
Abstract. This study evaluated the effects of retinal ischemia-
reperfusion (IR) injury and pre-treatment with the potent and
specific aldose reductase inhibitor fidarestat on apoptosis,
aldose reductase and sorbitol dehydrogenase expression, sorbitol
pathway intermediate concentrations, and oxidative-nitrosative
stress. Female Wistar rats were pre-treated with either vehicle
(N-methyl-D-glucamine) or fidarestat, 32 mgkg-1d-1 for both,
in the right jugular vein, for 3 consecutive days. A group of
vehicle- and fidarestat-treated rats were subjected to 45-min
retinal ischemia followed by 24-h reperfusion. Ischemia was
induced 30 min after the last vehicle or fidarestat adminis-
tration. Retinal IR resulted in a remarkable increase in retinal
cell death. The number of TUNEL-positive nuclei increased
48-fold in the IR group compared with non-ischemic controls
(p<0.01), and this increase was partially prevented by fidarestat.
AR expression (Western blot analysis) increased by 19% in
the IR group (p<0.05), and this increase was prevented by
fidarestat. Sorbitol dehydrogenase and nitrated protein expres-
sions were similar among all experimental groups. Retinal
sorbitol concentrations tended to increase in the IR group
but the difference with non-ischemic controls did not achieve
statistical significance (p=0.08). Retinal fructose concen-
trations were 2.2-fold greater in the IR group than in the non-
ischemic controls (p<0.05). Fidarestat pre-treatment of rats
subjected to IR reduced retinal sorbitol concentration to the
levels in non-ischemic controls. Retinal fructose concentrations
were reduced by 41% in fidarestat-pre-treated IR group vs.
untreated ischemic controls (p=0.0517), but remained 30%
higher than in the non-ischemic control group. In conclusion,
IR injury to rat retina is associated with a dramatic increase
in cell death, elevated AR expression and sorbitol pathway

intermediate accumulation. These changes were prevented or
alleviated by the AR inhibitor fidarestat. The results identify
AR as an important therapeutic target for diseases involving
IR injury, and provide the rationale for development of
fidarestat and other AR inhibitors.

Introduction

Sorbitol pathway of glucose metabolism consists of two
reactions, aldose reductase (AR)-catalyzed NADPH-dependent
reduction of glucose to its sugar alcohol, sorbitol, followed
by sorbitol dehydrogenase(SDH)-catalyzed NAD-dependent
oxidation of sorbitol to fructose. For almost 50 years after its
discovery (1), it has been considered that activation of the
sorbitol pathway of glucose metabolism is a direct consequence
of hyperglycemia or hypergalactosemia. This notion has been
supported by numerous studies with AR inhibitors in animal
models of diabetes and galactose feeding which provided
evidence for the important role of increased sorbitol pathway
activity in diabetic or diabetes-like complications including
cataract (2-4), retinopathy (2,5,6), peripheral and autonomic
neuropathy (7-11), and nephropathy (12,13). The important
role for the first enzyme of the sorbitol pathway, AR, in several
diabetic complications has further been confirmed in studies
with AR-overexpressing and AR-knockout mice (14-17).

Recent reports suggest that increased sorbitol pathway
activity is also involved in the pathogenesis of diseases that
are not accompanied by hyperglycemia including atheroscle-
rosis (18), cancer (19), and a number of inflammatory condi-
tions and disorders such polymicrobial sepsis (20), asthma (21)
and uveitis (22). Evidence for the important role of this mecha-
nism in ischemia-reperfusion (IR) injury, and, in particular,
in cardiac (23-25) and, recently, retinal (26,27) IR injury is
emerging.

In human disease, retinal IR injury takes place when retinal
blood flow is interrupted for a long period of time and then
restarted. It occurs in transient ischemia-related diseases, such
as central retinal artery occlusion, angle-closure glaucoma,
amaurosis fugax, as well as in diabetes, atherosclerosis, and
hypertension (26-29). Retinal ischemia and diabetic retino-
pathy share many pathophysiological and pathological features
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including but not limited to b-wave abnormalities in the
electroretinogram (30,31), glial activation (32,33), retinal
neuronal and ganglion cell degeneration (26,34), increased
vascular permeability and breakdown of blood-retinal barrier
(35,36), edema (26,37), capillary cell loss (38,39), and accele-
rated angiogenesis (40,41). Also note, that whereas retinal
ischemia plays an important role in the progression of diabetic
retinopathy towards its advanced, or proliferative stage (41),
its treatment with scatter laser photocoagulation restoring
oxygen supply is associated with the development of sight-
threatening macular edema (42). Sixty percent of eyes treated
with scatter photocoagulation showed an increase in foveal
thickness, detectable by a scanning retinal thickness analyzer,
after photocoagulation (42).

A recent study in AR-deficient mouse model implicated
increased AR activity in neuronal loss and edema associated
with retinal IR injury (26). In the same report, IR-associated
increase in TUNEL positivity in retinal ganglion cell and inner
neuronal layers, retinal thickening, as well as cytoarchitectural
disorganization were prevented or markedly reduced by the
ARI fidarestat. In our recent experiments in the rat model of
retinal IR injury, pre-treatment with fidarestat alleviated
inflammatory response (27). The present study conducted in
the same animal model evaluated the effects of IR injury and
fidarestat pre-treatment on retinal apoptosis, AR and sorbitol
dehydrogenase (SDH) protein expressions, sorbitol pathway
intermediate concentrations, and oxidative-nitrosative stress.

Materials and methods

Reagents. Unless otherwise stated, all chemicals were of
reagent-grade quality, and were purchased from Sigma
Chemical Co., St. Louis, MO. Rabbit polyclonal anti-
nitrotyrosine antibody was purchased from Upstate, Lake
Placid, NY, USA. Mouse anti-AR monoclonal antibody was
purchased from Santa Cruz Biotechnology, Santa Cruz, CA,
USA. Mouse anti-SDH monoclonal antibody was obtained
from Abcam, Cambridge, MA, USA. ApopTag® Peroxidase
In Situ Apoptosis Detection kit was purchased from Chemicon
International, Inc., Temecula, CA. Other reagents for immuno-
histochemistry were purchased from Dako Laboratories, Inc.,
Santa Barbara, CA.

Animals. The experiments were performed in accordance
with regulations specified by The Guide for the Care and
Handling of Laboratory Animals (NIH Publication no. 85-23)
and The Animal Ethics Committee of Malmö/Lund. Female
Wistar rats (Taconic Europe, Ry, Denmark), body weight
200-250 g, were housed in individually ventilated cages in a
temperature-controlled environment with free access to food
and water and a 12-h light-dark cycle. The rats have randomly
been divided into groups pre-treated with the ARI fidarestat
(Sanwa Kagaku Kenkyusho Co., Nagoya, Japan), at 32 mgkg-1d-1

i.v. or the vehicle N-methyl-D-glucamine (NMDG). A group
of vehicle- and fidarestat-pre-treated rats were then subjected
to 45-min retinal ischemia followed by 24 h of reperfusion.

Administration of fidarestat and NMDG. On day 1, the animals
in the fidarestat and NMDG groups were anesthetized with
3% isoflurane (IsoFlo Vet, Orion Pharma Animal Health,
Sollentuna, Sweden). A neck incision was made and the right

jugular vein was exposed and catheterized to allow repeated
i.v. injections. The catheter was tunneled under the skin to
appear through a small cut in the neck scruff. After injection,
the catheter was closed and replaced under the skin and
wounds were sutured. Injections were repeated on day 2 under
2% isoflurane anesthesia. On day 3, the animals were anes-
thetized with fentanyl (300 μg/kg i.p., B. Braun, Melsungen,
Germany) followed by medetomidin (300 μg/kg i.p., Domitor
Vet, Orion Pharma Animal Health, Sollentuna, Sweden), and
a third dose of fidarestat or NMDG was given 30 min before
induction of ischemia.

Induction of ischemia and reperfusion. The pupils were dilated
with cyclopentolate 1% (Cyclogyl®, Alcon, Stockholm,
Sweden) followed by the application of a local anesthetic,
tetracaine 1% (Tetrakain Chauvin, Novartis Ophthalmic,
Copenhagen, Denmark) which allowed the direct observation
of retinal blood flow under a stereomicroscope. Retinal
ischemia was induced 30 min after the vehicle or fidarestat
injection, by careful application of a 5-0 silk suture (Ethicon,
Sollentuna, Sweden) around the vessels and the accom-
panying optic nerve of the left eye as described (43). The
ligature was tightened until complete cessation of the retinal
blood flow occurred. The right eye served as a non-ischemic
control. During induction of ischemia, rats were placed in
cages supplied with a heating pad, to avoid a decrease in
body temperature. After 45 min, the ligature was carefully
removed. After confirmation of restoration of retinal blood
flow, anesthesia was reversed by bupenorfin (30 μg/kg s.c.,
Temgesic®, Schering-Plough, Kenilworth, NJ, USA) and
atipamezol (1 mg/kg s.c., Antisedan Vet, Orion Pharma Animal
Health, Sollentuna, Sweden), and reperfusion continued for
24 h, after which all animals were sacrificed.

Euthanasia and retinal dissection. The rats were sedated by
CO2, and were immediately sacrificed by cervical dislocation.
In approximately half of animals in each experimental group,
both eyes were rapidly enucleated, the lenses were removed,
and the retinas gently peeled off from the pigment epithelium,
snap-frozen in liquid nitrogen, and stored at -80˚C prior to
analysis of sorbitol pathway intermediate concentrations and
AR, SDH, and nitrated protein expression. In the other half,
the eyes were fixed in 4% paraformaldehyde in PBS and later
used for preparation of flat mounted retinas and quantitation of
apoptosis.

Specific methods
Retinal glucose and sorbitol pathway intermediate concen-
trations. Retinal glucose, sorbitol and fructose concentrations
were assessed by spectrofluorometric enzymatic methods with
hexokinase/glucose 6-phosphate dehydrogenase, sorbitol
dehydrogenase, and fructose dehydrogenase as we described
in detail (44,45).

Western blot analysis of AR, SDH, and nitrated proteins.
Western blot analyses of AR, SDH, and nitrated proteins in
individual retinas (one retina from each rat) were performed as
described previously (13,33). Protein bands were visualized
with the BM Chemiluminescence Blotting Substrate (POD)
(Roche, Indianapolis, IN). Membranes were then stripped and
reprobed with ß-actin antibody to confirm equal protein
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loading. The data were quantified by densitometry (Quantity
One 4.5.0 software, Bio-Rad Laboratories, Richmond, CA).

Immunohistochemical assessment of TUNEL positivity. All
flat mounted retinas were processed by a single investigator
and evaluated blindly. TUNEL positivity was quantified with
the ApopTag® Peroxidase In Situ Apoptosis Detection kit as
described (34,46).

Statistical analysis. The results are expressed as mean ± SEM.
Data were subjected to equality of variance F test, and then
to log transformation, if necessary, before one-way analysis
of variance. Where overall significance (p<0.05) was attained,
individual between group comparisons for multiple groups
were made using the Student-Newman-Keuls multiple range
test. When between-group variance differences could not be
normalized by log transformation (data sets for body weights

and blood glucose), the data were analyzed by the non-
parametric Kruskal-Wallis one-way analysis of variance,
followed by the Bonferroni/Dunn test for multiple comparisons.
Significance was defined at p≤0.05.

Results

Both AR and SDH expressions in the retina were clearly
identifiable in all experimental conditions. Retinal IR injury
was associated with a 19% increase in AR protein expression
(p<0.05 vs. the non-ischemic control group, Fig. 1). Fidarestat
pre-treatment prevented IR-associated AR protein expression
(p<0.05 vs. the vehicle-pretreated ischemic group). Vehicle
pre-treatment did not affect AR expression in non-ischemic
retina.

Retinal SDH expression did not differ among the experi-
mental groups (Fig. 2). Retinal glucose concentration tended
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Figure 1. Representative Western blot analysis of retinal aldose reductase expression (A) and aldose reductase protein content (densitometry, B) in non-
ischemic and ischemia-reperfusion-subjected retinas after vehicle or fidarestat pre-treatment. C, control; IR, ischemia-reperfusion; F, fidarestat. Mean ± SEM,
n=4-5 per group. *p<0.05 vs. the non-ischemic control group, #p<0.05 vs. the vehicle-pre-treated ischemia-reperfusion group.

Figure 2. Representative Western blot analysis of retinal sorbitol dehydrogenase expression (A) and sorbitol dehydrogenase protein content (densitometry, B)
in non-ischemic and ischemia-reperfusion-subjected retinas after vehicle or fidarestat pre-treatment. C, control; IR, ischemia-reperfusion and F, fidarestat.
Mean ± SEM, n=5 per group.
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to increase in the IR group (probably, due to impaired aerobic
glucose metabolism), but the difference with the non-ischemic
group did not achieve statistical significance (Table I). Retinal
sorbitol and fructose concentrations were increased by 56%
and 120% in the IR group (p<0.05 vs. the non-ischemic control
group). Pre-treatment with fidarestat completely prevented
IR-induced changes in retinal glucose and sorbitol concen-
trations. Retinal fructose concentrations were 41% lower in
fidarestat-pre-treated rats compared with the vehicle-pre-treated
group (p=0.052), but still remained 30% higher than in non-
ischemic controls (p=0.44). Vehicle pre-treatment did not
affect retinal glucose and sorbitol pathway intermediate
concentrations in the non-ischemic rats.

Retinal IR injury resulted in a dramatic increase in cell
death (Fig. 3). The number of TUNEL-positive cells per retina
was 48-fold greater in the IR group than in the non-ischemic
controls (p<0.01). Pre-treatment with fidarestat reduced
TUNEL positivity 6.1-fold, compared with the vehicle-pre-
treated group (p<0.01). However, the number of TUNEL-
positive cells was 7.8-fold greater in fidarestat-pre-treated
IR-subjected retinas compared with the non-ischemic controls
(p<0.01). Retinal nitrated protein levels were similar among
non-ischemic and IR-subjected retinas pre-treated with vehicle
or fidarestat (Fig. 4).

Discussion

The results discussed herein implicate increased sorbitol
pathway activity in accelerated cell death associated with
retinal IR injury. Retinal IR induced AR protein over-
expression and sorbitol pathway intermediate accumulation
that were completely or partially prevented by pre-treatment
with the ARI fidarestat. Fidarestat markedly reduced IR-
related retinal cell death. Neither IR injury nor fidarestat-pre-
treatment were associated with any changes in the whole retina
nitrated protein expression.

In the present study, IR injury tended to increase retinal
glucose concentrations, probably due to decreased glucose
metabolism under ischemic conditions. Fidarestat pre-
treatment prevented IR-induced increase in retinal glucose.
Whereas the mechanism underlying this phenomenon in IR-
subjected retina has not been clarified, an ARI treatment is

known to be associated with an increase in retinal cytosolic
and mitochondrial NAD+/NADH ratios in the diabetic rat
model (45). Such changes in free cytosolic and mitochondrial
NAD+/NADH redox states accelerate glycolysis and tricarbo-
xylic acid cycle thus promoting intracellular glucose utilization.

The findings of increased sorbitol pathway activity
manifest by sorbitol and fructose accumulation in retinal IR
model in the present study are in line with previous reports
demonstrating beneficial effects of ARIs on cardiac IR injury
(23-25,47). The mechanisms underlying IR-associated sorbitol
pathway activation are not understood; furthermore, it is
unclear whether it occurs because of ischemia, reperfusion,
or both phases of IR injury. A recent demonstration of
increased sorbitol and fructose concentrations in the muscle
and kidney of mice subjected to hindlimb ischemia (48)
suggests that ischemia rather than reperfusion leads to
sorbitol pathway activation. In another study (26), IR, but not
ischemia alone, was associated with increased cardiac fructose
concentration, whereas sorbitol concentrations were indistin-
guishable in non-ischemic hearts and those subjected to
ischemia alone or IR. Pre-treatment with fidarestat counteracted
IR-induced retinal sorbitol pathway intermediate accumu-
lation in the present study, consistent with the effects of
fidarestat (48) and another ARI (25) on ischemia- or IR-
associated increase in sorbitol and/or fructose concentrations
in the muscle, kidney, and heart in the two above-mentioned
reports.

Ischemia- or IR-related sorbitol pathway activation is not
necessarily associated with increased AR expression. AR
expression in IR-subjected retinas was increased in the present
study, consistent with induction of AR immunoreactivity in the
retinal inner neuronal layer by transient ischemia in another
report (26). In contrast, no induction in AR expression was
found in the mouse ischemic kidney or muscle (48).

The role for the second enzyme of sorbitol pathway, SDH,
in diabetic complications has been an area of intense contro-
versy for more than ten years, and the findings suggesting
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Figure 3. TUNEL-positive cell counts in non-ischemic and ischemia-reper-
fusion-subjected retinas after vehicle or fidarestat pre-treatment. C, control;
IR, ischemia-reperfusion; F, fidarestat. Mean ± SEM, n=5-9 per group,
**p<0.01 vs. the non-ischemic control group; ##p<0.01 vs. the vehicle-pre-
treated IR group.

Table I. Retinal glucose and sorbitol pathway intermediate
concentrations (nmol/mg protein) in non-ischemic and
ischemia-reperfusion-subjected rat retinas after vehicle or
fidarestat pretreatment.
–––––––––––––––––––––––––––––––––––––––––––––––––

Variable
––––––––––––––––––––––––––––––

Group Glucose Sorbitol Fructose
–––––––––––––––––––––––––––––––––––––––––––––––––
Control + Vehicle 12.3±2.1 0.9±0.1 7.3±2.0
Control + Fidarestat 11.2±1.5 0.8±0.1 8.9±1.7
IR 16.9±1.0 1.4±0.2a 16.1±2.4a

IR + Fidarestat 9.8±1.0c 0.9±0.1b 9.5±2.1
–––––––––––––––––––––––––––––––––––––––––––––––––
Data are means ± SEM, n=4-9 per group. IR, ischemia-reperfusion.
ap<0.05 vs controls; b,cp<0.05, p<0.01 vs. untreated group of mice.
–––––––––––––––––––––––––––––––––––––––––––––––––
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protective (49-53) or detrimental (54,55) functions of this
enzyme activity or its minor importance (56,57) in the patho-
genetic process have been produced by different laboratories.
Two groups (25,58) obtained evidence of the important role
for this enzyme in cardiac IR injury. In contrast, SDH does
not seem to play an important role in retinal IR injury as, in
contrast to AR-deficient or fidarestat-pre-treated mice, SDH-
deficient or the SDH inhibitor CP-470,711-pre-treated mice
were not protected from apoptotic neuronal death or edema
caused by transient retinal ischemia (26). In the present study,
SDH expression in the whole retina was unchanged by IR,
whereas SDH immunoreactivity in inner neuronal layer was
found decreased by transient retinal ischemia in the afore-
mentioned report (26).

Studies in the field of diabetic complications suggest that
increased AR activity contributes to multiple biochemical
changes in tissue-sites for diabetic complications including
retina (reviewed in ref. 59). In particular, increased AR activity
leads to vascular endothelial growth factor formation (6,17),
mitochondrial and cytosolic NAD+/NADH imbalances (10,45)
and energy deficiency (10,60), Ca2+ overload (61), increased
formation of precursors of advanced glycation endproducts
(AGE), i.e., fructose, fructose 3-phosphate (62), methylglyoxal
(63), and 3-deoxyglucosone (64), and AGE per se (65,66).
Increased AR activity also contributes to diabetes-asso-
ciated diversion of the glycolytic flux from glyceraldehyde
3-phosphate dehydrogenase towards the formation of ·-
glycerophosphate (51), the protein kinase C activator diacyl-
glycerol (67), and protein kinase C activation (68). In recent
years, AR has been implicated in activation of mitogen-
activated protein kinases (69), poly(ADP-ribose) polymerase
[PARP (13,70)], and cyclooxygenase-2 (71), as well as
nuclear factor-κB (NF-κB) and activator protein-1 (72). Many
of these mechanisms, and, in particular, NAD+/NADH redox
imbalances, accumulation of intracellular Ca2+, activation of
PARP and cyclooxygenase-2 (COX-2), and activation of NF-
κB and resultant increase in cytokine production and pro-
inflammatory response, have also been implicated in IR injury
(25,58,73-75). Cytokines (75), PARP and COX-2 activations

(73,74), and overexpression of c-Jun N-terminal kinase (76)
have also been implicated in IR-induced retinal apoptosis.
Whereas relations among increased AR and these factors in
IR still remain to be explored, it is not excluded that retino-
protective effect of fidarestat is mediated through one of the
afore-mentioned mechanisms. Note, that PARP activation
manifest by increased poly(ADP-ribose) immunoreactivity,
was detected in retinal ganglion cell layer and inner neuronal
layer of wild-type but not AR-deficient mice (26). A complete
or partial prevention of retinal apoptosis has been reported in
ARI-treated diabetic animals (3,4,17), ARI-treated high
glucose exposed retinal pericytes (77,78), as well as ARI-
treated and AR-deficient mice subjected to IR injury (26).

In the present study, IR-related increase in retinal cell death
and its partial prevention by fidarestat pre-treatment were not
related to the corresponding changes in nitrated protein
expression, a stable footprint of peroxynitrite damage (79), in
the whole retina. The latter is quite surprising considering
that peroxynitrite plays a role in IR injury in general (79),
and protein nitration has been identified as a contributing
factor to retinal IR injury (80) as well as to apoptosis asso-
ciated with diabetic retinopathy (81). Also, increased AR
activity, a major factor responsible for impaired antioxidative
defense (reviewed in ref. 59), has been found to contribute to
nitrosative stress in diabetic (4,13,17,70) and IR (25,26)
models and high glucose-exposed cultured endothelial cells
(82). Probably, Western blot analysis of nitrated proteins in the
whole retinal samples is not the optimal method for evaluation
of focal nitrosative stress induced by IR injury (26), and
immunohistochemical assessment of nitrotyrosine immuno-
reactivity remains the only option for retinal IR-related studies,
at least, in rodent models.

In conclusion, IR injury to rat retina is associated with a
dramatic increase in cell death, elevated AR expression and
sorbitol pathway intermediate accumulation. These changes
were prevented or alleviated by the aldose reductase inhibitor
fidarestat. The results identify AR as an important therapeutic
target for diseases involving IR injury, and provide the rationale
for development of fidarestat and other ARIs.
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Figure 4. Representative Western blot analysis of nitrated protein expression (A) and nitrated protein content (densitometry, B) in non-ischemic or ischemia-
reperfusion-subjected retinas after vehicle or fidarestat pre-treatment. C, control; I, ischemia-reperfusion and F, fidarestat. Mean ± SEM, n=5 per group.
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