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Abstract. FGFR2 gene at human chromosome 10q26 encodes
FGFR2b and FGFR2c¢ isoforms functioning as FGF receptors
with distinct expression domain and ligand specificity. FGFR2
plays oncogenic and anti-oncogenic roles in a context-
dependent manner. Single nucleotide polymorphisms (SNPs)
within intron 2 of FGFR2 gene are associated with breast
cancer through allelic FGFR2 upregulation. Missense
mutations or copy number gains of FGFR2 gene occur in
breast cancer and gastric cancer to activate FGFR2 signaling.
Aberrant FGFR2 signaling activation induces proliferation and
survival of tumor cells. The class switch from FGFR2b to
FGFR2c occurs during progression of prostate cancer and
bladder cancer because of spliceosome dysregulation. In
addition, epidermal Fgfr2b knockout mice show increased
sensitivity to chemical carcinogenesis partly due to the failure
of Nfe2l2 (Nrf2)-mediated detoxification of reactive oxygen
species (ROS). Loss of FGFR2b signaling induces epithelial-
to-mesenchymal transition (EMT) and unruly ROS. FGFR2
signaling dysregulation due to the accumulation of epigenetic
modifications and genetic alterations during chronic inflam-
mation, smoking, increased caloric uptake, and decreased
exercise leads to carcinogenesis. PD173074, SU5402,
AZD2171, and Ki23057 are small-molecule FGFR inhibitors.
Human antibody, peptide mimetic, RNA aptamer, siRNA, and
synthetic microRNA (miRNA) are emerging technologies
to be applied for cancer therapeutics targeted to FGFR2.
Because novel sequence technology and peta-scale super-
computer are opening up the sequence era following the
genome era, personalized medicine prescribing targeted
drugs based on germline and/or somatic genomic
information is coming reality. Application of FGFR2
inhibitors for cancer treatment in patients with FGFR?2
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mutation or gene amplification is beneficial; however, that
for cancer prevention in people with FGFR2 risk allele might
be disadvantageous due to the impediment of a cytopro-
tective mechanism against oxidative stress.
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1. Introduction

FGFR?2 gene at human chromosome 10q26 encodes FGFR2b
and FGFR2c isoforms due to alternative splicing (1-4).
FGFR2b and FGFR2c function as fibroblast growth factor
(FGF) receptors transducing FGF signals to RAS-ERK and
PI3K-AKT signaling cascades through FRS2, and also to
DAG-PKC and IP3-Calmodulin signaling cascades through
PLCy (5,6). FGFR2b and FGFR2c with extracellular
immunoglobulin-like domains and cytoplasmic tyrosine kinase
domain are almost identical except the latter half of the third
immunoglobulin-like domain.

Epithelial cells moving as a sheet en block are tightly held
together with uniform neighboring cells, while mesenchymal
cells moving individually are loosely connected with diverse
neighboring cells (7-9). FGFR2b on epithelial cells is a high
affinity receptor for FGF1, FGF3, FGF7, FGF10 and FGF22
(10,11). FGFR2c on mesenchymal cells is a high affinity
receptor for FGF1, FGF2, FGF4, FGF6, FGF9, FGF16 and
FGF20 (10,11). FGFR2b and FGFR2c show distinct expression
domain and ligand specificity.

FGF7, FGF10, and FGF22 constitute a subfamily among
the FGF family (12-15). FGF7, induced by PDGF, IL-1, IL-1
or TNF-q, is secreted from fibroblast, smooth muscle cells,
endothelial cells, skin dermis, and y8T cells to promote tissue
repair (16-18). FGF10 is secreted from mesenchymal cells to
orchestrate morphogenesis of gastrointestinal tract, respiratory
tract, limb, and other organs or tissues (19,20). FGF22 is
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secreted from cerebellar granule cells to regulate synapse
formation (21). FGF7, FGF10 and FGF22 transduce signals
through FGFR2b on epithelial cells to regulate embryo-
genesis and adult tissue homeostasis (18).

FGF signaling cascades interact with WNT, Notch,
Hedgehog and BMP signaling cascades to constitute the stem
cell signaling network (22,23). Dysregulation of the stem cell
signaling network caused by the accumulation of epigenetic
modifications and genetic alterations due to single nucleotide
polymorphism (SNP), chronic inflammation, smoking,
increased caloric uptake and decreased exercise leads to
carcinogenesis (24). Because dysregulation of FGFR2
signaling is involved in cancer and congenital disorders
(25,26), pathogenesis related to FGFR2 will be reviewed at
first, and then therapeutics targeted to FGFR will be described
with the emphasis on future clinical application.

2. Oncogenic FGFR2 in human cancer

Missense mutations of FGFR2 gene occur in endometrial
uterus cancer, ovarian cancer, breast cancer, lung cancer and
gastric cancer (27-29). FGFR2 mutations around the third
immunoglobulin-like domain result in FGFR2 signaling
activation due to the creation of autocrine FGF signaling loop,
while those within tyrosine kinase domain results in FGFR2
signaling activation due to the release of FGFR2 from auto-
inhibition as previously reviewed (25). Copy number gains of
FGFR?2 gene in breast cancer and gastric cancer result in
FGFR?2 signaling activation due to overexpression of FGFR2
(30,31). In addition, C-terminal deletion of FGFR2 occurs
during gene amplification process due to the exclusion of the
last exon from FGFR2 amplicon, which results in FGFR2
signaling activation based on the constitutive phosphorylation
of FRS2 adaptor molecule (32). Point mutation or gene
amplification of FGFR2, inducing aberrant FGFR?2 signaling
activation, is involved in human carcinogenesis (Fig. 1).

Recently, a variety of cancer-associated SNPs have been
identified based on genome-wide association study (GWAS).
Eight SNPs (rs35054928, rs2981578, rs2912778, rs2912781,
1rs35393331, 1510736303, 17895676, and rs33971856) within
intron 2 of FGFR2 gene are associated with increased risk of
breast cancer (33-36). Perfect POU (Oct)-binding site is
located adjacent to rs35054928 and rs2981578, and putative
RUNX-binding site is created on risk allele of rs2981578.
Putative estrogen receptor (ER)-binding site is created on
risk allele of rs10736303. Putative C/EBPB-binding site is
lost from risk allele of rs7895676. Breast cancer-associated
allele of rs2981578 is associated with FGFR2 upregulation
in the reporter assay (36); however, precise mechanism
how FGFR?2 upregulation is induced by FGFR2 risk allele
spanning the putative enhancer region within intron 2 remains
unclear.

Breast cancer-associated allele rs2981578 mentioned
above is associated with decreased risk of endometrial uterus
cancer (37), and is not associated with risk of epithelial
ovarian cancer (38). Because of the diversity of genetic back-
ground and carcinogenic scenario, association between
FGFR2 SNPs and risks of several types of cancer should be
further investigated among several populations in the world
(25).
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Figure 1. Oncogenic and anti-oncogenic FGFR2.

3. Anti-oncogenic FGFR2b

Class switch from FGFR2b to FGFR2c occurs during pro-
gression process of prostate cancer and bladder cancer (39),
which is accompanied by epithelial-to-mesenchymal transition
(EMT) with increased potential for invasion and metastasis
(7-9,40 41). Proliferation and tumorigenicity of prostate or
bladder cancer cells with decreased FGFR2b expression are
significantly suppressed by the transfection of FGFR2b
expression construct (42,43). FGFR2b is anti-oncogenic in
prostate cancer and bladder cancer.

Fgf7, Fgf10, and Fgf22 transduce signals through Fgfr2b
in skin epidermis (18). Mice with conditional Fgfr2b
knockout in skin epidermis show increased occurrence of
squamous cell carcinoma (SCC) with oncogenic Hras
mutations after DMBA/TPA treatment, indicating that loss of
Fgfr2b in skin epidermis results in increased sensitivity to
chemical carcinogenesis (44). Fgf7 and Fgf10 are in part
secreted from ydT cells within epidermis during wound healing
process (45), and mice lacking y8T cells also show enhanced
sensitivity to skin carcinogenesis in the DMBA/TPA model
(46). Together these facts indicate that inactivation of Fgfr2b
signaling promotes mouse skin carcinogenesis (Fig. 1).

Nfe2l2 (Nrf2) is one of target genes of the Fgfr2b signaling
pathway in the skin epidermis (18). Nfe2l2 gene encodes
a basic leucine zipper (bZIP) transcription factor Nfe212
homologous to Nfe2 and Nfe2ll (Nrfl). Although Nfe2l2 is
downregulated due to Keapl-mediated ubiquitylation under
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non-stressed condition, Nfe212 is released from Keapl-induced
degradation due to structural modification of Keapl under
environmental or endogenous reactive oxygen species (ROS)
(47). Stabilized Nfe2]2 binds to antioxidant (ROS-detoxifying)
response element of target genes encoding antioxidant
enzymes to catalyze carcinogens to non-carcinogenic
chemicals. Because Fgfr2b signaling upregulates Nfe2l2
involved in cytoprotection (18), loss of Fgfr2b signaling
due to deletion or spliceosome dysregulation accelerates
carcinogenesis.

4. FGFR2 in non-cancerous disorders

Missense activating mutations of FGFR2 gene occur in
Crouzon syndrome, Jackson-Weiss syndrome, Apert syndrome,
Pfeiffer syndrome, and Beare-Stevenson syndrome, which
are congenital skeletal disorders manifested by short-limbed
bone dysplasia (craniosynostosis), and other features specific
to each syndrome, such as Crouzonoid faces, bone syndactyly,
limb abnormalities, and cutis gyrata (25,48-50). Missense
mutations of FGFR2 gene induce aberrant FGFR2 signaling
activation during skeletal development.

One SNP (rs17101921) located in the 3'-flanking region of
FGFR?2 gene is claimed to be associated with schizophrenia
based on the analyses on 10 cases (51); however, con-
firmatory study using >1000 cases and controls are mandatory
to reach the conclusion. Because FGFR2 and WDRI1 genes
are clustered around the recombination hot spot at human
chromosome 10q26 (4), real causative gene associated with
rs17101921 SNP remains unclear. It is noteworthy that
Fgf22-Fgfr2b signaling cascade is involved in synapse
formation during embryogenesis. Candidate approach to
investigate SNPs of genes encoding FGF22-FGFR2b
signaling components might be useful to identify novel
causative SNPs associated with schizophrenia.

5. Small-molecule FGFR inhibitors

Protein kinases with conserved amino-acid sequence share
the catalytic domain with similar three-dimensional structure.
Small-molecule compounds fitting into the ATP-binding
pockets of protein kinases have been developed for cancer
therapeutics (52,53). PD173074, SU5402, AZD2171, and
Ki23057 are representative small-molecule FGFR inhibitors
(Fig. 2).

PD173074 with pyrido[2,3-d]pyrimidine core inhibits
FGFR1 with ICs, value of 20 nM (54). PD173074 interacts
with L484, V492, A512, K514, E531, M535, 1545, V559,
V561, Y563, A564, L630, A640, and F642 around the ATP-
binding pocket of FGFR1, and inhibits tyrosine kinase activity
and autophosphorylation of FGFR1. PD173074 blocks FGF2-
induced angiogenesis in vivo (54). PD173074 also blocks
mitogenesis of tumor cells through Gl-arrest mediated by
downregulation of Cyclin D1 and Cyclin D2 at the concen-
tration of 2000 nM (55). PD173074 inhibits proliferation and
survival of endometrial cancer cells with FGFR2 mutations
(56.,57).

SU5402 with indolin-2-one core inhibits FGFR1, PDGFRB
and VEFGR?2 tyrosine kinases with ICs, values of 30 nM,
510 nM and 20 nM, respectively (58). The indolin-2-one core
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Figure 2. Small-molecule FGFR inhibitors.

of SU5402 interacts with the ATP-binding site of FGFR1
kinase domain, while substituted moieties interact with the
hinge region between two lobes of FGFR1 kinase domain
(59). Because selectivity of indolin-2-one compounds against
receptor tyrosine kinases are determined by substituents
extending from the indolin-2-one core, SU5402 is a narrow-
range tyrosine kinase inhibitor.

AZD2171 is a broad-range tyrosine kinase inhibitor (60).
AZD2171 inhibits FGFR1, PDGFRB and VEFGR?2 tyrosine
kinases with ICy, values of 26 nM, 5 nM, and <1 nM,
respectively. AZD2171 also inhibits other receptor tyrosine
kinases, such as PDGFRA, KIT, VEGFR1, and VEGFR3.
Oral administration of AZD2171 (1.5 mg/kg/day) significantly
inhibits growth of various human tumor cells transplanted
into athymic mice (60). AZD2171 inhibits VEGF-induced
proliferation of human umbilical vein endothelial cells at
concentrations less than nM, and proliferation of human tumor
cells at concentrations around mM. AZD2171 inhibits tumor
growth in vivo due to indirect effects on endothelial cells
rather than direct effects on tumor cells themselves (60).

Ki23057 is also a broad-range tyrosine kinase inhibitor
(61). Ki23057 inhibits FGFR1, FGFR2 and VEGF?2 tyrosine
kinases with ICs, values of 89 nM, 91 nM, and 38 nM,
respectively. Ki23057 inhibits proliferation of OCUM-2MD3



310

and OCUM-8 gastric cancer cells with FGFR2 gene ampli-
fication, but not MKN7, MKN45 and MKN74 gastric
cancer cells without FGFR2 gene amplification (61). Oral
administration of Ki23057 (25 mg/kg/day) inhibits growth
and peritoneal dissemination of OCUM-2MD3 cells. Anti-
tumor effects of Ki23057 are mainly due to FGFR2-RAS-
ERK signaling inhibition rather than FGFR2-PI3K-AKT
signaling inhibition (61).

6. Other therapeutics targeted to FGFR2

Human antibody, peptide mimetic, RNA aptamer, small
interfering RNA (siRNA), and synthetic microRNA (miRNA)
are emerging technologies to be applied for molecular cancer
therapy (41,62).

Peptide mimetic is a promising strategy to develop agonist
or antagonist for transmembrane receptors. Dekafins are FGF
mimetic peptides associating with FGFR1c or FGFR2b (63).
Dekafinl and Dekafin10 are partial agonists of FGFR1c, and
the association between dekafinl and FGFR1c is modulated
by heparin sulfate moiety. Peptide mimetics functioning as
FGFR?2 antagonists will be potent lead compounds.

RNA aptamers are short RNA oligonucleotides forming a
stable three-dimensional structure for specific tight binding to
target protein (64-67). RNA aptamers binding to target proteins
are selected from combinatorial libraries by using SELEX
method. RNA aptamers targeted to FGFR2 kinase domain or
FGFR2-FRS?2 interface will be developed as novel FGFR2
signaling inhibitors, while those targeted to FGFR2 extra-
cellular region will be developed as substitutes of human
antibody for immunotherapy or tumor-targeted drug delivery.

Fire et al reported RNA repression by using double-
stranded RNA in 1998 (68). Elbashir er al reported RNA
repression by using siRNA in 2001 (69). Liang et al reported
RNA repression by using synthetic miRNA in 2007 (70).
siRNA and synthetic miRNA controlling protein expression
through target-mRNA degradation or translational repression
are promising technologies for cancer therapeutics; however,
avoidance of off-target effects and development of tumor-
specific delivery system should be addressed before clinical
application (62).

7. Conclusion and perspectives

FGFR2 plays oncogenic and anti-oncogenic roles in a context-
dependent manner (Fig. 1). Because novel sequence technology
and peta-scale supercomputer are opening up the sequence
era following the genome era (71), personalized medicine
prescribing targeted drugs based on germline and/or somatic
genomic information is coming reality (72,73). Application of
FGFR2 inhibitors for cancer treatment in patients with
FGFR?2 mutation or gene amplification is beneficial; however,
that for cancer prevention in people with FGFR?2 risk allele
might be disadvantageous due to the impediment of a cyto-
protective mechanism against oxidative stress induced by
smoking, irradiation, and chronic inflammation.
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