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Abstract. Hepatocyte growth factor (HGF) and its receptor 
cMET play an important role in tumor proliferation, invasion 
and metastasis. In this study, we investigated the association of 
HGF/cMET signaling with distant recurrence in rectal cancer 
after preoperative chemoradiotherapy and whether inhibi-
tion of the HGF/cMET signaling pathway could suppress the 
re-growth of cancer cells after irradiation. We obtained total 
RNA from residual cancer cells and stromal tissue separately 
using microdissection from a total of 53 rectal cancer specimens 
from patients who underwent preoperative CRT, performed 
transcriptional analyses, and analyzed the association of 
HGF and cMET expression levels with clinical outcomes. We 
performed in vitro experiments to examine HGF and cMET 
expression and the re-growth of cancer cells after irradiation 
and treatment with a tyrosine kinase inhibitor specific for 
cMET (SU11274). We found significant correlations between 
cancer cell HGF and cMET gene expression, and stromal cell 
HGF and cancer cell cMET expression. Elevated cancer cell 
cMET and stromal HGF expression were significantly associ-
ated with a worse prognosis. In vitro experiments showed that 
the up-regulation of HGF expression and the re-growth of irra-
diated cancer cells were effectively suppressed by inhibiting 
cMET. Our results suggest that inhibition of radiation-induced 
HGF up-regulation and blockade of autocrine/paracrine HGF/
cMET signaling are potential new strategies for controlling 
distant recurrence in rectal cancer patients after preoperative 
CRT.

Introduction

The introduction of preoperative chemoradiotherapy (CRT) 
and total mesorectal excision (TME) for the management of 
rectal cancer significantly decreased local recurrence rates and 
improved patient survival. However, the rate of distant recur-
rent relapse still remains as high as 15-20% in rectal cancer 
patients treated with preoperative CRT followed by surgery 
(1-3). The mechanism of distant recurrence after CRT remains 
a mystery. Further improvements in the rectal cancer survival 
rate cannot be achieved without improvements in impacting 
distant recurrence after preoperative CRT. Radiotherapy 
is an effective tool for local control that works by inducing 
cancer cell apoptosis and death, in addition to inhibiting cell 
growth in various malignancies. However, other investigators 
have shown that radiation promotes cancer cell invasion and 
metastasis (4-8), and induces epithelial to mesenchymal transi-
tion (EMT) (9-11). 

Hepatocyte growth factor (HGF) and its receptor cMET are 
involved in various malignant tumors. HGF/cMET signaling 
prevents apoptosis through the phosphorylation of phospha-
tidylinositol-3-kinase and subsequent Akt activation (12,13). 
A number of reports have identified that the overexpression 
of HGF and cMET are associated with cancer invasion, 
metastasis and poor prognosis in various cancers (14-18). 
HGF, known as a scatter factor, is a mesenchymal cytokine 
with pleiotropic effects, including mitogenic, motogenic 
and morphogenic properties, and plays an important role in 
angiogenesis and tumor growth via promoting angiogenic 
mediators, including vascular endothelial growth factor 
(VEGF) (19-21). cMET is the cell surface receptor and the 
only known functional receptor for HGF. cMET is also associ-
ated with the invasion and metastatic progression of cancers 
(17,20,22,23). HGF is only expressed by cells of mesenchymal 
origin (21,24). Conversely, cMET is expressed by various cell 
types, including vascular cells, lymphatic endothelial cells and 
hematopoietic cells (14,25,26). Although most cancer cells do 
not express HGF, HGF/cMET interactions are activated in a 
paracrine manner by stromal cell HGF, which produces a suit-
able microenvironment for cancer cell growth and invasion, 
and in an autocrine manner by cMET produced by cancer 
cells. 
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In the last several years, inhibition of the HGF/cMET signaling 
pathway has been spotlighted as a new target in cancer treat-
ment. Preclinical and clinical studies using different approaches 
to inhibit HGF/cMET signaling, including competitors of HGF/
cMET, monoclonal antibodies directed against HGF and c-MET 
and small-molecule tyrosine kinase inhibitors directed against 
cMET, are now ongoing (14,27,28). SU11274 is small-molecule 
tyrosine kinase inhibitor of cMET and an ATP-competitor for 
the catalytic activity of the cMET tyrosine kinase domain. 
SU11274 has been shown to block HGF-dependent cMET 
activation and is also effective against mutated variants of 
MET (29).

We hypothesized that preoperative radiation might promote 
distant recurrence in rectal cancer. Because we found that 
HGF mRNA levels were up-regulated by irradiation in our 
preliminary in vitro studies, we investigated whether inhibi-
tion of HGF or cMET before irradiation could suppress the 
up-regulation of HGF and cell re-growth after irradiation and 
analyzed the correlation between HGF and cMET expression 
in residual tumor with distant recurrence and prognosis.

Materials and methods 

Patients and specimens. From 2001 to 2008, 53 patients with 
rectal cancer received preoperative CRT followed by surgery 
in our institute (criteria for induction of preoperative CRT 
in our institute: age 80 years or younger, clinical stage II/III 
based on the International Union Against Cancer TNM clas-
sification, no evidence of distant metastases, no invasion of 
external sphincter muscle and elevator muscle of anus, and no 
evidence of deep venous thrombosis). FFPE specimens after 
CRT were available for this study. Twelve endoscopic tumor 
biopsy specimens before CRT matched to FFPE specimens 
were snap-frozen in liquid nitrogen and kept at -80˚C until use. 
All patients signed informed consent forms for their tissues to 
be used in this study.

5-fluorouracil-based chemoradiotherapy regimen. Patients 
with rectal cancer were treated in our institution with short-
course (a dose of 20 Gy in four fractions) or long-course (a 
dose of 45 Gy in 25 fractions) radiotherapy using a four-field 
box technique with concurrent chemotherapy to take advan-
tage of 5-fluorouracil (5-FU) radiosensitization. All patients 
underwent a computed tomography simulation for three-
dimensional radiotherapy planning and were treated with a 
10-MV photon beam using a linear accelerator. The radiation 
field encompassed a volume that included the primary tumor, 
mesorectum, presacral space, whole of the sacral hollow and 
regional lymph nodes. The superior border was placed at L5/
S1 and the inferior border was 3 cm or more caudal to the 
primary tumor. Patients underwent concurrent pharmaco-
kinetic modulation chemotherapy (intravenous infusion of 
5-FU: 600 mg/m2 for 24 h, and tegafur-uracil (UFT) given 
as 400 mg/m2 orally for five days. This regimen was based on 
the previously tested combination of continuous infusion of 
5-FU and oral administration of UFT (30). Forty-two patients 
received short-course radiotherapy with chemotherapy over 
one week. The remaining 11 patients received long-course 
radiotherapy with chemotherapy for four weeks. The time 
interval between preoperative CRT and surgery was two to 

three weeks for short-course irradiation patients, and four to six 
weeks for long-course irradiation patients. There were no delays 
for either treatment regimen due to severe toxicity. All patients 
underwent standard surgery including total mesorectal exci-
sion, and received 5-FU-based adjuvant chemotherapy after 
surgery for six months to one year.

Histopathologic tumor regression. The degree of histopatho-
logic tumor regression based on general rules for clinical and 
pathological studies on cancer of the colon, rectum and anus 
was classified into four categories: grade 0, neither necrosis nor 
regressive changes; grade 1a, >2/3 vital residual tumor cells 
(VRTCs); grade 1b, ~1/3-2/3 VRTCs; grade 2, <1/3 VRTCs; 
and grade 3, no VRTCs (31).

RNA extraction from endoscopic biopsy specimens. Pre-CRT 
endoscopic biopsy specimens were homogenized with a Mixer 
Mill MM 300 homogenizer (Qiagen Inc., Chatsworth, CA). 
Total RNA was isolated using an RNeasy Mini Kit (Qiagen 
Inc.) according to the manufacturer's instructions.

Microdissection and RNA extraction from FFPE specimens. 
As previously described (32), residual cancer and stromal 
cells were collected from FFPE specimens. Microdissected 
specimens were digested with proteinase K in lysis buffer 
containing Tris-HCl, ethylenediaminetetraacetic acid, and 
sodium dodecyl sulfate, as previously published with minor 
modifications (33). RNA was purified by phenol and chloro-
form extraction.

cDNA synthesis. cDNA was synthesized with random hexamer 
primers and Superscript III reverse transcriptase (Invitrogen, 
Carlsbad, CA) according to the manufacturer's instructions.

Quantitative real-time polymerase chain reaction (RT-PCR). 
Quantitative RT-PCR analysis was carried out with the SYBR-
Green PCR Master Mix (Applied Biosystems, Foster City, CA) 
using the Applied Biosystems 7500 real-time PCR System 
according to the manufacturer's instructions. Primers for HGF, 
cMET and ACTB (β-actin) were designed with Primer3 soft-
ware (Biology Workbench Version 3.2, San Diego 
Supercomputer Center, University of California, San Diego). 
Sequences are as follows: HGF-specific primers (sense, 
ATTTGGCCATGTTTTGACC; antisense, AGCTGCGTCC 
TTTACCAATG); cMET-specific primers (sense, AGGTGTG 
GGAAAAACCTGA; antisense, ATTCAGCTGTTGCAGG 
GAAG); and ACTB-specific primers (sense, ACAGAGCCT 
CGCCTTTGC; antisense, GCGGCGATATCATCATCC). 
PCR was performed in a final volume of 25 µl with a SYBR-
Green PCR Master Mix, using 1 µl cDNA, and 400 nM of each 
primer for the respective genes. Cycling conditions were 50˚C 
for 2 min and 95˚C for 10 min followed by 40 cycles at 95˚C 
for 15 sec and 60˚C for 1 min each.

Relative expression levels of HGF and cMET. Relative gene 
expression levels were determined by the standard curve 
method. The standard curves and line equations were generated 
using five-fold serially diluted solutions of cDNA from qPCR 
Human Reference Total RNA (Clontech, Mountain View, CA) 
for HGF and c-MET. All standard curves were linear in the 
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analyzed range with an acceptable correlation coefficient (R2). 
The amount of target gene expression was calculated from 
the standard curve followed by quantitative normalization 
of cDNA in each sample using β-actin gene expression as an 
internal control. Target gene mRNA levels were given as ratios 
to β-actin mRNA levels. RT-PCR assays were done in duplicate 
for each sample and the mean value was used for calculation of 
the mRNA expression levels.

Immunohistochemistry for HGF and cMET. Sections (2-3 µm 
thick) were made from FFPE specimens. After deparaf-
finization and dehydration, specimens were brought to a 
boil in 10 mM sodium citrate buffer for antigen unmasking. 
Specimens were then blocked and incubated with primary 
antibody overnight at 4˚C. Antibody staining was visualized 
using Envision reagents (Envision kit/HRP, Dako Cytomation, 
Denmark). All sections were counterstained with hematoxylin. 
HGF polyclonal antibody (rabbit polyclonal antibody raised 
against synthetic peptides of HGF, PAB3683, Abnova) and 
Met (c-Met) antibody (EP1454Y) (rabbit monoclonal to Met, 
ab51067, Abcam) were used at a dilution of 1:100 for detection 
using the labeled streptavidin-biotin method (LASB2 kit/HRP, 
Dako Cytomation). Negative controls were run simultane-
ously.

Colon cancer cell lines. CaCO2, SW480, LoVo and DLD1 
derived from human colon adenocarcinomas, and CAR1 
and RCM1 derived from human rectal adenocarcinomas 
were obtained from the Cell Resource Center for Biomedical 
Research, Institute of Development, Aging and Cancer, Tohoku 
University. Colorectal cancer cells were plated at a density 
of 105 cells per well in 6-well plates (BD Falcon). These cell 
lines were grown in RPMI-1640 medium (Sigma-Aldrich, St. 
Louis, MO), supplemented with fetal bovine serum (FBS; 10% 
(v/v); Gibco BRL, Tokyo, Japan), glutamine (2 mM), penicillin 
(1000 U/ml), streptomycin (100 g/ml) at 37˚C in a 5% CO2 
incubator.

Irradiation, anti-HGF and SU11274 treatments. We selected 
the LoVo and SW480 cell lines, both of which highly express 
cMET by RT-PCR, for in vitro studies. These cell lines were 
seeded and incubated for 24 h. These cell lines were then 
treated with monoclonal anti-human HGF antibody (clone 
24612, R&D Systems, Minneapolis, MN) at doses of 10 and 
100  nM, and the small molecule inhibitor of the c-MET 
tyrosine kinase, SU11274 (Biaffin GmbH & Co. KG, Kassel, 
Germany) at doses of 5 and 10 µM for 24 h before irradiation. 
The SU11274 dose was selected based on previous studies 
(29,34,35). LoVo and SW480 cells were given a 5-Gy dose of 
irradiation (CAX-150-20, Chubu Medical Co. Ltd). Total RNA 
was extracted five days after irradiation. HGF and cMET 
expression analysis was determined by real-time quantitative 
RT-PCR.

Matrigel invasion assay. Invasion assays were performed as 
described previously (36). Culture medium (0.5 ml) containing 
the LoVo and SW480 cell suspensions (5x104 cells/ml) was 
added to the plate chambers. The Matrigel Invasion Chambers 
and Control Inserts were incubated for 72 h at 37˚C in the 
incubator.

Cell proliferation assay. The MTT [3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide] assay (Roche Diagnostics 
Corp., GmbH, Mannheim, Germany) was used to determine 
the degree of cell proliferation. Treated cells were seeded at 
5x103 cells per well in 96-well flat-bottomed microtiter plates in 
a final volume of 100 µl culture medium per well, and incubated 
in a humidified atmosphere (37˚C and 5% CO2). After 72 h 
culture, 10 µl MTT labeling reagent (final concentration, 
0.5 mg/ml) was added to each well and the plates were incu-
bated for 4 h in a humidified atmosphere. Solubilization solution 
(100 µl) was added to each well and the plates were incubated 
overnight in a humidified atmosphere. After confirmation that 
the purple formazan crystals were completely solubilized, the 
absorbance of each well was measured by a SoftMax Pro 
microplate reader (Molecular Devices Corp., Sunnyvale, CA) 
at a wavelength of 562 nm corrected to 650 nm. Each indepen-
dent experiment was performed three times.

Statistical analysis. All statistical analyses were done using Stat 
View 5.0 for Windows (SAS Institute Inc., Cary, NC). Values of 
each target gene are expressed as median values (inter-quartile 
range) in tables or as means ± standard error (SE) in figures. 
Associations between continuous variables and categorical 
variables were evaluated using Mann-Whitney U tests for two 
groups. The correlations between variables (levels of HGF and 
cMET gene products) were assessed with the Spearman rank 
correlation coefficient. Disease-free survival was calculated from 
the date of surgery to the date of disease recurrence. Survival 
was evaluated using the Kaplan-Meier method. The log-rank 
test was used to compare the cumulative survival durations 
in the patient groups. A non-parametric receiver operating 
characteristic (ROC) analysis was performed to calculate the 
best cut-off value for each gene expression level that would be 
predictive of distant recurrence and survival, using Medcalc 
7.2 for Windows (Mariakerke, Belgium). P-values <0.05 were 
considered statistically significant.

Results

Patient characteristics and histopathological tumor regres-
sion. Fifty-three patients were included in this study. Their 
median age was 62 years (range, 37-78 years) and the male to 
female ratio was 4.3:1. The post-CRT pathological T stages were 
pT1 (n=5), pT2 (n=13), pT3 (n=32) and pT4 (n=3). Seventeen 
patients (32.1%) had pathological lymph node metastases. 
Forty-five tumors (84.9%) showed well or moderately differ-
entiated adenocarcinoma histology. No patients had local 
recurrence. Patterns of distant recurrence were seen as liver 
and lung metastases in two patients, lung metastasis alone 
in five patients, and peritoneal metastasis in one patient. 
Histopathologic tumor regression grading was as follows: 
grade 0, 0 patients; grade 1a, 11 patients; grade 1b, 26 patients; 
and grade 2, 16 patients. Forty-two patients received radio-
therapy at doses of 20 Gy in 5 fractions over a week, and 11 
patients received radiotherapy doses of 45 Gy in 18 fractions 
for 4 weeks (Table I). The median follow-up period was 49 
months (range, 14-105 months).

HGF and cMET gene expression levels. Relative HGF and 
cMET mRNA levels in residual rectal cancer after CRT were 
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0.225±0.037 (range, 0-1.232) and 0.518±0.100 (range, 0-3.477), 
respectively. The HGF expression level in stromal tissue was 
0.042±0.019 (range, 0-0.774). 

Correlation between HGF and cMET gene expression. As 
shown in Fig. 1, HGF and cMET expression levels in residual 
cancer cells were significantly correlated (Spearman's ρ=0.387, 
P=0.0068). There was a significant positive correlation between 
the expression levels of cancer cell cMET and stromal HGF 
after CRT (Spearman's ρ=0.459, P=0.0047). However, HGF 
expression in residual cancer and stromal tissue had no corre-
lation.

Comparison of HGF gene expression between pre- and post-
CRT specimens. We obtained 12 pre-CRT biopsy specimens 
matched to microdissected specimens. HGF gene expression 
levels were very low in pre-CRT specimens. We excluded all 
the cases whose gene expression was not detected and lacked 
reproducibility. We observed that HGF gene expression levels 
in post-CRT specimens were significantly higher than in 
pre-CRT samples (P=0.018) (Fig. 2).

Association of HGF and cMET expression levels with clinico- 
pathological variables. Table I shows the association between 
the gene expression levels of HGF and cMET and clinico-

Table I. Tumor characteristics and association of HGF and cMET gene expression with clinicopathological variables.

	 Number (%)	 HGF in cancer	 P-value	 cMET in cancer	 P-value	 HGF in stroma	 P-value

Gender
  Male	 43 (81.1)	 0.213±0.043	 0.339 	 0.457±0.091 	 0.471 	 0.047±0.023 	 0.545 
  Female	 10 (18.9)	 0.276±0.073 		  0.773±0.358 		  0.021±0.015
Age, mean 62.5 years
  ≤63	 21 (39.6)	 0.212±0.044 	 0.472 	 0.413±0.174 	 0.365 	 0.015±0.013 	 0.158 
  >63	 32 (60.4)	 0.233±0.055 		  0.590±0.121 		  0.060±0.030 	
T classification
  T1/2	 18 (33.9)	 0.321±0.080 	 0.128 	 0.593±0.171 	 0.623 	 0.044±0.043 	 0.349 
  T3/4	 35 (66.1)	 0.175±0.037 		  0.478±0.125 		  0.041±0.019
N classification
  Absent	 36 (67.9)	 0.252±0.049 	 0.364 	 0.430±0.091 	 0.946 	 0.033±0.019 	 0.099 
  Present	 17 (32.1)	 0.166±0.051 		  0.699±0.242 		  0.060±0.045 	
Lymphatic invasion
  Absent	 14 (26.4)	 0.173±0.053 	 0.919 	 0.482±0.167 	 0.775 	 0.020±0.013 	 0.472 
  Present	 39 (73.6)	 0.243±0.047 		  0.530±0.123 		  0.050±0.026 	
Vascular invasion
  Absent	 23 (43.4)	 0.249±0.064 	 0.413 	 0.411±0.101 	 0.663 	 0.017±0.012 	 0.863 
  Present	 30 (56.6)	 0.205±0.045 		  0.597±0.158 		  0.061±0.032 	
Postopetarive stage
  I/II	 33 (62.3)	 0.270±0.053 	 0.132 	 0.451±0.095 	 0.887 	 0.036±0.020 	 0.350 
  III	 20 (37.7)	 0.150±0.044 		  0.634±0.221 		  0.051±0.039 	
Histology
  Well/moderate	 45 (84.9)	 0.244±0.043 	 0.262 	 0.586±0.115 	 0.084 	 0.041±0.022 	 0.368 
  Poorly/signet/mucinous	   8 (15.1)	 0.115±0.051 		  0.146±0.101 		  0.046±0.034 	
Pathological response
  Non-responder; 0/1a/1b	 37 (69.8)	 0.254±0.048 	 0.205 	 0.637±0.134 	 0.093 	 0.055±0.027 	 0.109 
  Responder; 2/3	 16 (30.2)	 0.156±0.054 		  0.251±0.100 		  0.012±0.012
Radiotherapy
  Short: 20 Gy/4 fractions	 42 (79.2)	 0.270±0.044 	 0.023 	 0.553±0.118 	 0.981 	 0.041±0.029 	 0.184 
  Long: 45 Gy/25 fractions	 11 (20.8)	 0.049±0.015 		  0.372±0.163 		  0.048±0.023
Distant recurrence
  Absent	 45 (84.9)	 0.232±0.042 	 0.762 	 0.464±0.103 	 0.461 	 0.028±0.015 	 0.018 
  Present	   8 (15.1)	 0.180±0.082 		  0.818±0.320 		  0.122±0.095

T and N categories indicate extent of the primary tumor and presence of lymph node metastasis. Values of each target protein are expressed as 
mean value ± standard error.
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pathological variables. HGF expression in residual cancer was 
correlated with radiation dose (P=0.023). Without reaching 
statistical significance, the stromal HGF expression level 
was associated with tumor depth (P=0.099). Patients who 
developed distant recurrences had significantly higher gene 
expression levels of stromal HGF (P=0.018), but not cancer 
cell HGF and cMET, compared with those patients without 
recurrences. There was no significant association between the 
expression levels of these genes and other clinicopathological 
variables.

Predictive value of HGF and c-MET expression levels for 
prognosis. On the basis of these results, a receiver operating 
characteristic (ROC) analysis was used to identify cut-off 
values for HGF and cMET expression that were predictive 

of distant recurrence and survival. A non-parametric ROC 
analysis determined that the best cut-off values of HGF and 
cMET in residual cancer and HGF in stromal tissue were 
0.187, 0.877 and 0.0018 for recurrence-free survival (RFS), 
and 0, 0.877 and 0.0405 for overall survival (OS), respectively. 
Fig. 3a-c shows the survival curve of patients subdivided on 
the basis of each cut-off value of cancer cell HGF, cMET and 
stromal HGF. Patients with elevated levels of cancer cell 
cMET and stromal HGF expression had significantly poorer 
prognoses than patients whose levels were below the cut-off 
values (cancer cell cMET: log-rank test, RFS; P=0.0103, 
OS; P=0.0462, stromal HGF: log-rank test, RFS; P=0.0017, 
OS; P=0.022). Additionally, patients with both cancer cell 
cMET and stromal HGF expression above the cut-off values 
had a significantly lower RFS and OS compared with the 
other group (log-lank test, RFS: P<0.0001, OS: P=0.0006) 
(Fig. 3d).

Immunohistochemistry for HGF and cMET. Fig. 4 shows 
immunohistochemistry staining for HGF and cMET in 
tissue samples from rectal cancer patients after CRT. HGF 
expression can be observed in the nuclei and cytoplasms of 
residual cancer cells (left panels). cMET expression, however, 
is located in the plasma membranes of residual cancer cells 
(right panels).

HGF and cMET expression in colorectal cancer cell lines. In 
order to investigate HGF and c-MET mRNA expression levels 
in six colorectal cell lines, CAR1, RCM1, CaCO2, SW480, 
LoVo and DLD1 were examined using RT-PCR and qPCR 
using Human Reference Total RNA as a positive control. HGF 
mRNA was barely detectable in the six colorectal cancer cell 

Figure 1. HGF and cMET expression are correlated in cancer and stromal tissues. There are significant correlations between cancer cell and stromal HGF 
expression, and between cancer cell cMET and stromal HGF expression.

Figure 2. Comparison of HGF gene expression in pre- and post-CRT speci-
mens. HGF mRNA in post-CRT specimens is significantly higher than in 
pre-CRT samples.
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lines. cMET was expressed by all of the colorectal cancer 
cell lines (Fig. 5a). We selected LoVo and SW480 for further 
in vitro study.

Inhibition of radiation induced HGF up-regulation treated 
by SU11274. HGF expression was increased by irradiation at 
doses of 2.5 and 5 Gy. Remarkably, HGF up-regulation was 
inhibited by treatment with SU11274 prior to irradiation. In 
particular, a dose of 5 µM SU11274 completely inhibited HGF 
expression after irradiation. Conversely, c-MET expression 
seemed not to be influenced by SU11274 treatment in conjunc-
tion with irradiation (Fig. 5b).

Matrigel invasion assay. We investigated whether pretreat-
ment with anti-HGF and SU11274 before irradiation could 
suppress cell invasion. We observed that SW480 cell invasion 
was promoted by irradiation and pretreatment of anti-HGF 
(100 nM), and that SU11274 (10 µM) significantly suppressed 

Figure 3. Recurrence-free and overall survival curves in patients segregated according to the indicated cut-off values. Cancer cell HGF (a), cancer cell cMET 
(b), stromal HGF (c) and cancer cell cMET/stromal HGF combinations (d).

Figure 4. Immunohistochemistry for HGF and cMET in rectal cancer after 
CRT. HGF expression is observed in the nuclei and cytoplasms of residual 
cancer cells, whereas cMET expression is observed in the plasma membranes 
of residual cancer cells.
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Figure 5. (a) CAR1, RCM1, CaCO2, SW480, LoVo and DLD1 were examined using RT-PCR and qPCR with Human Reference Total RNA as a control. HGF 
mRNA was barely detectable in the 6 colorectal cancer cell lines; however, cMET was expressed in all cell lines examined. (b) SU1127 inhibition of irradiation-
induced HGF up-regulation. HGF expression was increased by irradiation at doses of 2.5 and 5 Gy. HGF up-regulation was inhibited by SU11274 treatment 
before irradiation. In particular, SU11274 at a dose of 5 µM completely inhibited HGF expression after irradiation. (c) Matrigel invasion assay. We observed that 
SW480 cell invasion was promoted by irradiation, and that pretreatment of anti-HGF (100 nM) and SU11274 (10 µM) significantly suppressed cell invasion. 
However, there was no marked effect of pretreatment in LoVo cells. (d) Proliferation assay. There was no significant effect on cell proliferation when irradiation 
was combined with pretreatment with anti-HGF or SU11274. Control, no treatment.
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cell invasion. However pretreatment of LoVo cells with anti-
HGF or SU11274 had no marked effect (Fig. 5c).

Cell proliferation assay. Fig. 5d shows the impact of anti-HGF 
and SU11274 treatment on cell proliferation in irradiated LoVo 
and SW480 cells. Treatment with anti-HGF had no effect on 
cell proliferation, although SU11274 at 10 µM did decrease 
proliferation in non-irradiated LoVo and SW480 cells but not 
in irradiated cells.

Discussion

The present study is the first to report the evaluation of HGF 
expression in cancer cells as distinct from stromal tissue in 
rectal cancer patients. Current evidence indicates that the 
overexpression of HGF and its receptor cMET correlates with 
advanced stage and a negative prognosis in colorectal cancer. 
Furthermore, cMET mRNA overexpression in primary 
colorectal cancer tissue may be an important prognostic 
marker for early stage invasion and regional disease metas-
tasis (37). We previously reported that preoperative serum 
HGF levels might be a useful prognostic marker in colorectal 
patients, and additionally, HGF protein levels in cancer tissue 
were significantly reflected by the levels in serum (38). In the 
present study, we also examined the correlations between the 
HGF and/or cMET mRNA levels in cancer tissue and serum 
HGF level, and the association of serum HGF with clinico-
pathological variables. However, we observed no significant 
correlation between them and clinicopathological variables 
except that the total radiation dose correlated with an elevated 
HGF level (P=0.018, data not shown). These data disagree with 
our findings described in an earlier report. However, HGF 
expression in bulky tumor tissues was evaluated in our previous 
report, whereas HGF/cMET expression was more accurately 
measured in the present study because residual cancer cells 
were distinguished from stromal cells, which we believe accounts 
for the apparent discrepancy. 

HGF expression is limited to mesenchymal tissue, including 
fibroblasts and mononuclear cells, while cMET expression is 
topographically localized to neoplastic epithelial cells 
(20,22,26). Therefore, interactions between cancer cells and 
stromal cells are necessary for the activation of HGF/cMET 
signaling. Cancer cells are influenced not only by stromal-
derived HGF, but also facilitate HGF production in stromal 
cells. Cancer cell HGF secretion is induced by interleukin-1β, 
basic fibroblast growth factor, platelet-derived growth factor 
and transforming growth factor-α (TGF-α) (17,39-41). In the 
present study, we observed that HGF up-regulation was induced 
by irradiation. Sheng-Hua et al reported that HGF levels showed 
a dose-dependent increase in human malignant glioma cell 
lines (8). Our results show irradiation directly promoted HGF 
expression in cancer cells, and subsequent cMET expression in 
cancer cells, in addition to promoting HGF expression in 
stromal cells. Taken together, the crosstalk between cancer 
cells and stromal cells, and HGF/cMET signaling via autocrine 
and paracrine pathways, may be strongly associated with 
distant recurrence and poor prognoses in rectal cancer after 
preoperative CRT. 

EMT is known as one of the mechanisms that promotes 
migration, invasion and metastasis of cancer cells. EMT 

facilitates cell migration and metastasis by the conversion 
of epithelial cancer cells to a more mesenchymal-like state 
(42,43). Recently, it has been suggested that radiation may 
induce EMT (9,11). HGF has also been described as inducing 
EMT, as well as TGF-β (17,42). We observed that irradiated 
SW480 cells seemed to exhibit more aggressive proliferation 
compared with non-irradiated cells, and that pretreatment 
with anti-HGF or cMET inhibitors reduced cell invasion after 
irradiation in in vitro experiments, although not in LoVo cells. 
This could be due to a difference in responsiveness to irra-
diation between LoVo and SW480 cells, as shown in Fig. 5. 
Furthermore, inhibition of HGF or cMET before irradiation 
did not suppress cell proliferation. We speculate that HGF/
cMET inhibition may preferentially suppress cell migration 
rather than cell proliferation after irradiation. Additionally, 
our findings also suggest that radiation-induced EMT may be 
suppressed by inhibition of HGF/cMET.

Currently, preclinical and clinical studies using inhibitors 
of HGF and cMET signaling are ongoing in several cancers 
(14,27). Although the outcomes of these studies have not been 
fully disclosed in public, a therapeutic strategy targeting the 
HGF/cMET signaling pathway may contribute to developing 
novel cancer treatments, especially in combination with cyto-
toxic agents, radiation and other tyrosine-kinase inhibitors.

In conclusion, the HGF/cMET signaling pathway is signifi-
cantly associated with distant recurrence and a worse prognosis 
in rectal cancer after preoperative CRT. Additionally, radiation-
induced HGF up-regulation may indicate distant recurrence 
and a poor prognosis. The inhibition of HGF/cMET to prohibit 
HGF up-regulation by radiation may suppress not only HGF 
autocrine signaling in cancer cells, but also HGF activation in 
stromal cells, and may be useful as a new strategy to reduce 
metastatic relapses and improve survival in patients with rectal 
cancer after preoperative CRT. However, data in this study 
should be interpreted with some caution. The major limitation 
was the small number of patients (n=53), especially for patients 
with distant recurrence (n=8), and the retrospective nature of 
the study. A larger study population and a long-term follow-up 
will allow us to validate our conclusions.
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