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Evidence of a humoral response to a novel protein WARF4
embedded in the West Nile virus NS4B gene encoded
by an alternative open reading frame
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Abstract. West Nile virus (WNV) is a flavivirus that is
maintained in a bird-mosquito transmission cycle. Humans,
horses and other non-avian vertebrates are usually incidental
hosts. However, WNV is a neurotropic virus, which requires an
efficient humoral response for the control of a neuroinvasive
infection. The WNV genome encodes three structural (capsid,
premembrane/membrane and envelope) and seven non-
structural proteins. Bioinformatic analysis performed on the
WNYV genomes detected a conserved alternative open reading
frame restricted to the lineage I virus. To quickly verify the
existence of this putative protein, entitled West Nile Alternative
Reading Frame 4 (WARF4), we produced a prokaryotic
recombinant source of WARF4 and verified its immuno-
genicity in vivo by analyzing 43 horse serum samples, of
which 15 were positive for antibodies to WNV premembrane
and envelope (prM-E) proteins. Specific antibodies to WARF4
were significantly detected in 5 out of the 15 serum samples
testing positive for antibodies to prM-E WNYV proteins. Our
findings provide evidence of a significant antibody response
to the WARF4 protein in the serum of the horse testing
positive for antibodies to prM-E proteins, thus indicating that
this antigen might be a potential tool for further characterization
of the immune response of WNV infections in humans as
well.
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Introduction

Following its original isolation, West Nile virus (WNV) was
implicated in sporadic outbreaks of mild viral illness in
Africa, the Middle East, western Asia and Europe (1,2). Since
1999, the virus has emerged as a new threat to humans and
mammals in the western hemisphere (3,4). Phylogenetic
analyses reveal two distinct lineages (5): lineage I, which has a
worldwide distribution and is involved in human and equine
outbreaks, and lineage II, which is present in Africa's sub-
Saharan region and is not associated with clinical manifes-
tations in humans (6,7). Although several studies are in
progress for a better understanding of WNV pathogenesis,
the mechanisms of immunological escape of West Nile remain
unclear (8). Moreover, it is suggested that unidentified factors
may be involved in the West Nile disease (9). WNV can be
transmitted to humans and can cause encephalitis, depending
on age and the immunity status of the exposed individual (3).
Antibody-positive blood components are less efficient trans-
mitters of the virus than antibody-negative components, thus
indicating that neutralizing antibodies are essential for the
control of WNV infection in vivo and that an efficient humoral
response is critical for the control of a neuroinvasive WNV
infection (10,11).

To obtain a major number of proteins without modifying
the genome size, viruses often make use of an alternative
reading frame gene embedded in the mean coding strand. The
existence of superimposed genes, first noted in bacteriophage
$X174 (12), is a phenomenon well characterized in viruses as
well as in other organisms (13-15). Among the flavivirdae, the
use of an alternative open reading frame protein (ARFP) has
been reported for hepatitis C viruses (HCV) (16). After
humans, horses constitute the majority of mammals infected
with WNV (17). The close phylogenetic relationship between
HCYV and West Nile led us to analyze the WNV genome,
searching for alternative gene products. Our bioinformatic
analysis detected six ARFPs, one of them restricted to lineage
I of WNV. To quickly verify the existence of this putative
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Figure 1. Schematic organization of the West Nile genome and positions of the alternative reading frames. Illustrated in detail are the partial alignment of

WARF4 and its association with viral lineage and disease.

protein, entitled West Nile Alternative Reading Frame 4
(WARF4), we produced a prokaryotic recombinant source of
WARF4 and tested its immunogenicity in vivo by analyzing
43 horse serum samples, of which 15 were positive for
antibodies to WNV premembrane and envelope (prM-E)
proteins. Our findings provide evidence of a significant
antibody response to the WARF4 protein in the prM-E protein
positive horse, thus indicating that this antigen might be a
potential tool for further characterization of the immune
response to WNV infections in humans as well.

Materials and methods

Bioinformatic analysis. Fifty West Nile viral genomes (Fig. 1)
were retrieved from GenBank. ARFs were detected by CLC
Sequence Viewer (www.clcbio.com). The search parameters
included any codon used as start codon and an ARF protein
length of at least 100 amino acids including a stop codon.
Further analyses were carried out using ClustalX (http://www.
clustal.org/).

Serum samples and genomic RNA. Forty-three horse serum
samples were collected by Istituto Zooprofilattico
Sperimentale delle Regioni Lazio e Toscana during the
serological surveillance activities conducted in Toscana
(Italy) between 1998 and 2007. The sera were tested
according to the manufacturer's instructions for anti-West
Nile IgG using the commercial Kit ELISA ID Screen® West
Nile Competition (ID.VET, Montpellier-France). West Nile
genome RNA was obtained from the European Network for
Diagnostics of Imported Viral Disease (ENIVD) during the
External Quality Assurance (EQA) for molecular detection of

West Nile virus. The nucleic acids were extracted using the
NucleoSpin RNA Virus Kit according to the manufacturer's
instructions (Macherey-Nagel, Diiren, Germany).

Cloning and espression of WARF4 protein. The fragment of
394 bp spanning the WARF4 position 7327-7720 (accession
number AF260967) was amplified in a single step RT-PCR
using 5' forward oligonucleotide (gttgaggaattctttccaaacctct
cccaag) and 3' reverse oligonucleotide (atgcgcggatcccage
ggcggacageggetgg). The fragment was cloned into the ex-
pression vector pRSETC and then expressed in the BL21
Star (DE3)pLysS competent cells (Invitrogen, CA). The his-
tagged recombinant protein (WARF4) was purified under
denaturing condition with Ni-NTA Agarose resin (Qiagen,
Germany). Proteins were visualized by Coomassie Blue
staining.

Western blot analysis. Approximately 200 ng of the WARF4
protein or the bacterial cell extract transformed with the
plasmid vector alone was separated by SDS/PAGE and then
transferred to a nitrocellulose membrane. After blocking,
membranes were incubated with horse serum (1:1000)
overnight at 4°C. The 1:1000 dilution was chosen for testing as
the highest serum concentration that lacked substantial
background reactivity. After washing, the filters were
incubated with anti-horse IgG whole-molecule peroxidase
conjugate (Sigma) and developed by a chemiluminescent kit
(Sigma) as previously described (18-20). Criteria of positivity
was the appearance of an immunoreactive band in the WARF4
sample, co-migrating with the one visualized by the anti-his
antibody and not in the bacterial cell extract used as negative
control.
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Figure 2. Immunoreactivity of horse sera to the WARF4 recombinant
protein. Seven prM-E protein positive horse serum samples assayed for
humoral response to the recombinant protein WARF4 are shown. Four
serum samples (1, 3, 6, 7) specifically detected the WARF4 protein by
Western blotting. Reactivity with the anti-his antibody to WARF4
recombinant protein is shown as the positive control.
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Figure 3. Specificity of the anti-WARF4 antibodies. The analysis was
performed to confirm the specificity of the serum antibodies to WARF4
protein by a competition assay. One WARF4 positive horse serum sample
preincubated with increasing amounts of BSA as negative control (lanes 1,
2, 3) and WARF4-free antigen (lanes 4, 5, 6) is shown. The samples were
then analyzed by Western blotting.

Competition assay. Competition assay was performed to
confirm the specificity of the serum IgG for the WARF4
protein. Increasing concentrations of the WARF4 purified
protein or bovine serum albumin (BSA) (1-15 ug) were
incubated for 30 min at room temperature with horse serum
testing positive for antibodies to WARF4 protein. The serum
was then tested for its reactivity with WARF4 by Western
blotting as described above.

Statistical analysis. Associations were considered significant
at p-values <0.05 by a 2x2 contingency table.

Results

In silico analysis detected six ARFs (Fig. 1). Among the
others, the ARF4 appears to be the longest (447 bp) and most
conserved from the genomes, present in 88% (44/50). This
novel alternative reading frame, entitled WARF4, begins from
a +2 position when compared to the coding strand. This
novel potential gene is embedded between the NS4b C-
terminal residue and the NS5 N-terminal residue (7311-
7757 bp, accession number AF260967), starting from a GGC
triplet and terminating with a TAG stop codon. The WARF4
amino acid sequence does not show an apparent homology
with other known protein sequences. Assuming that the
initiation codon is the first in the alternative frame, the protein
would contain 148 AA and shows an isoelectric point of 9.4.
Bioinformatic analysis predicts a myristoylation signal in
position 1 to 10 AA with a low probability of false-positive
prediction. In order to prove the actual existence of the
WARF4 protein, we produced a prokaryotic recombinant
source of WARF4 and verified its immunogenicity in vivo by
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Table I. Evidence of antibodies to WARF4 protein in horse
sera testing positive for prM-E WNYV proteins.

IgG anti-prM-E Total horse sera

(+) )
IgG anti-WARF4
(+) 50 1 6
) 10 27 37
Total horse sera 15 28 43

For statistical analysis, results were analyzed by a 2x2 contingency
table. A significant association was found between antibodies to
prM-E proteins and WARF4 protein (p<0.015).

analyzing its reactivity with 43 horse serum samples by
Western blotting. Among the others, 15 horse sera showed
antibodies against prM-E WNV proteins, while 28 lacked
reactivity to the same proteins. Criteria of positivity to
WARF4 recombinant protein was the appearance of an
immunoreactive band in the WARF4 sample, co-migrating
with the one visualized by the anti-his antibody and not in the
bacterial cell extract used as negative control. Two proteins
in the WARF4 sample were detected in several horse serum
samples as well by the anti-his antibody (Fig. 2). The lower
molecular weight protein might represent a degradation
product of the full length WARF4 recombinant protein.
Opverall, we detected serum antibodies to WARF4 recombinant
purified protein in 5 out of 15 horses which simultaneously
displayed antibodies against the prM-E proteins. Serum
antibodies were also detected in one of 28 horses testing
negative for antibodies to WNV prM-E proteins. To demon-
strate the specificity of the humoral response to WARF4, a
competition assay was performed (Fig. 3). When using the
highest WARF4 protein concentration as competitor, the serum
reactivity disappeared thus confirming the presence of specific
IgG for the WARF4 protein. A significant association was
found between the presence of antibodies to prM-E and
WARF4 proteins in horse serum (p<0.015) (Table I).

Discussion

West Nile virus, which has become endemic in North
America, is a positive-sense RNA neurotropic virus
(10,11,17). The WNV genome encodes 3 structural (capsid,
premembrane/ membrane and envelope) and 7 nonstructural
proteins (10,11,17). Neutralizing antibodies are essential for
the control of the WNV infection (10,11,17). It was demon-
strated that MHC molecules can also present peptides
encoded in alternate translational reading frames (21). The
general importance of out of frame proteins was high-
lighted for their ability to enhance immunity responses (21).
Furthermore, it was demonstrated that these alternative
products may have a critical role in the pathogenesis of viral
infections (22,23). The WNV genome has been completely
sequenced, and our computer-assisted analysis indicates the
presence of 6 ARFs. Among the others, alignment analysis
shows that the ARF4 (entitled West Nile Alternative Reading
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Frame 4, WARF4), represents a unique feature of lineage I
WNYV genomes, that are often associated with clinical
symptoms. In order to prove the actual existence of the
WARF4 protein, we produced a prokaryotic recombinant
source of WARF4 and verified its immunogenicity in vivo by
analyzing its reactivity with 43 horse sera by Western
blotting. The horse sera were also characterized for their
reactivity to well known premembrane and envelope (prM-E)
WNYV proteins by a commercial ELISA kit.

Our results demonstrated a differential reactivity of the
horse sera. Five serum samples displayed antibodies for both
WARF4 and prM-E WNV proteins; 10 sera, testing positive
for prM-E antibodies were WARF4 negative. Conversely,
one serum sample lacking immunoreactivity to prM-E
appeared, instead, reactive to the WARF4 recombinant
protein. Our results indicate a statistically significant
association between the presence of antibodies to prM-E
proteins and WARF4 in the horse sera (p<0.015) (Table I). The
reactivity of horse sera to prM-E protein but not to WARF4
might be related to the ARF4 expression level. Indeed, ARF
proteins are reported to be usually less expressed compared
to ORF proteins (24). The fact that a single horse had specific
antibodies to the WARF4 protein but not to the prM-E
proteins might suggest cross-reactivity of antibodies with co-
circulating flavivirus protein (25) or a different sensitivity of
the assay used for testing the presence of antibodies.

We have not yet investigated the translation mechanisms
of this novel encoded protein. A cap-dependent ribosomal
scanning process is involved in WN virus translation, although
a different strategy was reported for other flaviridae (26).
Since the WARF4 gene lacks an AUG codon, a potential
alternative translation mechanism could take into account the
ribosomal frame shift; nevertheless other non-canonical
translation mechanisms cannot be excluded. At this stage it is
not possible to speculate on the function of this novel protein.
Furthermore, it must be highlighted that the presence of
antibodies to the WARF4 protein needs to be observed in
humans infected by WNV. Overall, our findings provide the
evidence of an antibody response to the WARF4 protein in
the serum of horse testing positive for antibodies to prM-E
proteins, thus indicating that this antigen might be a potential
new tool for further characterization of the immune response
of WNYV infections in humans as well. However, further
studies are necessary to show that the WARF4 protein is
produced in the context of WNV infection. On the other
hand, it will be intriguing to investigate whether a potential
association exists, between the evidence of a WARF4 specific
immune response and the outcome of the human WNV
disease. In this context, it is also suggestive that lineage 1I
WNYV genomes lacking WARF4 are not associated to human
clinical disease.
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