954
51 GPX2 glutathione peroxidase 2 NM 002083
52 FMO3 flavin-containing monooxygenase 3 NM 001002294
53 NOS2A nitric oxide synthase 2A NM 000625
54 RBP4 retinol binding protein NM 006744
55 IL1B interleukin 1 ß NM 000576
56 CRYAB crystallin · B NM 001885

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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However, correlation statistics are only to be used as guidance
in our case, since our sample x gene clusters contain <100
data points each. As written by Simon et al (25), ‘clustering
is a subjective technique, whose results are highly influenced
by selection of the clustering algorithm and similarity metric’.
Since we had no preliminary expectations about the gene
expression pattern over the discriminatory gene set for the
tested combinatorial library, based on the correlation
coefficient for scaffold vs. expression-level cluster, we have
changed the parameters in steps 4 and 5 to obtain the most
distinct clusters.

Results

To assess gene expression changes in human hepatic cells in
response to different cytotoxic compouds, we used the nano-
liter, high-throughput QPCR technology (17). The technology
developed at BioTrove Inc. is a hybrid approach for per-
forming QRT-PCR in an array of 3072 isolated nanoscale
through-holes. Up to 48 different cDNA samples can be
tested, with 64 separate reactions (out of which 56 can be
custom-chosen genes and there are 8 control-reactions) in
each of the 48 subarrays on one plate; with the thermal
cycler handling 3 plates, up to 9216 qPCR reactions can run
in about 4 h. The ‘Tox-I’ OpenArray plate was designed by
Avidin (Avidin Ltd., Szeged, Hungary). The discovery gene
set used in this study is listed in Table III.

We performed an initial testing for analytical performance
of the nanocapillary QRT-PCR instrument with a separate
batch of OpenArray Plates coded ‘TransTox’, containing both
the said 56 toxicology marker gene primers and 56 other
primers for transporter genes (www.avidinbiotech.com), in

total 112 genes. For this initial testing, 60 different samples,
including 36 out of the selected 625 small, drug-like com-
pounds of unknown effects from the combinatorial library,
12 commercially available toxic compounds (pharmaceutical
entities, pesticides) of known effects and of yet unknown
effects and 8 proprietary anti-cancer drugs presently under
development (Avidin Ltd.) as positive controls and vehicle-
treated negative control samples were used. A total of 119
reactions were evaluated for average values of expression for
each gene and the relevant standard deviation.

Results are presented in Fig. 1. for the toxicology gene
markers and the housekeeping genes, the later indicated by
arrows. Reactions for the gene MT2A metallothionein 2A
(gene 49) did not work thus this gene was eliminated from
further evaluation. The very low deviation of the ΔΔCt values
for the genes specially indicated (cyclophylin A, phospho-
glycerate kinase 1, ribosomal protein large P0) underline
their use as housekeeping genes, especially when compared
to the wide-scale changes over the full discovery gene set.

The same statistical evaluation was performed for the
‘Tox-I’ coded plate-batch (only the 3 housekeeping genes
and the toxicity gene markers) in which we tested all 625
compounds from the combinatorial library along with 12 of
the above mentioned positive control samples (Table II) and
at least one vehicle-treated negative control sample was
running on each OpenArray plate, with similar results.

Fig. 2 is the graphical presentation of the clustering
results for the samples. In case too few data points had been
obtained for a gene throughout all samples (i.e., <20% gave
acceptable ΔCt-values), that gene was excluded from further
analysis. Similarly, samples that had not given an acceptable
ΔCt-value throughout >20% of all 56 genes were excluded.

VASS et al:  TOXICOGENOMICS BY NANOCAPILLARY PCR70

Figure 1. Mean values and standard deviation for all compounds tested on OpenArray plate batches ‘AQY’ and ‘ATX’, over all evaluated genes. The 3
indicated genes, PPIA peptidylprolyl isomerase A (cyclophilin A, gene 7), RPLP0 ribosomal protein large P0 (gene 19), PGK1 phosphoglycerate kinase 1
(gene 41) and ribosomal protein large P0 are of significantly low deviation. As a proof-of-concept, this underlines using these genes as housekeeping genes
for normalization of the Ct values.
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We applied K-means clustering method with nine nodes for
samples and three nodes for genes. These numbers were
deduced from the results of unsupervised clustering. Scaffold
families of only one or two members have been excluded from
correlation analysis.

Fig. 3 illustrates the results for correlation between the
scaffold-families and the gene expression changes generated
by compounds belonging to them. In the figure, values are
the number of compounds belonging to each scaffold family
[1-12] in each cluster [a-i], divided by the number of
compounds in the given scaffold family and by the number
of compounds in the given cluster. Thus the values are
normalized for both the size of the given scaffold-library and
the size of the given cluster. The values are not comparable
accross scaffold types. For better understanding, uniform
distribution over clusters of a family would mean no
correlation, that is no neighborhood behavior, but the less
uniform the distribution the more correlation there is between
structure and biological activity.

Discussion

We screened 625 compounds from a fully combinatorial
library for their gene expression profiles in vitro in HepG2
cells, over a discovery gene set of 56 selected biomarkers.
The scaffolds of these compounds are relatively similar,
containing 5-6 membered (aromatic) ring(s) that may contain
N, O or S as heteroatom(s). The libraries selected for each
scaffold differ very broadly in size, from 4 compounds up to
177 compounds per scaffold.

By the combination of a relatively big combinatorial
chemical library and a relatively small set of selected toxico-
logical biomarkers, we intended to avoid the two culprits of
toxicogenomics: ‘the curse of dimensionality’ (too many
genes), and ‘the curse of dataset sparsity’ (too few samples).
The generally accepted, however rarely adapted sample-
per-feature ratio for robust clustering performace is at least
5-10 (26). In the present experiment, this number is approxi-
mately 12.

The statistical evaluation of the results was aimed at
determining whether there is strong - if any - neighborhood
behavior among samples of the same scaffold based on their
hepatotoxic fingerprints, as well as testing the analytical
performance and applicability of the applied nanocapillary
QRT-PCR technique for measuring such correlation.
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Figure 2. Graphical presentation of the clustering results for the samples,
wherein each column is representing values for a gene, and each row is
representing a sample. Green values are for repression, red values are for
overexpression. Grey fields mark missing data, these missing values were
not considered for clustering. Using the supervised K-means clustering
method, samples were ordered into nine clusters, genes into three.

Figure 3. The number of each scaffold-family in each cluster, normalized for both the size of the given scaffold-library and the size of the given cluster.
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In recent years there has been many conceptual develop-
ments in the field of the miniaturization of PCR devices (27).
In case of a large combinatorial library there is only a very
limited amount of each compound, thus we need a high-
throughput platform with stringent diagnostic standards. One
of the set-backs to be overcome when working with low
sample volumes is the fast evaporative loss along thermal
cycling, moreover the increasing surface-to-volume ratio
brings biochemical surface absorption problems along.

The OpenArray Cycler from BioTrove Inc. overcomes
both problems. The system joins high accuracy, precision
and dynamic range characteristics of QRT-PCR with the
relatively higher throughput of microarrays (28). Up to 3072
individual solution-phase reactions are run in parallel in 33 nl
through-holes on the size of a microscope slide in the
software-controlled, completely standardized environment of
a thermal cycler. The custom-selected primer pairs are
immobilized in the OpenArray plate generating a custom-
based screening platform for a subset of genes. This techno-
logy is ideal for toxicogenomics screening. In comparison to
microarrays, a higher analytical performace is due to a more
standardized and automatized loading and incubation of
samples. Cross-contamination of samples is both theoretically
and provenly eliminated on the plates. With the given 56
genes, throughput is higher and a smaller amount of the
investigated chemicals are necessary for the incubation with
the cell cultures to give the sufficient RNA-quantity. In case
of a combinatorial chemical library, this is an important
factor. From all these advantages comes the lower cost per
sample. The technology does not have the usual ‘gradient-
problem’ of microarrays which was also very important in
our case; changes in expression levels of tests in vitro are
often close to the background noise level of microarrays, and
false negatives or positives are clearly dangerous when
developing a fingerprint-analytical assay.

On a conventional real-time PCR instrument, the analysis
of 700 samples for 60 genes would have required roughly
42000 individual reactions. In one PCR run we analysed up-
to 384 reactions, which in case of SYBRGreen detection
includes a housekeeping genes on each tested samples. Thus,

such a study would result in roughly 110 PCR runs, that is
about 240 h of runtime, not including sample preparation or
loading. In case of microarrays, the throughput of samples
would be even lower, however the gene-set screened would
be several order of magnitudes higher. The cost of such a
study would be beyond the scope of this project, moreover by
using the nanocapillary PCR system we could avoid the so-
called curse of dataset sparsity and of dimensionality.

The results in Fig. 3 and the adjacent Table IV are to
illustrate correlation between the scaffolds and the gene
expression changes the compounds with a given scaffold
induce. The values indicated are the number of compounds
with a certain scaffold [1-12] in each [a-i] sample-cluster, as
well as the distribution of the positive control samples over
the same clusters, normalized to the size of the clusters and
to the size of the scaffold-library. Thus the normal distribution
here would be the uniform distribution. The less uniform the
distribution of a scaffold-library over the clusters a-i, the
more correlation there is between scaffold and gene
expression levels for these toxicity markers, i.e., the stronger
the neighborhood behavior of the given scaffold. This
statistical evaluation of a library for the correlation between
scaffold structure and the induced gene expression levels is
more robust for larger libraries. However, we have indicated
also the smaller libraries, because the distribution can be
meaningful as well, for instance in case of scaffold-library
no. 4. Some scaffold-types, such as type no. 1 or type no. 4
are showing strong neighborhood behavior, whilst others
such as type no. 2 or type no. 9 do not show much correlation.
Table IV contains the number of compounds in a scaffold vs.
cluster representation, hence the 14x9 matrix.

From the statistics point of view, the scaffold libraries
no. 12 (124 samples), no. 2 (132 samples) and no. 9 (185
samples) are of most interest. Compounds of the structure
no. 12, that is the 2-(4-Oxo-1-phenyl-1,3,8-triaza-spiro[4.5]
dec-3-yl)-acetamide scaffolds are most prevalent in clusters
e and f. In the e cluster, genes for EPHX1 and GSTP1 are
showing strong repression, in case of some samples the
IGFBP6 gene is repressed, whilst transcription of the
following are induced: HSPA1A, CPT1A, TP53, GADD45A,
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Table IV. The number of samples from compounds of each scaffold family [1-12] distributed in each cluster [a-i] and the
summed total of samples for each scaffold.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

1 2 3 4 5 6 7a 7b 8 9 10 11 12 +control
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
a 8 7 1 0 0 1 4 0 1 22 0 4 1 0
b 36 15 0 1 1 1 3 0 2 27 0 2 6 0
c 13 37 0 0 2 2 2 1 5 22 2 10 22 1
d 10 4 1 3 2 0 2 0 2 12 1 2 12 14
e 2 6 2 0 3 1 0 2 8 8 0 12 28 0
f 0 12 0 0 0 0 0 0 1 10 1 2 21 0
g 13 25 3 0 3 0 4 1 9 34 5 16 18 1
h 10 15 1 0 1 1 3 1 7 27 3 0 8 2
i 4 11 1 0 0 1 3 0 1 23 0 1 8 1
∑ 96 132 9 4 12 7 21 5 36 185 12 49 124 19
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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HOX1, GPX1, COMT, POR. Cluster f is similar in the
characteristic repression of the EPHX1 and the IGFBP6
gene, but that of HSPE1 as well; the genes PPARA, PCNA,
GPX1 and CYP1B1 are induced. Induction of CYP1B1 is most
characteristic in clusters d and i. The libraries 8 (36 samples)
and 11 (49 samples) show similar distribution to the library
no. 12 and some of the smaller libraries as well [5, 3 and 7b].
Libraries no. 2 of the N-Furan-2-ylmethyl-alkanamide scaf-
folds and no. 9 of the N-[2-(1H-Indol-3-yl)-ethyl]-alkanamide
scaffolds show similarities and are definitely distinct from
those mentioned before. Type no. 7a (21 samples) scaffolds
are mostly present in the clusters a and i which two show
opposite tendencies for most genes. They are, however,
absent from clusters e and f which are highly similar. The
scaffolds type number 1 (96 samples) are most abundant in
cluster b, this is most probably due to the significant repression
of the IGFBP6 and the EPHX1 genes. Alike scaffolds no. 7a,
they are almost absent from clusters e and f. It is only scaffolds
no. 4 (4 samples) and the positive control samples that are
also absent from the e and f clusters. The positive control
samples are most abundant in cluster d, showing strong co-
induction of several genes: GDF15, UGDH, PPARA, CPT1A,
TPMT, NAD(P)H, FTL, SOD2, CYP1B1 and slight repression
of the gene EPHX1. Distribution of the compounds of
scaffold type no. 10 (a total of 12 samples) and nos. 7a and
7b (21 and 5 compounds in total, respectively) is not clearly
distinguisable from random distribution due to the low number
of compounds. Scaffold type no. 10 compounds are mostly
clutered in clusters g and h, showing general induction, mostly
for the genes TPMT and PCNA.

By omitting scaffold clusters representing 20 compounds
or less from the evaluation of the scaffold representation in
the sample clusters, the following statistical distribution
can be observed (Table V): in sample clusters a, b and c the
highest scaffold representation correlated well with the
highest number of compounds within the scaffold classes
which belong to the same sample cluster (19, 38 and 28%,
respectively). This clearly indicates that the sample cluster
correlates well with the scaffold structure regardless their
substitution pattern. Cluster g shows similar behavior
(scaffold no. 11, 32%) except that there are another 2 scaffold

classes where compounds are highly represented in this
sample cluster (25% of scaffold no. 8 and 18% of scaffold
no. 9). Interestingly, these scaffolds are fairly unrelated.
Scaffold no. 11 is also highly represented in sample cluster
‘e’ (24%) together with no. 12 (22%).

Sample cluster d is one of the most interesting clusters
since most of the toxicology clusters belong to this cluster.
Interestingly, only approximately 7% of all compounds
belong to that sample cluster and the compounds were evenly
distributed within the scaffold classes. The highest scaffold
representation was 10% (scaffold class no. 1, thiophene). By
analyzing the structure of the 44 compounds in cluster d
(particularly the substitution pattern) and the distribution of
their physicochemical parameters, no significant correlation
was found.

Relatively even scaffold class distribution was observed
in sample cluster h, with moderate representation within the
whole compound library (11% of all compounds).

Sample cluster i is between the a, b, c as well as d sample
clusters with 8% overall compound representation, with two
major scaffold classes (nos. 7 and 9), however little structural
relationship can be identified within these two scaffold classes.

From our hybrid clustering method applied on the data
achieved as described above, nine clusters were formed from
the tested samples. These clusters contain compounds of
different scaffolds. The statistical evaluation of the
distribution of these scaffolds over the gene expression
clusters leads to the two following conclusions.

Structurally not similar compounds may have highly
similar biological activity: cluster b for instance is a very
tight, uniform cluster, however there is ten types of scaffolds
in it. This is underlined by the experienced fingerprints of the
applied positive control samples: there are structurally very
different compounds, slight structural variations of which
have been also tested even in different concentrations, yet
they are mostly directed into the same cluster (cluster d) and
compounds of the exact same structure but different incubation
concentration are not always found to be most similar.

On the other hand, compounds of the same scaffold family
do not all share the same biological effect. Compounds type
no. 12 of the 2-(4-Oxo-1-phenyl-1,3,8-triaza-spiro[4.5]dec-3-
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Table V. Relative scaffold representation in sample clusters.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Scaffold (%) (%) (%) (%) (%) (%) (%) (%) (%) Total no. of
type in a in b in c in d in e in f in g in h in i scaffold (100%)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

1 8.3 37.5 13.5 10.4 2.1 0.0 13.5 10.4 4.2 96.0
2 5.3 11.4 28.0 3.0 4.5 9.1 18.9 11.4 8.3 132.0
7 19.0 14.3 9.5 9.5 0.0 0.0 19.0 14.3 14.3 21.0
8 2.8 5.6 13.9 5.6 22.2 2.8 25.0 19.4 2.8 36.0
9 11.9 14.6 11.9 6.5 4.3 5.4 18.4 14.6 12.4 185.0

11 8.2 4.1 20.4 4.1 24.5 4.1 32.7 0.0 2.0 49.0
12 0.8 4.8 17.7 9.7 22.6 16.9 14.5 6.5 6.5 124.0

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
In italics are the highest scaffold representation in a particular sample cluster, the bold figures indicate the highest number of compounds
within the scaffold classes which belong to the same sample cluster, if both in italics and bold they belong to both.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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yl)-acetamide scaffold show a non-uniform distribution based
on gene expression results, whilst the family no. 2 of the
N-Furan-2-ylmethyl-alkanamide scaffold is almost uniformly
distributed over the expression clusters. This difference
however cannot be explained by their scaffolds. Yan et al
(10) reached the same conclusion, even when starting from a
significantly bigger database.

In case of testing a completely unknown library of
chemical structures, without having preliminary information
on the LD50 values, compounds are usually applied at the
same concentration. Gene expression data from the selected
toxicity panel would correlate rather with toxicity then with
the chemical scaffolds.

Clustering results for the same set of molecules over a
different set of genes that are connected to the basic
biological effects of these molecules - unlike our discovery
gene set, giving us information on the indirect, toxic effects -
would most probably be more obviously according to the
molecular scaffolds.

For finding the correlation between a library of molecular
scaffolds and their general biological fingerprint, one would
perform prescreening over the full genome and with selected
marker genes look for correlation patterns. The best markers
for such analysis would most probably not be those measuring
toxicity. For attaining information on the initial, toxic side
effects of these scaffolds, one would however screen with a
selected toxicity panel. As apparent from our study as well,
with this later, selected toxicology gene set one does not
expect stringent results for neighborhood behavior, but the
results gained are more informative from a toxicologist's
point of view.
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