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Abstract. Bladder cancer is three times more common in men 
than in women. However, the physiological basis of the male 
predominance of bladder cancer remains poorly understood. A 
higher than expected association of prostate and bladder 
cancers has also been reported which may indicate a common 
mechanism of carcinogenesis. Consistent with this, androgens 
and the androgen receptor (AR) play essential roles in pros-
tate carcinogenesis and are believed to play a role in bladder 
carcinogenesis. There is also evidence implicating cancer 
stem cells in prostate and bladder cancers. Indeed putative 
prostate and bladder cancer stem cells share some common 
molecular features. We highlight key proteins (CD49f, CD133, 
PTEN, CD44) which are implicated in both prostate and 
bladder cancers and are enriched in putative prostate and 
bladder cancer stem cells. We examine published chromatin 
immuno-precipitation studies analyzing the genome-wide 
distribution of the AR to identify AR association with, and 
by inference potential AR-regulation of, these loci. We 
discuss recent evidence indicating a role for the AR in the 
splicing of the key urological stem cell protein CD44. We 
propose a model whereby aberrant AR regulation of these 
putative stem cell proteins contributes to malignant transfor-
mation of prostate and bladder cells. For these reasons we 
propose that the relationship between androgens and cancer 
stem cell associated proteins warrants further investigation. 
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1. Introduction

There is evidence that many adult tissues harbour a limited 
subset of highly specialized cells which possess the capacity 
to renew and regenerate adult tissues. These adult stem cells 
share some of the functional and molecular characteristics 
of embryonic (ES) and induced pluripotent stem (iPS) cells, 
including an ability to self renew and differentiate; (1) and 
references therein. Adult stem cells have now been identified 
in many tissues, including the prostate gland (2) and urinary 
bladder (3,4). Some common solid tumors, including of 
the prostate (5) and bladder (6), are also believed to harbor 
cancer stem cells (CSCs) which are alternatively referred to as 
tumor initiating cells (TICs). These CSCs adopt the functional 
capacity to self renew and differentiate into the tumor's hetero-
geneous cell types, but lack the growth regulatory pathways of 
non-malignant stem cells (1). The evidence in support of the 
CSC hypothesis has been reviewed in detail recently (7).

Bladder and prostate cancers were estimated to account for 
over 70,000 and 217,000 new cases respectively in the United 
States in 2010 and thus represent a major clinical challenge (8). 
Invasive bladder cancers generally portend a guarded prog-
nosis, while metastatic disease remains incurable (9). Similarly 
no curative therapy exists for metastatic prostate cancer. 
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Known risk factors for bladder cancer include advanced age, 
cigarette smoking, occupational carcinogen exposures, prior 
radiotherapy and male gender (8,10). In fact, bladder cancer 
is approximately three times more common in men than in 
women (8). Moreover, when other established risk factors are 
controlled for, the male gender-related risk of bladder cancer 
persists (10). This suggests an androgenic contribution to 
bladder cancer development, which we and others have inves-
tigated (11-14). 

A higher than expected clinical association of prostate 
and bladder cancers has also been reported (15). Specifically, 
25-70% of pathological specimens from patients undergoing 
radical cystectomy for bladder cancer have been found to 
contain prostate cancer (16,17). While an increased risk of 
bladder cancer in patients undergoing radiation therapy for 
prostate cancer has been described (18), the link between these 
malignancies has also been shown to be independent of treat-
ment (15). This has been postulated to result from a common 
carcinogenic pathway, potentially initiated by urinary stasis 
and chronic inflammation; (15) and references therein. These 
findings raise the intriguing possibility that at least some 
prostate and bladder cancers share similar mechanisms of 
carcinogenesis. 

Although there have been important advances in the diag-
nosis and treatment of these cancers, the underlying molecular 
events resulting in prostate and bladder cancer initiation remain 
poorly understood. The bladder and the prostate gland of men 
share the common embryological origin in the urogenital sinus 
(19), where androgens have been shown to play important roles 
during the developmental process (20). Both the prostate (21) 
and bladder (3) are believed to harbor rare adult stem cell popu-
lations which are defined by their functional ability to regenerate 
the prostate and bladder. Some controversy exists as to the 
exact molecular identity of prostate and bladder stem cells and 
whether a stem cell phenotype can be related to the expres-
sion of specific protein markers. However, as we will outline 
below, understanding of urological stem cell function has been 
advanced by the combined use of expression of specific cell 
markers coupled with functional characterization of the ability 
of such cells to differentiate into distinct cell lineages and/or 
regenerate the prostate or bladder. In this review, we identify 
common molecular features of putative bladder and prostate 
stem cells and relate this to new data concerning the potential 
androgen regulation of these proteins in prostate and bladder 
cells. These characteristics should be considered in the context 
of the development of novel therapeutic interventions to 
prevent, reverse or delay malignant transformation of normal 
urothelial stem cells; and indeed how the unique molecular 
characteristics of transformed CSCs may be exploited as novel 
biomarkers of premalignant lesions. 

2. Prostate stem cells and cancer 

The prostate epithelium is composed of three differentiated 
cell types (Fig. 1A), luminal epithelial, basal and neuroendo-
crine cells (reviewed in ref. 22). It has long been known that 
the prostate gland involutes following androgen withdrawal, 
but retains the functional capacity to regenerate distinct pros-
tate cell lineages following androgen restoration (23). This 
regenerative capacity is attributed to an androgen responsive 

cell which does not require androgens for self renewal. Such 
androgen-independent cells could persist during multiple 
rounds of androgen ablation and restoration. Although the 
exact identity and defining molecular characteristics of the 
stem cells mobilized to regenerate the prostate are still being 
refined, the past decade has seen significant advances in our 
understanding of the roles of these cells in the normal prostate 
and of how malignant prostate stem cells contribute to localized 
and metastatic disease. Much of this work has involved using 
cell surface markers to identify and enable the functional vali-
dation of putative stem cells isolated from the mouse prostate. 
Early studies identified subsets of prostate cells with stem cell-
like characteristics, based on the expression of α2β1 integrin 
(21) and CD133 (24). These methodologies were also used to 
enrich a stem cell antigen-1-positive (Sca1+) murine prostate 
cell population which could regenerate the prostate (25). These 
cells have been further characterized by the absence of the 
CD45, CD31 and Ter119 lineage markers and the presence 
of CD49f/α6integrin/ITGA6 (2) and Trop2 (26). Subsequent 
studies utilized the expression of basal cell surface markers 
to enable identification and isolation of putative prostate stem 
cells (2,21,24-26). These cells have been shown to possess stem 
cell-like functional characteristics, including androgen indepen-
dence, self renewal and multi-lineage differentiation capacity, 
and are localized to the basal membrane of the mouse prostate 
gland (2,21,24,26). Leong and colleagues identified a distinct 
population of mouse prostate cells, also associated with the pros-
tate basal layer; these cells express stem cell factor (cKit/CD177), 
in addition to CD133 and Sca1, and can regenerate the entire 
prostate (27). Putative prostate stem cells residing within the 
basal cell layer are also susceptible to malignant transformation 
(28-30). However, prostate cancer is histologically characterized 
by a loss of glandular structures and an increase in luminal cell 
proliferation suggesting a luminal origin. Consistent with this, 
androgen-independent luminal cells expressing the Nkx3.1 
marker have been identified which possess both regenerative 
capacity and susceptibility to transformation in the absence 
of PTEN (31). Therefore, rare cells associated with both the 
prostate luminal and basal layers have been shown to possess 
stem cell-like functions and are implicated in prostate carci-
nogenesis. 

3. Bladder urothelial stem cells and cancer 

The bladder urothelium is composed of three cell layers 
(Fig. 1B); the umbrella cell layer exposed to the bladder lumen, 
the intermediate cell layer, and the basal cell layer (reviewed 
in ref. 32). Functional evidence for the existence of urothelial 
stem cells includes the ability of the bladder to repair and 
regenerate following injury (3,33). However, identification of 
the location within the bladder where these cells reside has 
proven more difficult to address. Experimental approaches 
exploiting the distinctive functional characteristics of stem 
cells, such as slow cycling time and long cellular life, have 
been applied to enrich putative stem cells from within the 
bladder cell population. This method enabled the enrichment 
of a rare population of basal bladder cells which had the 
enhanced clonogenic capacity typically associated with stem 
cells (4). These label retaining cells (LRCs) persisted up to one 
year following labeling indicating a remarkable life span of 
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these rare cells within the bladder basal layer. Further charac-
terization of this bladder LRC population indicated that these 
cells were enriched in other markers consistent with a stem 
cell phenotype, including β4-integrin (4). 

4. Androgens in prostate and bladder cancer

Androgens and the androgen receptor (AR) play complex roles 
in the earliest stages of male and female urogenital develop-
ment (34,35). The transcriptional actions of the physiological 
androgens, testosterone and dihydrotestosterone, are mediated 
by the AR, a member of the ligand-dependent transcription 
factor family of nuclear receptors (20). In addition to its role as 
a regulator of transcriptional activation, the AR has been shown 
to influence transcript splicing, including splicing of CD44 
(36-38). Androgens and the AR play a crucial though complex 
role in both prostate (39) and bladder (11,12,14) cancers. For 
example, the AR regulates the activation of distinct transcrip-
tional networks in hormone-dependent and castration-resistant 
prostate cancer (39). In bladder cancer, both androgens and the 
AR have been shown to play a role in carcinogenesis in a model 
system (12) and may represent a potential therapeutic target 
(40). Although a recent report by Mir and colleagues did not 
find an association between stage and loss of AR expression 
in bladder cancer (13), we and others have shown high levels 
of AR expression in non-invasive tumors, and a progressive 
loss of expression with increasing pathologic stage has been 
reported (11,14). Thus, the AR appears to play important roles 
in the early stages of both prostate and bladder cancers.

5. Stem cell related proteins are common to prostate and 
bladder cancer

Multiple strands of clinical and molecular evidence have 
implicated the CD49f (2,41,42), CD133 (5,24,43), CD44 
(5,6,44,45) and PTEN (46-51) proteins in prostate and bladder 
cancers. We will discuss the functional and potential clinical 
significance of each of these proteins in prostate and bladder 
cancers.

CD49f/ITGA6. CD49f, also designated as integrin-α6 (ITGA6) 
adhesion molecule, is a cell surface marker that is expressed in 
stem and progenitor cells from various tissues types including 

bone marrow, brain, embryo and mammary gland (52,53). 
The combined use of expression of CD49f/ITGA6 and other 
stem cell markers such as murine Sca-1 has been applied for 
purification of prostate stem cells (2,41). This results in an 
enrichment of prostate stem cell populations with self renewal 
activity and the ability to form spheres in vitro (2,41). Thus, 
undifferentiated murine prostate epithelial cells express stem 
cell markers including Sca1 and CD49f/ITGA6, as well as 
basal cell markers, including p63 and cytokeratins-5 and 
-14, and luminal cell markers, cytokeratins 8 and 18. Similar 
studies in breast cancer revealed that the stem cell-like 
subpopulation that expressed CD49f/ITGA6 within the human 
MCF7 breast cancer cell line had increased tumorigenicity in 
vitro, compared with those that did not express CD49f/ITGA6 
(54). Knockdown of CD49f/ITGA6 causes mammosphere-
derived cells to lose their ability to grow as mammospheres and 
abrogates their tumorigenicity in xenograft studies (55). These 
findings suggest that CD49f/ITGA6 is required for the growth 
and survival of the stem cells, and it is therefore likely to play 
a key role in oncogenesis. Consistent with this CD49f/ITGA6 
has been reported to be overexpressed in bladder cancer and is 
associated with poorer survival (42).

CD133. CD133 (AC133 or prominin 1) is a plasma membrane 
protein expressed in embryonic epithelial structures and also 
found in various adult epithelial cells and hematopoietic/
progenitor cells. Although little is known about the function of 
CD133 protein, its localisation suggests that it may be involved 
in the organisation of membrane protrusions and membrane 
topology. Transcription of CD133 is controlled by five alter-
native promoters and spliced CD133 variants with different 
cytoplasmic domains exist in specific tissues (reviewed in 
ref. 56). Initially identified as a marker of hematopoietic and 
neural stem cells, CD133 is considered to be a stem cell marker 
in several other tissues, and it is believed to play a role in the 
interaction of stem cells to their niche (57). However, the utility 
of CD133 as a stem cell marker has been questioned by recent 
evidence indicating CD133 expression is not restricted to stem 
cells in some tissues (58). However, in normal human prostate 
CD133+ cells represent ~1% of the entire cell population. These 
cells are located in the basal layer of the prostate epithelium 
and colocalize with the same rare cell population expressing 
high levels of α2β1. Importantly, CD133+/α2β1high prostate 

Figure 1. Molecular characteristics of prostate and bladder cell layers. Cellular organization and molecular markers of the prostate (A) and bladder tissue layers 
(B). Expression of specific cell surface markers has been used to enrich for specific cell types as indicated. Cells associated with both the basal and luminal 
cell layers are implicated in prostate cancer stem cell function. Bladder cancer tumor initiating cells have been identified associated with the bladder basal 
cell layer. 
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stem cells are capable of reconstituting differentiated prostate 
acini when injected into nude nice and displayed the greatest 
proliferative capacity when compared to CD133- prostate 
cell populations (24). Molecular studies of isolated CD133+/
α2β1high cells have identified an expression profile associated 
with embryonic development, where genes of the Wnt, BMP, 
TGFβ, SHH and Notch pathways regulate proliferation and 
differentiation of these stem cells (59). 

Prostate CSCs can also be identified as a CD133+ population 
and retain many features of the normal stem cell counterparts. 
Combined with the expression of CD44, prostate CSCs (CD44+/
α2β1high/CD133+), progenitor cells (CD44+/α2β1high/CD133-) and 
committed basal cells (CD44+/α2β1low) can be distinguished. 
The CD44+/α2β1high/CD133+ CSCs are rare, representing only 
0.1-0.3% of prostate primary tumours and metastases. Only 
the CD133+ fraction of prostate CSCs are capable of extensive 
proliferation in vitro and can be induced to differentiate into a 
secretory luminal phenotype expressing cytokeratin 8, AR and 
prostatic acid phosphatase (5).

Less is known about the role of CD133 as specific marker of 
bladder stem cells. To date, only one study reported the identifi-
cation of bladder CSCs from transitional cell carcinoma based 
on expression of CD133. Bentivegna and colleagues (43) have 
shown that urothelial CSCs that can be cultured as urospheres 
in serum-free conditions and in the presence of growth factors 
express high levels of CD133, and low levels of cytokeratins-5 
and -8. That only a small proportion of cells in the urospheres 
express cytokeratin 5, which has been previously reported to be 
a bona fide urothelial CSCs marker (6) and that CD133 expres-
sion is retained after urosphere cell differentiation, suggests 
that CD133 mainly identifies committed bladder progenitor cells. 
Consistent with this, urosphere-derived cells were unable to 
form tumours in a xenograft mouse model. Taken together these 
studies suggest that although the value of CD133 expression 
as marker of prostatic CSCs is well established, more work is 
needed to clarify the role of CD133 in bladder CSCs. 

CD44. CD44 is a transmembrane glycoprotein that functions 
in cell adhesion (60) and is present in both putative prostate 
(5,44,45) and bladder (6) stem cells. The CD44+ population 
of prostate cancer cells has been shown to consist of tumor-
initiating cells (5,45). Expression of CD44 splice variants has 
recently emerged as an important contributor to prostate cancer 
progression (reviewed in ref. 61). Several groups have found 
that CD44 expression correlates with metastasis and poor prog-
nosis (45,62). CD44 has recently been shown to be negatively 
regulated by miR34a, a microRNA frequently lost or reduced 
in prostate cancer (63). Consistent with this, overexpression of 
miR34a and the resulting decrease in CD44 protein has been 
shown to block prostate cancer metastasis (63). 

In the bladder, CD44 is expressed in the basal cells, the 
region postulated to harbor the bladder stem cells (64). Recent 
reports indicate that a sub-population of CD44+ cells consti-
tutes bladder tumor initiating cells (6,65). Basal cell marker 
expression was confirmed by demonstrating the expression of 
cytokeratin 5 in the CD44+ cell subpopulation (6). Chan and 
colleagues also suggest that CD44 expression in tumor cell 
subpopulations correlates with muscle invasion and poor prog-
nosis, even in non-muscle invasive tumor specimens (6). It is 
interesting to speculate that this potential association of CD44 
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with poorer outcome may be useful in the future in guiding 
therapeutic plans for patients with bladder cancer. 

Some controversy remains regarding the significance 
of CD44 expression in aggressive bladder cancers. There is 
evidence indicating that expression of CD44 is lost or hetero-
geneous in higher grade bladder tumors (66,67). One possible 
explanation is that loss of CD44 and the concomitant disrup-
tion in cell adhesion may be required for tumor progression. 
In this way elevated CD44 may have a role in localized cancer 
and its loss may facilitate invasion. While further research 
is required to clarify the function of CD44 in bladder tumor 
progression, current data support the potential of CD44 as a 
prognostic tool for bladder cancer.

PTEN. Epigenetic silencing of tumor suppressor genes has 
emerged as an important process in carcinogenesis (68) and 
occurs in prostate (46-48) and bladder cancers (49-51). One 
important example in urologic cancer is the PTEN tumor 
suppressor gene, expression of which is lost in >50% of advanced 
prostate cancers (69,70 and references therein) and some bladder 
cancers (71,72). PTEN has recently been shown to be essential 
for the maintenance of hematopoietic stem cell function and 
prevention of leukaemogenesis (73-75), which suggests that 
PTEN possesses broader roles in the maintenance of normal 
stem cell function and inhibition of malignant transformation 
of adult stem cells. PTEN loss in advanced prostate cancers is 
associated with progression to androgen-independent disease 
(70), a phenotypic feature similar to the androgen-indepen-
dence predicted to be necessary for prostatic stem cell survival 

as discussed earlier. Consistent with this, deletion of the Pten 
gene in a mouse model results in expansion of a prostatic stem 
cell population and tumor initiation (76). Similarly, inactiva-
tion of PTEN and p53 cooperatively contributes to muscle 
invasive bladder cancer in a mouse model (77). In this context 
it is interesting to note that although expression of PTEN is 
decreased or altered in only a minority of bladder cancers, loss 
of the 10q locus and/or PTEN expression has been shown to 
be associated with a muscle invasive bladder cancer phenotype 
(78-80) as compared to superficial bladder cancer lesions (81). 

6. Androgen receptor occupancy of putative stem cell loci 
and regulation of CD44 splicing

The genomewide distribution of the AR has been determined 
using chromatin immunoprecipitation (ChIP) studies coupled 
with genomic microarray analysis (ChIP-chip) (39,82) and 
ChIP coupled with next generation/high throughput sequencing 
techniques (ChIP-seq) (Fig. 2; Table I). In this method, anti-
bodies specific to transcription factor of interest, such as the 
AR, can be used to immunoprecipitate and isolate fragments 

Figure 2. Genomewide chromatin immunoprecipitation (ChIP) assays identify 
transcription factor binding. Chromatin is composed of DNA and associated 
histone proteins. The use of antibodies selective to transcription factors such 
as the AR, permit the isolation of chromatin fragments associated with the 
AR-complex. The region of DNA bound by the AR complex can be identified 
either by ChIP coupled with genomic tiling microarray technology (ChIP-on-
chip) or ChIP coupled with next generation/high throughput DNA sequencing 
(ChIP-seq). 

Figure 3. AR binding in stem cell loci and regulation of CD44 splicing. Genome 
coordinates for AR occupancy in human skeletal muscle myoblasts (accession 
no.: GSE22076) and LnCaP (accession no.: GSE14028) and VCaP (accession 
no.: GSE14028) prostate cancer cells were downloaded from the NCBI GEO 
database. LnCaP and LnCaP-abl ChIP-chip data were accessed from the Brown 
lab (http://research4.dfci.harvard.edu/brownlab//datasets/). All genome coor-
dinates were loaded as custom tracks into the UCSC genome browser (http://
genome.ucsc.edu/) and AR occupancy of stem cell loci examined. Using these 
datasets, we have identified AR occupancy of the CD44 (A), CD49f/integrin-
a6 (B); CD133 (C); and PTEN (D) loci. Exons and introns are indicated. 
Approximate location of AR binding sites as detected in LnCaP, the androgen 
independent LnCaP-abl line, VCaP prostate cancer cells and human skeletal 
muscle myoblast cells (HSMM) are indicated; based on published findings 
(39,82-84). (E) AR regulates splicing of the CD44 transcript (36-38). Standard 
exons (grayscale) and variant exons are indicated in black. Variant exon 1 gives 
rise to a truncated protein. 
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of DNA bound by the AR in vivo. In this way it is possible 
to identify genomic DNA sequences bound by the AR. ChIP 
assays permit the unbiased and genomewide determination 
of transcription factor occupancy when coupled with next 
generation high throughput DNA sequencing (ChIP-seq), an 
approach which is now superseding the more established ChIP 
coupled with genomic tiling microarray (ChIP-chip) method 
(Fig. 2). These ChIP approaches, when complemented by tran-
scriptomic methods using either mRNA microarray analysis or 
RNA sequencing, can identify direct transcriptional regulation 
of target genes. These highly reliable methods have permitted 
the identification of AR occupancy in a variety of cell types 
including androgen-responsive LnCaP (39,83), TMPRSS2-ERG 
fusion-positive VCaP prostate cancer cells (83), the androgen-
independent derivative of LnCaP, LnCaP-abl (39) and human 
skeletal muscle myoblasts (HSMM) (82). 

ChIP assays have proven to be a powerful technique to 
determine transcription factor binding and mechanisms of 
transcriptional regulation (39,82-84). One limitation to these 
methodologies is that transcription factors can exhibit cell 
type-specific functions and genomic distributions. However, 
the consistent identification of AR binding at specific loci in 
different cell types and across species increases the confidence 
of functional significance to this AR binding. For example, 
genomewide ChIP-seq studies have identified over 37,000 loci 
occupied by agonist bound AR in LnCaP and over 12,000 
AR-loci in VCaP prostate cancer cells (83). The AR bound 
loci identified by ChIP-seq (83) in LnCaP included 82% of 
the loci previously identified by ChIP-chip in LnCaP (39), 
demonstrating the reproducibility and robustness of these 
techniques. Similarly, ChIP-chip analysis identified >32,000 
DNA regions occupied by the AR in skeletal muscle cells, 
the majority (91.53%) of which are located in intergenic and 
intronic regions (82). Our analyses of these datasets have iden-
tified AR occupancy of the CD44, CD49f/integrin-α6, CD133 
and PTEN loci (Fig. 3A-D). A recent genome-wide analysis of 
AR in mouse epididymis reveals only a minority of conserva-
tion of AR binding sites between human and mouse genomes 
(84). Interestingly, this study did identify hormone dependent 
AR occupancy at the mouse CD49f, CD133 and CD44 loci, 
suggesting potential conservation of AR function at these key 
loci between these species. Therefore we can infer the poten-
tial for AR regulation of these key stem cell loci by revealing 
here AR occupancy of these genomic regions in a variety of 
human and mouse cell types. Direct study of androgen regula-
tion of CD49f, CD133, CD44 and PTEN expression and function 
in prostate and bladder stem cells has yet to be reported. This 
reflects the technical challenge of isolating and expanding such 
cells in culture for genome-wide ChIP analyses. However our 
analysis suggests that further examination of androgen and 
AR-regulation of stem cell function is needed. 

The transcriptional roles of the AR are well understood (14). 
Less well recognized is the role of AR in regulating alternate 
splicing of target transcripts (36-38). One important consider-
ation with respect to CD44 and urological cancers is the ability 
of androgens and AR to regulate alternate splicing of the CD44 
transcript (36-38) (Fig. 3E). CSCs appear to differ from normal 
cells by the expression of distinct CD44 variants (reviewed in 
ref. 85). Indeed, distinct pro-tumorigenic and metastatic func-
tions have recently been attributed to CD44 variants (86-88), 

whereas restoration of standard CD44 expression appears 
to diminish prostate cancer proliferation (89). This raises the 
interesting possibility that alterations in AR regulation of CD44 
splicing may play a role in androgen related cancers, such as 
prostate and bladder cancer.

7. Future perspectives and conclusions 

In conclusion, we have identified key proteins implicated in 
CSCs function which play roles in both prostate and bladder 
cancers. Furthermore we highlight experimental evidence which 
indicates the recruitment of the AR to these key loci in prostate 
cancer cells (39,83) and other cell types (82,84). We discussed 
how the AR can play a role in the regulation of splicing of a 
key stem cell protein, CD44, which is implicated in prostate 
and bladder cancer. In our model, the AR may contribute to 
the earliest events of prostate and bladder cell transformation 
and the adoption of a malignant CSC phenotype through the 
aberrant regulation of CD49f, CD44, CD133 and PTEN. In this 
way, androgen function may contribute to both prostate carci-
nogenesis and the gender disparity in bladder cancer incidence. 
For these reasons we propose that the relationship between 
androgens and urological stem cell function warrants further 
investigation.
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