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Abstract. In some inflammasomes tumor cells are generated. 
The internal environment of the inflammasome is conducive to 
the induction of malignant transformation. Epigenetic changes 
initiate this process. The subverted stromal connective tissue 
cells act to promote and sustain the process of malignant trans­
formation. In its early stages, the premalignant cells depend on 
paracrine circuitries for the reception of growth factors. The 
ligands are derived from the connective tissue, and the receptors 
are expressed on the recipient premalignant cells. The initial 
events are not a direct attack on the proto-oncogenes, and thus it 
may be entirely reversible. Epigenetic processes of hypermeth-
ylation of the genes at the promoters of tumor suppressor genes 
(to silence them), and deacetylation of the histones aimed at the 
promoters of proto-oncogenes (to activate them) are on-going. 
A large number of short RNA sequences (interfering, micro-, 
short hairpin, non-coding RNAs) silence tumor suppressor 
genes, by neutralizing their mRNAs. In a serial sequence 
oncogenes undergo amplifications, point-mutations, transloca-
tions and fusions. In its earliest stage, the process is reversible 
by demethylation of the silenced suppressor gene promoters 
(to reactivate them), or re-acetylation of the histones of the 

oncogene promoters, thus de-activating them. The external 
administration of histone deacetylase inhibitors usually leads 
to the restoration of histone acetylation. In time, the uncor-
rected processes solidify into constitutive and irreversible gene 
mutations. Some of the pathogens inducing inflammations with 
consquential malignant transformation contain oncogenic gene 
sequences (papilloma viruses, Epstein-Barr virus, Kaposi's 
sarcoma-associated herpesvirus, hepatitis B and C viruses, 
Merkel cell polyoma virus, Helicobacter pylori, enterotoxigenic 
Bacteroides fragilis). These induced malignancies may be 
multifocal. Other pathogens are devoid of any known onco-
genic genomic sequences (mycoplasma vav-carcinogenesis, 
chlamydia MALT-lymphoma genesis). In these cases the host's 
inflammatory reactions induce the malignant transformation 
in serial sequences of gene alterations initiated by hypoxia and 
reactive oxygen and nitrogen species generation. Carcinogenic 
intrinsic inflammatory processes endogenously initiated 
without a pathogen are recognized. Chronic inflammatory 
processes signal the RNA/DNA complex. In response, the DNA 
may revert into its ancient primordial ‘immortal’ format, which 
the clinics recognize as ‘oncogenesis’. The DNA remains the 
ultimate master of bioengineering in order to sustain life. A 
discussion on the most versatile and resistant primordial RNA/
DNA complex and the pre-, proto-, and unicellular world in 
which they co-existed is included.
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1. Pathogens without oncogenic genomic sequences acti-
vating cellular oncogenes

History. Credit goes to Jean-Nicolas Marjolin (1780-1850) for 
observing and reporting carcinogenesis in chronic fistulous 
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tracts. He described the ‘ulcéres verruques’ in the hotbed of 
chronic infections (osteomyelitis with fistulous tracts): ‘Ulcére 
de Marjolin sur ostéite chronique’. He became the Membre de 
l'Académie de Médicine Français, Paris, France. Contemporary 
histopathology confirms these lesions to be verrucous squa-
mous cell carcinomas, which may originate in any chronic 
pustulous infected sites (‘ulcéres suppurantes’), like in ‘hidrad-
enitis suppurativa’ or in anal fissures (‘papules péri-anales’) 
and even in gingiva, tongue, and the oropharynx (vide infra).

Rudolf Virchow (1821-1902) described the inflammatory 
environment ‘Phlogose und Thrombose im Gefässsystem’ of 
malignant tumors (‘die krankhaften Geschwülste’). Recently, 
Virchow was remembered in the Lancet for his early observa-
tion (1863) that chronic inflammatory processes accompany, 
and may even induce, cancers (1).

Septicemia. The monks ‘Brothers of St. Anthony’ recognized 
the high rate of mortality when they attended patients in the 
1500's, who suffered hemorrhagic and septic shock after 
consuming bread baked with Claviceps purpurea infected 
wheat. The alkaloid ergotamine of the fungus caused severe 
widespread vasculitis further complicated by septic shock, when 
guts perforated and peritonitis set in (Fig. 1) (2). High early 
mortality might have eliminated those patients who might have 
increased their susceptibility to late cancers due to suppressor 
gene silencing or oncogene activations during the acute illness. 

Hemorrhagic and septic shock remained an acute compli-
cation of the highest mortality in the practice of medicine, 
especially when combination chemotherapy was introduced in 
medical oncology/hematology. This author attended patients 
with hemorrhagic and septic shock at the M.D. Anderson 
Hospital, University of Texas, Houston, TX, in the 1960's and 
1970's (3-6). Those were the years when a leukemic patient with 
post-chemotherapy leukopenic fevers could die in pseudomonas 
septicemia with multiple vital organ failures within 24 h. 

A major recognition in the pathogenesis of hemorrhagic-
septic shock is the role of the histone deacetylases. Histone 
deacetylation is balanced by the activities of histone acetyltrans-
ferases that transfer acetyl groups from acetyl coenzymes to 
lysines (K) within the histone molecules. Histone deacetylases 
catalyze the removal of acetyl groups from the lysins. Histone 
deacetylases Class I, II, III, IV are preserved from the yeasts on 
upward in the evolutionary scale. Class I, II, and IV enzymes 
are zinc-dependent and occupy various intracellular localiza-
tions. Class III enzymes (sirtuins) are nicotinamide adenine 
dinucleotide-dependent. The genes of histone deacetylases are 
sensitive to inhibitors (HDACIs), and as such HDACIs exert 
neuro-, cardio-, and renal-protective effects in patients with 
hemorrhagic-septic shock. In the precancerous state, prominent 
is the activation of the PI3-kinase/Akt pathway (phosphatidyl 
inositol, akt transforming oncogene from thymic lymphoma of 
Jacob Furth's high leukemia Ak, later Rockefeller Institute AKR, 
mice), which is frequently activated as a cell-survival pathway 
in early events of carcinogenesis. Consequentially to PI3k/Akt 
activation, insulin-like growth factors (IGF), erythropoietin 
(EPO) and anti-apoptotic cytokines are activated. At the same 
time HDACIs inhibit Toll-like receptor TLR4, whose response 
to lipopolysaccharide (LPS) endotoxins is the activation of 
IL-1β and MyD88 (myeloid differentiation factor/scaffold) and 
IRAK (IL-1 receptor-associated kinase). Further suppressive 
effects of HDACIs are to the anti-apoptotic molecule Bcl-2, 
and the intranuclear transfer of β-catenin, which are frequently 
activated in early carcinogenesis. The pro-apoptotic tumor 
suppressor PTEN (phosphatase and tensin homolog deleted in 
chromosome 10: 10q23) may be inhibited by HDACIs, but this 
effect protects cardiomyocytes from apoptotic death. PTEN is 
an inhibitor of the PI3K/Akt pathway (7,8).

Heat shock protein 70 (Hsp70) is induced by HDACIs, 
thus it exerts its cell-protective and anti-inflammatory effects. 
Member of the large family of chaperone Hsp, Hsp70, may 
protect proteins in cancer cells exposed to chemoradiotherapy. 
However, 2-phenylethyne-sulfonamide (PES) inhibits this tumor 
cell-protective effect (9). In squamous carcinoma cells, Hsp70 
acting as a binding protein to Bcl-2-associated athanogene-1 
(Bag-1) conveyed apoptosis-resistance. Hsp70 and Hsp90 protect 
metalloproteinase-2 in breast cancer cells and assist cancer cell 
migration and locomotion. Hyperthermia (or fever) mobilized 
Hsp70 to promote dendritic cell (DC) maturation, macrophage 
phagocytosis and pro-inflammatory cytokine (IL-8, IL-12) 
production (10-12). 

Bacterial translocations to mesenteric lymph nodes, liver 
and spleen occur early in both hemorrhagic and septic shock. 
Epigenetic gene activations and gene silencing occur in the 
process. At lysine (K) 4 of activator histone 3, triple methylation 
(me3) occurs (H3K4me3) and results in silenced post-trans­
lational modifications. At lysine (K) 27 of suppressor histone 3, 
triple methylation (me3) occurs (H3K27me3) and results in 
up-regulated post-translational modifications (13). Endotoxin- 
(LPS-) stimulated TLR4 activates myeloid differentiation 
factor 88, the scaffold protein (MyD88), IL-1β, IL-6, IL-12 and 
TNFα. Of the IL-1 receptor-associated kinases (vide supra) 
IRAK-1 translocates to the nucleus, where it activates STAT 
and IL-10. Variant IRAK-1 haplotype associates with nuclear 
factor κB (NFκB, the reticuloendothelial virus' c-onc → v-onc, 
Rel oncoprotein) overactivity; NFκB is liberated, transfers to the 

Figure 1. Altarpiece ‘The suffering man’ by Matthias Grünewald, 1480-1528. 
Bread baked from wheat infected with Claviceps purpurea contained the toxin 
ergotamine. Consumption of this bread resulted in extensive severe vasculitis 
and bowel perforations. These patients died with hemorrhagic and septic shock. 
The ‘suffering man’ is in the left lower corner of the painting. In the middle (not 
shown) St. Anthony is praying over the patient. The monks ‘Brothers of St. 
Anthony’ stand behind awaiting for their turn to extend help and care to the 
dying man. Reprinted with permission.
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nuclei and through gene activations releases an excess of pro-
inflammatory mediators. These events increase the fatal outcome 
of endotoxin shock (14). Endogenously released alarmins and 
damage-associated molecular patterns (DAMPs) act as ligands 
to TLR4. Such endogenous ligands of TLR4 are Hsp70 and some 
high-mobility group box 1 proteins (HMGB). Some of these 
reactions occur also early in oncogenesis (15). At the clinics, 
exogenously administered HDACIs antagonize practically all 
of these reactions (8). In the patients, it is the HMG protein B1 
that performs DNA repair and chromatin modification after 
DNA damage. However, because of its role in mediating lethal 
systemic inflammation, HMGB1 is targeted for elimination. In 
contrast, HMGB1 in protecting against mutagenesis and acting 
for repairing DNA damage, it reduces or eliminates post-septic 
shock carcinogenesis, and for these reasons it should be saved 
(16). Indeed, the rate of post-septicemic oncogenesis does not 
appear to exceed that of the general population. However, the 
high mortality and short life span of patients in hemorrhagic/
septic shock might have eliminated those individuals who would 
have had experienced inflammatory carcinogenesis.

Variant IRAK-haplotypes regulate NFκB activation in 
sepsis and increased NFκB activity carries higher mortality 
(14), thus eliminating those patients who suffered oncogene acti-
vations. The saffron-derived carotenoid, crocetin, suppresses 
microRNA expression (in rat livers) for tumor necrosis factor α 
(TNFα), interleukin-1β (IL-1β) and inducible nitric oxide 
synthase (iNOS), thus alleviating the pathophysiology of the 
condition (17).

In septic shock, LPS-stimulated dendritic cells (DCs) 
excessively produce IL-6. MicroRNA 142-3p targets an un- 
translated region (UTR) of the IL-6 mRNA in DCs and thus 
reduces IL-6 production. Consequentially mortality in septic 
shock increases. An oligonucleotide (locked nucleic acid-
modified phosphorothioate oligonucleotide complementary to 
miRNA-142-3p) restores IL-6 production in DCs and reduces 
mortality (18). This report is difficult to comprehend, because 
it investigated only one pathway of the most complicated 
events active in septic shock, where IL-6 may act parado­
xically both in pro- and anti-inflammatory contexts, and 
miRNA-142-3p acts also on lymphocytes and macrophages. 
Further, microRNAs -9, -21, -146, -147, and -155 are also 
active participants (18).

An interesting corollary is the function of microRNA-
142-3p in connection with the expression of fusion oncogene 
mll and its production of oncoprotein MLL (mixed lineage 
leukemia). The gene derives from the trithorax homologue of 
the drosophila; its locus in the human genome is at 11q23. It 
fuses quite promiscuously with various gene segment partners. 
When fused with AF4 proto-oncogene segment from 4q31 
(asymmetric fmr2 gene; fmr2 = fragile mental retardation), it 
is associated with the induction of pro-B cell acute leukemias 
of newborn infants (19-21). The microRNA-142-3p targets the 
3'UTR (untranslated) fragment of the mRNA from fused gene 
mll/af4 (17), thus it exerts anti-leukemia effects.

Epigenetic oncogenesis. Epigenetic events provide a link to 
oncogenesis and lead to the use of the new terminology ‘epige­
netic field for cancerization’ and ‘epigenetic switch linking 
inflammation to cancer’ (22). One of the experimental supports 
for the use of the new terminology comes from the Harvard 

Medical School. The activation of the src proto-oncogene trig-
gers NFκB-mediated inflammatory response leading to the 
production of microRNA Lin-28 (lin = cell lineage abnormal 
in the nematode caenorhabditis and upward) and to the down-
regulation of microRNA Let-7 (let = lethal in caenorhabditis 
and upward). Let-7 being an inhibitor of IL-6 production, its 
down-regulation leads to increased levels of IL-6. IL-6 activates 
the STAT3 pathway and further activates NFκB. STAT is an 
activator of microRNA-21 and miR-181b-1. These microRNAs 
inactivate the tumor suppressor genes PTEN and CYLD (23,24) 
(PTEN = phosphatase and tensin homolog on chromosome ten, 
10q23; CYLD = cylindromatosis turban tumor suppressor gene 
on chromosome 16q12-q13).

In inflamed tissues, the short non-coding microRNA-155 
inhibits the repair of dsDNA breaks, or allows mismatch 
repairs. These cells assume the ‘mutator phenotype’ and 
overexpress hypoxanthine phosphoribosyl-transferase to 
reflect to the excessive number of DNS breaks and mutations. 
Antibiotics (doxycycline), and LPS-induced inflammatory 
cytokines (TNF family members, IL-1β, IL-6, IL-8) increase 
microRNA-155 expression in cancer cells. More dsDNA breaks 
follow. LPS-stimulated macrophage-conditioned medium 
imitates the effects of microRNA-155. The proliferation rate 
of adenocarcinoma cells is accelerated by microRNA-155. The 
cell cycle inhibitor Wee (small, in Scottish, by its discoverer 
Dr Paul Nurse working in Edinburgh), the wee gene product 
protein, the Wee kinase, is down-regulated by microRNA-155 
(25). Thus, microRNA-155 removes the cyclin-dependent kinase 
(CDK) mitotic inhibitor, allowing uninhibited cell divisions to 
proceed. An anti-sense microRNA-155 iRNA (interfering RNA) 
neutralizes microRNA-155. The wee gene product protein WEE 
re-appears and mitoses come to a halt (26). The originally studied 
Schizosaccharomyces pombe cells with active Wee were non-
dividing and remained small (wee), whereas the dividing cells 
(no Wee) were large. The anti-mitotic tumor suppressor gene wee 
is often eliminated in human cancer cells (27). Inactivation of 
Wee by microRNA-155 is one of the mechanisms of inflamma-
tory carcinogenesis (25-27).

Among other cancers, microRNA-155 is up-regulated in 
breast cancers. Three microRNAs (miR195, miRNA let-7a, 
miRNA-155) circulating in the blood of patients are practically 
diagnostic of breast cancer in 88% sensitivity and 91% speci-
ficity (28).

The Argonaute (AGO; the argonautes sailed for king Colchis' 
Golden Fleece guarded by dragons) family of proteins interacts 
with mi- and siRNAs and form miRNP complexes that regu-
late post-transcriptional gene expressions. The ancient AGO 
proteins in archaea and prokaryotes provide defense against 
intruding elements (phage genomes, retrotransposons). The 
modern AGO proteins are essential stabilizing core substances 
of the microRNA siRNA-induced gene silencing complexes 
(RISCs) (29,30).

The long intranuclear pri-miRs are processed by the 
intranuclear enzyme Drosha into 60-70 bp hairpin sequences 
(pre-miRs). Dicer loads the processed pre-miR sequences into 
RISCs. The cytoplasmic Dicer enzyme's (RNase endonuclease) 
substrate, the shRNAs, and/or the siRNAs are loaded into the 
AGO proteins. In human cells, Ago-2 cleaves the ds siRNA to 
a ss RNA. The microRNA (mi-R) duplexes also form RISC 
complexes. Special mi-Rs are able to neutralize mRNAs 
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traveling into the ribosomes to be translated into oncoproteins 
(31,32). Nanoparticle cyclodextrin polycations holding siRNAs 
complementary to the Ewing's sarcoma fusion oncoprotein Ews/
Fli1 (Ewing sarcoma breakpoint region I-flightless I drosophila 
homolog). In a mouse model of metastatic Ewing's sarcoma, 
this siRNA inhibited tumor growth (33). The CALAA-01 
(cyclodextrin-containing polymer, synthetic nanoparticle 
formulated siRNA, human transferrin ligand aimed at the 
transferrin receptor) human clinical trial has been approved by 
the FDA (34,35). The system prevents genomic intrusion, be it 
viral and/or oncogenic, thus it essentially prevents infection and 
inflammatory reactions to it, as it destroys the pathogen, be it 
viral, bacterial, or tumoral mRNAs, before its translation and 
multiplication.

Cancers originating in scars, chronic fistulous tracts and 
in lesions of periodontitis. It has been repeatedly observed 
throughout medical history that burn scars, scars left behind 
after zoster infections, or small pox vaccinations, chronic 
purulent fistulous tracts (anorectal, osteomyelytic, non-healing 
axillary hidradenitis) may convert in time commonly into 
‘verrucous’ squamous cell-, rarely into adenocarcinoma (36-46). 
Unfortunately the genomics of these tumors were seldom if ever 
studied; only the documented cytological pathology reports are 
available as classical examples of inflammatory carcinogenesis: 
arising as verrucous squamous cell carcinomas in the chronic 
inflammasome.

There is no accepted proof confirming viral etiology (human 
papilloma virus, Merkel cell polyomavirus) for Marjolin ulcers 
or verrucous squamous cell carcinomas. In classical Merkel cell 
carcinomas, sequences of the viral genome are integrated in 
the host cell genome, and the viral T oncoprotein is mutated. 
In cutaneous squamous cell carcinomas of immunocompetent 
individuals, the polymerase chain reaction (PCR) was used for 
the detection of Merkel viral genomic sequences including those 
of the T antigen. Merkel polyomaviral infection was detectable 
in tumors of epidermodysplasia verruciformis, Bowen's disease, 
and some basal cell and sqamous cell carcinomas, but without 
T antigen mutations, or proven viral integration. However, in 
some squamous cell carcinomas, the Merkel polyomaviral 
genome was integrated, and the mutated T antigen was trun-
cated. This finding was limited to only of 15% (26/177) of the 
squamous carcinomas tested (47-49).

At the Roswell Park Cancer Institute, Buffalo, NY, patients 
with chronic periodontitis were found to experience an increased 
incidence of squamous cell carcinomas of the tongue and the 
oral cavity (50,51). Human papillomavirus carriers were not 
readily recognized (52), but bacteriological cultures point to a 
particular pathogen, Porphyromonas gingivalis. P. gingivalis 
may be dominant, but it is not alone: Chlamydia sp. and 
Prevotella sp. are also present in chronically inflamed gingival 
pockets (53,54a). As a fellow traveler, Epstein-Barr virus 
(EBV, vide infra) was frequently present in lesions of apical 
periodontitis (54b). P. gingivalis induces matrix metallopro-
teinase-9 (MMP) expression in human oral mucosal epidermal 
cells and dysregulates the expression of B7-H1 and B7-DC 
receptors in human gingival keratinocytes and squamous carci-
noma cells (55-57). B7-H1, when expressed by DCs, induces 
the generation of antigen-specific CD4+Fox3+ Treg cells, thus 
inducing tolerance toward selected antigens. Whereas, down-

regulated B7-H1 receptor allows the generation of antigen-specific 
CD4+ T cell responses and antigen-specific IgG production. In 
contrast, B7-DC does not bind T lymphocyte-associated antigen 
CTLA-4; it induces interferon-γ (IFN-γ), but not IL-4 and IL-10 
secretion. Thus, B7-DC promotes the anti-tolerogenic Th1-type 
immunological environment. B7-H1 deficiency results in 
tolerogenic CD4+ and invariant iNKT cell generation (58-60). 
The advanced B7 systems are non-existent in teleost and bony 
fish that are in possession of the VDJ/RAG/RSS (variable, 
diversity, joining; recombination activating genes; recombina-
tion signal sequences) systems. The advanced B7 and ICOS 
(inducible T cell co-stimulator) systems were acquired later in 
the evolutionary scale (61,62).

The epigenetics/genomics of squamous cell carcinoma genera-
tion. In head and neck and in particular in maxillary sinus 
squamous cell carcinomas the microRNAs miR-1 and miR-133a 
close to be knocked out. These are tumor suppressive microRNAs 
and their elimination is essential for successful carcinogenesis. 
In contrast, transgelin2 and purine nucleoside phosphorylase 
levels rise in tumor tissues, when miR-1 and miR-133 are down-
regulated. Transgelin-deprived squamous cancer cells ceased 
to have mitoses and invasive activities (63ab,64). Further, 
therapeutic interventions influence the composition of tumor 
infiltrating lymphocytes. Naturally, the chemokine CCL22 
invites the infiltration of anti-immune Treg cells. These are the 
CD4+C25+FoxP3+ tumor-supportive lymphocytes. Hyperthermia 
treatment encouraged an increased infiltration of both Treg 
and CD4+CD25- cells. Hyperthermia and irradiation induced 
only enhanced CD4+CD25- cell infiltration and resulted in 
decreased Treg cell infiltration without affecting the enhanced 
CD4+CD25- cell infiltration (65).

The tumor suppressor protein, programmed cell death 4 
(PDCD4), exerts also pro-inflammatory effects by up-regulating 
IL-6 and NFκB production, decreasing IL-10 production, and 
increasing the mortality of endotoxin (LPS) shock. In contrast, 
the PDCD4 antagonist, microRNA-21, is activated by the 
LPS/MyD88/NFκB cascade, or by IL-6 regulated activation 
of STAT3; then miR-21 exerts anti-inflammatory effects. As 
miR-21 down-regulates PDCD4, it raises IL-10 levels, thus 
establishing a PDCD4-deficient tolerogen internal environment. 
Other NFκB-induced inflammatory cytokines are TNFα and 
IL-1β. Other consequences of PDCD4 loss is the activation of 
the PI3K/Akt ‘cell survival pathway’ commonly used by cancer 
cells. If an oligonucleotide knocked out miR-21, would the 
pro-inflammatory (consequentially pro-carcinogenic) effects of 
PDCD increase? The integrity of PDCD could be protected by 
preserving its mRNA by morpholino 21 (66).

Both IL-1αβ drive squamous carcinoma cells in the 
head and neck. Especially, cyclooxygenase-2 (COX-2) is 
activated. Oncoproteins Snail and Twist promote epithelial-to-
mesenchymal (EMT) transitions of the tumor cells. The Snail 
oncoprotein activates the colony stimulating factor-1 (CSF-1), 
which attracts macrophages; some of these macrophages convert 
into the M2/tumor-associated macrophage (TAM) lineage. 
The proliferation of IL-17/IL-6/STAT3-activated keratinocytes 
is driven by γδT-17 (IL-17 producing) lymphocytes. IL-17 
induces IL-6 production in the macrophages. IL-6 activates ‘cell 
survival cascade STAT3’ in the keratinocytes. When IL-17 acti-
vates neutrophil leukocytes, endothelial cells and monocytes, it 
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is pro-carcinogenic. When IL-17 promotes DCs, and activates 
NK cells and T lineage lymphocytes, it exerts antitumor effects. 
Tumor cells and their microenvironment with knock-out of 
STAT3 generate neutrophil leukocytes, and NK and T cells 
of anti-tumor efficiency. Within reactive DCs, the silencing of 
STAT3 breaks tumor antigen-specific T cell anergy. A siRNA 
oligonucleotide and the STAT3 antagonist stattic emerge as 
clinically effective inhibitors of the STAT3 pathway (67-70).

Patients with intraoral leukoplakia and dysplasia are at risk 
to advance to have squamous cell carcinoma. The gene CDK 
N2A encodes the p16INK4A (inhibit CDK4) protein. Methylation 
of cytosine-post-guanine CpG islands in the genome of the gene 
silences it. Progression of oral epithelial dysplasia to squamous 
cell carcinoma begins with the silencing of the p16INK4A gene 
(71). In squamous cell carcinoma of the nasopharynx, promoter 
methylations in the CpG islands of the ubiquitin carboxyl 
terminal hydrolase 1 (UCHL1) gene opens up gates for carcino-
genesis. The UCHL1 gene protects p53 and p14ARF (alternative 
reading frame), which are doomed to ubiquitination, when the 
gene product proteins are fused (complexed) with the MDM2 
protein (named after ‘mouse double minus’) human homolog 
gene product protein. The UCHL1 protein de-ubiquitinates the 
p53 and p14ARF proteins and sends the MDM protein to ubiqui-
tination. The p14ARF protein protects the p53 protein, but only 
the UCHL1 gene product protein encoded from locus 4p11-14 
is able to eliminate MDM2 (72). This is the tumor to whose 
etiology EBV's latent membrane proteins (LMP, vide infra) with 
or without the human papilloma virus 16's E6 and E7 oncogenes 
(vide infra) so decisively contributed.

Transforming growth factor β receptors II and III (TGFβR) 
are silenced in the epithelial layer and in the carcinoma-
associated fibroblasts of oral squamous cell carcinomas. TGFβI 
activates through IL-17 an inflammatory reaction in prema-
lignant squamous cell lesions and thus inhibits the growth 
and metastases of squamous cell carcinomas in the tongue. 
This very same ligand down-regulated TGFβRII and III, thus 
promoting tumor progression. The dual role of TGFβ consists 
of inhibitory effects on tumor growth, and/or tumor growth 
promotion through activation of myofibroblasts of the tumor 
microenvironment. The tumor-associated fibroblasts (myofibro-
blasts) produce keratinocyte growth factor (KGF) and matrix 
metalloproteinase (MMP) for paracrine receptors of the tumor 
cells. TGFβ ligands (decapentaplegic, from drosophila) acti-
vate the downstream mediator smad genes (signaling mothers 
against decapentaplegic, from the drosophila). Smad signaling 
operates within the MAPK, NFκB and sonic hedgehog (sHH) 
network. TGFβ ligands interact with miR-192 and miR377, but 
antagonize miR-29a; many more such interactions are awaiting 
recognition (73-76).

Oral cavity squamous carcinoma (OSCC) cells may use an 
overexpressed autocrine IL-6 → IL-6R circuitry for their own 
growth stimulation. The growth of human OSCC xenografts was 
inhibited by the anti-IL-6R humanized monoclonal antibody 
(mcab) tocizilumab. In the treated animals, the STAT3 pathway, 
and tumor-directed neoangiogenesis both were inhibited. 
Further, MMP-9 and IL-8 productions were also ablated. Thus, 
both autocrine and paracrine tumor growth factor circuitries 
were targeted by the mcab tocizilumab (77,78). Other inhibitors 
of OSCC growth factors are anti-IL-8 siRNA; and aspirin and 
bortezomib for the proteasome/NFκB pathways (78). The strong 

efficiency of anti-inflammatory agents against OSCC proves that 
inflammatory processes initiate and sustain this tumor. In this 
case again, it is the epigenetics that initiated carcinogenesis. IL-6 
induced global hypomethylation of the long interspersed nuclear 
element-1 (LINE-1), and executed silencing hypermethylations 
in the CpG islands of the promoters of tumor suppressor genes 
CHFR (checkpoint forkhead zink finger domain); GATA5 [for 
full sense and anti-sense GATA5M and GATA5U (79)]; and 
PAX6 (paired box genes) (80).

Rapidly enlarging OSCC tumor masses extend into avas-
cular and hypoxic environments. These tumor cells can adapt 
to, and grow, in hypoxic environments. Both hypoxia induc-
ible factors (HIF1 and HIF2) promote tumor cell divisions in 
hypoxic environments. Patients with tumors showing strong 
nuclear staining for HIFs experienced shortened overall and 
tumor-free survivals. Lentivirally encoded anti-HIF1/HIF2 
shRNA short hairpin anti-sense molecules 1 and 2 knocked 
out both HIFs in OSCC xenografts and thus inhibited tumor 
growth (while shRNA-neg control exerted no such effects). The 
small molecular inhibitor NSC-134754 inhibited both HIFs 
in Hippel-Lindau gene-defective kidney carcinomas, thus it 
should be used for targeting against OSCC (81).

Amplification of 3q is common in squamous cell carcinomas 
of mucosal origin rising from 37% to 92% in lung, uterine 
cervix, esophagus and head and neck (H&N) cancers. The locus 
of amplification in head and neck squamous cell carcinomas is 
the 3q26-27 region. Against 3% or less in normal mucosa, it 
rises to 25% in dysplasia and carcinoma in situ up to over 56% 
in invasive carcinoma. In recurrent carcinomas the copy number 
of the gene amplifies up to 72-90% (82). The suspected gene is 
a member of the SOX gene family (SRY-related high mobility 
group transcription factor; SRY = sex-determining region in 
Y chromosome) (vide infra).

Small non-coding microRNAs (miR) and long non-coding 
RNAs are highly active in squamous cell carcinomas and in 
their niches. The down-regulated miR-489 is a wide-spectrum 
suppressor of the activated head and neck squamous carcinoma 
cell oncogene PTPN11 (protein tyrosine phosphatase non-
receptor). The cytoplasmic protein PTPN11 operates through 
two src homology domains (83). The miR-200c in squamous 
carcinoma stem cells switched off BMI1 signaling (Moloney 
leukemia virus insertion site; human polycomb gene product 
protein with tyrosine in its ring finger, instead of cysteine, 
that inactivates PTEN; degrades ubiquitin-proteasome) (84). 
When BMI1 was up-regulated, miR-200c levels were low. 
Overexpressed miR-200c down-regulates oncogenes Snail and 
ZEB1 (zink finger E box) and N-cadherin, but up-regulates 
vimentin and E-cadherin (consequentially inhibiting the 
liberation and intranuclear transfer of β-catenin). The EMT 
and metastatic movements of squamous carcinoma cells with 
up-regulated miR-200c were inhibited (85). ZEB1 is the master 
regulator of EMT (the other EMT-inducer gene product proteins 
are Snail, Twist, Slug); microRNAs miR-200abc down-regulate 
ZEB1 (86).

At the 3p14 locus, the FHIT gene (fragile histidine triad) 
is deleted, while the epidermal growth factor receptor gene 
(EGFR) is overexpressed in 50% of squamous cell carcinomas. 
EGFR co-amplifies with CCND1 (cyclin D1) (87). Oncogenes 
overexpressed in smokers' squamous cell lung cancers are the 
SOX2 (vide supra et infra) and BRF1,2 (transcription factor 
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IIIB-related factor, RNA polymerase III transcription initiator 
butyrate response factors) at 8p12 (88). The adenylate- and 
uridylate-rich elements (AU/ARE) are present in the untranslated 
region (3'UTR) of the mRNAs. The ARE-binding tristetraprolin 
proteins (among the BRF1, 2) regulate the expression of cancer- 
or inflammation-associated proteins by attaching to 3'UTRs of 
mRNAs for their rapid degradation (‘mRNA decay’) (89). The 
mutated BRF genes fail to perform.

In the skin undifferentiated keratinocytes rise from the basal 
layer up to the differentiated suprabasal layer, where they die 
to form the stratified barrier lining. The activator protein (AP) 
transcription factors are part of the complex regulatory process. 
Inactivation of the AP factors results in hyperproliferation of 
undifferentiated keratinocytes, which form hyperkeratosis but 
not tumors (90). The gene product protein E2F (cyclin E inducer 
factor) brings about the cyclin/CDK2 complex. The E2F1-
mediated activation of p19(INK4D) results in the inhibition of 
CDK4 and CDK6, bringing the cell cycle to a halt in G1. Thus 
E2F establishes the INK4/pRB/E2F and p19/(ARF)p53 (alterna-
tive reading frame) tumor suppressor pathway (91-93).

Inflammation-induced (and other) cancers frequently acti-
vate the insulin-like growth factor receptor (IGF-R) pathway, 
which includes the up-regulated signaling of the Akt (vide 
supra) cell survival pathway (94). Some of the undifferentiated 
H&N carcinomas with up-regulated IGF-R were EBV+ and/
or HPV+ (vide infra) (96). Two microRNAs (miR-7, miR-375) 
target the IGF-R1 mRNA, and thus inhibit the growth of 
squamous cell carcinomas (94,96). However, promoter gene 
methylations of miR-375 in tumor-bearing patients annuls this 
effect (96). Monoclonal antibodies directed at EGF-R or IGF-R 
(cetuximab, A12, MK-0646, dalotuzumab) exert growth inhibi-
tory effect on squamous carcinoma cell in vivo, also in clinical 
trials (97,98). 

Xeroderma pigmentosum (XP). First described by Hebra and 
Kaposi and again by Kaposi as such, illustrated, in the Wiener 
Medizinische Jahrbuch, pp619-632, 1882. UV light-induced 
subcutaneous inflammation and dsDNA breaks remain unre-
paired in patients with germ-line deficiencies of DNA repair 
systems (the defective helicases). The ERCC/TFIIH multi-
protein multienzyme system carries out the repair of dsDNA 
breaks (excision repair cross-complementing; transcription 
factor for RNA polymerase II and XP helicases). The TFIIH 
opens the double helix; its enzymes are ATP-dependent 
helicases, 3-subunit CDK-activating kinases and the cdk. 
Polymorphisms of the ERCC/XPD system result in the failure 
of the nucleotide excision repair genes, referred to as excision 
repair cross-complementing repair deficiency, complementa-
tion 2 XPD (ERCC2) (99-102).

UV light-induced inflammatory changes and polymorphism 
in the nuclear excision repair gene complex increases the suscep-
tibility to basal cell carcinoma (103). In BCC, overexpression of 
the sHH pathways dominates: HIP (HH interacting protein) over-
expression and the deletion of the antagonist dickkopf proteins 
(from ‘fat-head’ drosophila) dominate. The WNT (wingless, 
drosophila), E-cadherin/β-catenin and the mTOR (mammalian 
target of rapamycin) pathways are activated (104,105). The sHH 
system was named after the 17-year-old hedgehog escaping from 
the planet Mobius for continuation of his mischievousness on the 
planet Earth (Sega video).

2. The inflammasome

An environment conducive to DNA transformation. These 
ancient formations are the battlefields between invasive patho-
gens and the host. Microbial molecules (flagellins; LPSs), and 
the pathogen-associated molecular patterns (PAMPs), are 
recognized by the Toll-like receptors (TLRs). Granulocytes 
and monocytes (macrophages) were the defensive cells in the 
era of innate immunity; so were dendritic cells and NK cells. 
Eosinophilic granulocytes were selected out as potential defen-
sive cells against inflammatory carcinogenesis (106). If so, 
they may be failing to defend the host against Reed-Sternberg 
cells in Hodgkin's disease granulomas (Fig.  2). The Treg 
cells surround Reed-Sternberg cells protecting them against 
immune T cells (Fig. 3). Apparently eosinophil granulocytes 
fail to break through these barriers.

Caspase-1 activates the inflammatory cytokines IL-1β and 
IL-18 by cleavage into their active form. Alarmin, the high 

Figure 2. Eosinophil granulocytes in Hodgkin's disease granuloma. The Reed-
Sternberg cells are intact, the lymphocytes are inert (refraining from attack). 
Original magnification, x12,500. Transmission Philips electron microscopy 
from the material of the Veterans' Medical Center, Department of Pathology 
(Head, Professor Ferenc Györkey), Houston, TX.

Figure 3. Intact Reed-Sternberg cells in lymphocyte-rich Hodgkin's disease 
granuloma are surrounded by CD25+ Treg cells for protection against immune 
T and NK cells. Original magnification, x1,000. From the patient material of 
St. Joseph's Hospital, Tampa, FL.
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mobility group B protein is released. By the process of pyrop-
tosis, pathogen-carrier host cells (macrophages) are killed. The 
pathogens mobilize virulence islands and alter their surface 
antigenic networks. Poxviruses release soluble IL-1β receptors 
and IL-18 inhibitors. Multimers are formed by nucleotide-
binding leucin-rich repeats-containing proteins (NLRP). The 
Nlrp3 component invites myeloid-derived suppressor cells 
(107). Apoptosis-associated speck-like proteins (ASC), caspase 
recruit domains (CARDs), and transmembrane segments (TMS), 
also known as ASC and PYCARD (PYD = pyrin domain) are 
activated. The intracellular nucleotide-binding oligomeriza-
tion domains (NOD) recognize pathogens that penetrated the 
cell membrane. IFNγ-producer immune CD8+ T cells are in 
combat with Treg cells and myeloid-derived suppressor cells 
(MDSC). Chemokines, on the side of Treg cells, direct them 
against immune T cells. NLRPs generate MDSCs (reviewed in 
ref. 108). Outstanding reviews analyze in details the operation 
of inflammasomes against all classes of pathogens (viral, micro-
bial, fungal, protozoal) (109-113), and all the counteractions of 
the pathogens, but make no mention just how oncosuppressor 
genes become silenced and oncogenes become activated within 
the inflammasomes. However, the figures (cartoons) allow an 
insight. In the A. Skeldon and M. Saleh paper (111), the appear-
ance of the anti-apoptotic Bcl-2 and BclXL proteins could protect 
incipient tumor cells from apoptotic death. In the P.K. Anand, 
R.K. Subbarao Malireddi and T.-D. Kanneganti paper (113), 
NFκB appears as it translocates from cytoplasm to nucleus. This 
is a common event in oncogenesis, whereby tumor growth factor 
cytokine genes are activated. There is very little if any mention 
of epigenomics; reactive oxygen species and dsDNA breaks, etc. 
The most complex and not uniform composition of the inflam-
masome may be carcinogenic, or lymphomagenic. The precise 
mechanisms of intra-inflammasome oncogenesis are not well 
understood. An attempt at describing these events in the context 
of inflammatory oncogenesis will be made later in this article.

Mycoplasma oncogenesis. In the mid 1960's, the National 
Cancer Institute alerted R. Lee Clark, the president of M.D. 
Anderson Hospital, that reports from European countries 
(England, France, Germany and Moscow, Russia, then the 
Soviet Union) claim that strains of Mycoplasmataceae are being 
frequently isolated from the blood and bone marrow of leukemic 
patients and that these microorganisms may be etiologic (leuke-
mogenic) agents. The British reports were selected out as the 
most prominent ones (114,115). The reports from Ann Arbor, 
MI (116) indicated pathogenicity of certain human mycoplasma 
isolates in mice (toxic deaths, inflammatory conditions, ‘leuke-
moid reactions’). The NCI was to release a substantial special 
grant for the study of these microorganisms in the context of 
etiological importance in acute and chronic leukemias. This 
author was elected to be the principal investigator of the project, 
based on his earlier publications describing ‘pleuropneumonia-
like growth of bacteria’ (117,118), which elicited a letter and 
a citation from Joshua Lederberg (119), and an expression of 
interest in the project by Albert Sabin (120). The pleuropneu-
monia microorganisms were either true mycoplasmas, or some 
bacteria growing like pleuropneumonia microorganisms.

A new laboratory was immediately equipped for the growth 
of mycoplasmas (or pleuropneumonia-like organisms, PPLO) 
from specimens of human origin (saliva, urine, blood, bone 

marrow) collected and provided for the laboratory by the prin-
cipal investigator, J.G.S. Florence Pipes was recruited from New 
Orleans to be in charge of the cultures of these microorgan-
isms. Leon Dmochowski, head of the Department of Virology, 
appointed his technician Bernadette Borchers to prepare the 
specimens for electron microscopy studies. The principal 
investigator (J.G.S.) inoculated several hundreds young suck-
ling white Swiss mice intraperitoneally and/or intravenously 
through a prominent lateral facial vein for observation. The 
observation consisted of very frequent inspection for ‘general 
health’, palpation of lymph nodes and spleens, periodical exami-
nation of blood counts and blood smears of the inoculated mice. 
Mice succumbed early after inoculations showed ‘infectious 
diseases pathology’ without any malignant features. However, 
practically all other mice remained healthy by one full year. 
Even after sacrificing many of them for internal examination 
by histopathology, not one case of leukemia or solid tumor 
(sarcoma, carcinoma) was observed. The cultures of human 
sources yielded various strains of mycoplasmas in less than 
20% of the patients; some mycoplasma-like microorganisms 
grew out as bacteria (E. coli) from patients who were receiving 
an antibiotic when their blood samples were collected. However, 
the electron microscopic studies showed spectacular pictures of 
mycoplasma-like microorganisms (sometimes in cases when the 
cultures were ‘no growth’). The principal investigator's (J.G.S.) 
report at first year's end was in the ‘negative’. Neither the Koch 
postulates could be verified, nor the oncogenic pathogenicity 
of the cultured mycoplasma microorganisms (like the most 
frequently isolated M. salivarius) could be proven. In the second 
year of the project, Dmochowski assumed the position of the 
principal investigator, as he and Clark suggested to the NCI the 
need for ‘further studies’, which remained well financed. In the 
4th year's final report of Dmochowski, the conclusion remained 
in the negative: no leukemo- or oncogenicity of the mycoplasma 
isolates could be documented by the technology applied (121). 

However some 30 years later, a mycoplasma strain, the 
M. fermentans incognitus, emerged as a suspect co-etiologic 
factor in patients with the acquired immunodeficiency syndrome 
(AIDS) (122,123). Extensive laboratory studies on this strain 
of mycoplasma eventually failed to show any unique faculties 
that would distinguish it from the common other strains of 
M. fermentans (124). Even though, AIDS-related B-lineage 
highly malignant lymphomas show gene deletions, among them 
that of the tumor suppressor gene WWOX (double tryptophan 
WW domain; osteosarcoma oxidoreductase, vide infra) (125), 
mycoplasma microorganisms were not reported (so far) as being 
visualized in the tissue sections. Now, over 35 years after the 
negative M.D. Anderson Hospital studies, reports appear of 
mycoplasma-infected human tumors (adenocarcinomas) in the 
40-50% range (126,127). It is recognized that the presence of a 
pathogen does not mean causation without fulfilling the Koch's 
postulates.

M. fermentans and M. penetrans cultured from patients with 
AIDS were inoculated into cultured mouse embryo cells at the 
Armed Forces Institute of Pathology, Bethesda, MD. Progressive 
multistage malignant transformations (MT) were observed. 
Early stages of MT were reversed upon mycoplasma eradication 
with antibiotics (ciprofloxacin). Advanced stages of MT became 
irreversible (constitutive). Chromosome breaks and deletions 
were observed during MT, but insertion of mycoplasma genomic 
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sequences into tumor cell nuclei could not be documented. 
Tumor cells grew into tumors in nude mice, first very slowly, then 
in accelerated rate, upon serial passages. Tumor cells showed 
increased expression of G-coupled proteins, overexpressed 
chemokine receptors and expressed Ras and Vav oncoproteins. 
In advanced mycoplasma-induced tumor cells, the Rb and p53 
tumor suppressor genes are down-regulated (128-130). Even 
though the initial oncogenesis occurred in vitro in embryonic cell 
cultures, the authors state: ‘Our previous studies have revealed 
that chronic and persistent infection with these seemingly low-
virulence mycoplasmas could gradually but significantly affect 
many important biological characteristics of mammalian cells 
and even lead to malignant transformation’ (130). However, were 
innate or adaptive immune reactions generated in the embryonic 
cell cultures? 

The vav family proto-oncogenes (vav1, 2, 3) show src 
homology, encode nerve cell dendrites, axons and ephrins in 
Schwann cells in embryonic life, activate NFκB in B lineage 
lymphocytes, reorganize actin cytoskeletons, act as guanine 
exchange factors, thus activating Rho GTPases, and accelerate 
cell mitoses. Vav stands for the sixth letter of the Hebrew 
alphabet and means ‘link’ or ‘connection’. Vav is emerging 
as a newly recognized powerful oncoprotein. In an article of 
spectacular illustrations, Vav is described as guanine nucleo-
tide exchange factor for the Rho (Ras homologous) family 
GTPases (its dbl homology DH domain, the diffuse B large cell 
lymphoma oncogene), displaying seven other (eight) homolo-
gies; among them calponin and pleckstrin homology, zink 
finger and Src homologies. A truncated Vav is the cell-trans-
forming oncoprotein. The vav proto-oncogene was exclusively 
expressed in hematopoietic cells (and was first found to be 
silent in epithelial, mesenchymal and neuroectodermal cells). 
Active vav proto-oncogene was detected in some autoimmune 
diseases (131-136). The human vav protooncogene maps to 
chromosome region 19p12-12.2 linked to the insulin receptor 
locus (137). 

When human malignancies display the VAV oncoprotein: 
is there a good reason to suspect an etiological connection 
with prior or persistent chronic mycoplasma infection (with 
any strain of mycoplasma, or with only the M. fermentans, 
M. penetrans strains)? Would serological studies clarify this 
issue in non-smokers with Vav oncoprotein-positive lung 
cancers? Or, in patients with Vav oncoprotein-positive prostate 
cancer and positive serology for genitourinary mycoplasmas 
(vide infra)? Vav1 is expressed in some human lung cancers 
and Vav3 in some prostate cancers (vide infra) (138,139).

Chlamydia lymphoma-genesis. These pathogens notoriously 
induce chronic infections. In old textbooks these agents were 
mistaken for large viruses (trachoma virus; psittacosis virus, 
see in Sinkovics' Die Grundlagen der Virusforschung), but the 
characteristics of their multiplication was recognized to be that 
of ‘intracellular bacteria, or mycoplasma’ (117). Chlamydia sp. 
notoriously infect the uterine cervix and the prostate (140,141). 
In the uterine cervix, it may co-exist with human papilloma 
viruses (140).

C. psittaci is a well-established etiological agent of human 
marginal zone and mucosa-associated lymphatic tissue (MALT) 
lymphomas. The matter was debated ‘against versus for’ in Blood 
with evidence supporting more ‘for’, than ‘against’ (142-144). 

Periocular adnexal lymphomas are the most common tumors 
(145,146), but in one case chlamydia-carrier marginal zone 
lymphoma originated in the choroid plexus of the brain without 
concomitant periocular involvement. Monocytes/macrophages in 
the lesions carried the pathogen (147). Chlamydia antigen-driven 
B cells undergo polyclonal expansion. In this stage oncogenes 
are not yet activated. The process is reversible by eradication of 
chlamydia with antibiotics (148). By MALT-like translocations 
favoring NFκB activation (vide infra at Helicobacter pylori), 
monoclonally expanding B cell population(s) emerge (149). The 
chlamydia heat shock protein (HSP60) released intracellularly 
exerts anti-apoptotic effect, thus the expansion of the B cell 
clones continues (150). 

B cell clones with the translocation t(11;18) were free of 
chlamydia, but the NFκB activation remained constitutive. The 
involved cell clones suffered mutations or deletions of the A20/
TNFAIP3 gene (tumor necrosis factor α-induced protein; A20 
ubiquitin-modifying anti-NFκB enzyme at 6q, deleted also in 
AIDS- and EBV-related lymphoma). The gene product proteins 
of these genes act as suppressors of NFκB. Further, the promoter 
of the p16/INK4α gene (inhibitor cyclin-dependent kinase 4) was 
silenced by hypermethylation. The cartoon in the cited article 
(151) shows genetic predisposition, chronic antigenic stimula-
tion of B lineage cells (once rendered constitutive, the B cell 
proliferation continues after the disappearance of the antigen of 
chlamydia derivation), two genetic translocations: t(11;18) and 
t(14;18), p16 alterations, DC-induced helper T cell generation, 
autoimmune B cell clones, and constitutive NFκB overpro-
duction (151). With co-authors, this author presented human 
patients with malignant lymphomas from the clinical material 
of M.D. Anderson Hospital, in which cases chronic antigenic 
stimulation (not that of chlamydia) initiated the proliferation of 
lymphoid cell clones. Some of the antigens were auto-antigens 
and the lymphoid cell clones acted as foreign grafts attacking 
the host (causing a graft-versus-host-like autoimmune disease 
underlying the malignant lymphoma) (152). If an unidentified 
chlamydia antigen mimics host cell antigens, even after the 
disappearance of the pathogen, the immune reactions against 
that antigen may continue both as an autoimmune disease and 
as a malignant lymphoma. Thus, periorbital B cell lymphomas 
occurring in Africa (Kenya), but without chlamydia microor-
ganisms being documented in the lesions (153), they still might 
have been initiated by C. psittaci. It appears as if chlamydia 
initiated in vivo an inflammatory process confined to lymph 
nodes, not carcinogenic, but lymphomagenic.

3. Tumor cell colonies generated in the inflammasomes

Glioblastoma multiforme (GMF). This highly malignant and 
radio-chemotherapy-resistant tumor expropriated the FasL 
→ FasR pathway for driving cell cycle progression (154). The 
Fas receptor- (FasR) and granulocyte colony stimulating 
factor- (GCSF) encoding gene sequences could be artificially 
recombined in vitro. Previously, we presumed that such mis-
matched fusions of broken chromosomes 1 and 10 occur in 
melanoma in vivo (vide infra). These tumor cells undergo mitoses 
upon capturing FasL. The microglia and astrocytes interact with 
tumor cells either in an inhibitory or in a stimulatory fashion. 
It is usually unknown what agents activate these reactions, 
especially at the earliest tumor-induction phase. In astrocytes 



INTERNATIONAL JOURNAL OF ONCOLOGY  40:  305-349,  2012 313

the activated TLR4 induces the ILβ-1/MyD88/NFκB signaling 
pathway resulting in the mobilization of the ‘cell survival’ 
MAPK and Jak1STAT1 (janus kinase) chain reaction (155). 
Rapidly growing tumors (glioblastoma) advance into hypoxic 
territories. There, in hypoxic tumor cells, hypoxia-inducible 
transcription factor HIF1α translocates into the nucleus to bind 
HIF1β. The HIF1αβ dimer induces neoangiogenesis outside the 
cell and apoptosis-resistance within the cell. Further, hypoxia 
responsive elements (HRE) on inflammatory gene promoters 
(COX, NOS, PTX, CXCR-4, SDF-1α) capture HIF1α (cyclooxy-
genase, nitric oxygen species, acute phase protein pentraxin, 
chemokine, stromal-derived factor). In response, tumor cells 
proliferate (ᛏ Ki67) and migrate; and resting stem cells undergo 
activation and enter the cell cycle. These stem cells are vulner-
able to malignant transformation instead of differentiation 
(156).

Adenosine → adenosine receptor A(1)R interactions suppress 
glioblastoma growth and cellular invasion. A1AR+ microglia 
cells inhibited the growth and invasion of glioblastoma cells. 
The nucleoside adenosine derives from the nucleotide ATP. In 
contrast, A2AR stimulation by its ligand results in the expres-
sion of cyclooxygenase-2, prostaglandin and nerve growth 
factor (NGF). Activated A1AR suppresses MMP production 
in the tumor (157). These tumors contain microglia cells and 
macrophages and originate from stem cells (158). In addition 
to up to 30% microglia in the tumor mass, and some subverted 
not transformed astrocytes also provide tumor growth factors 
(159). One of the growth factors is TGFβ acting through its 
receptor TGFβIIR. Small hairpin complementary shRNA in 
a plasmid down-regulated expression of the receptor, and thus 
reduced tumor cell growth and invasiveness in nude mice (160). 

J.C. Horvath and this author submitted a hospital surveil-
lance committee-approved protocol for the immunotherapy 
of GMF with viral oncolysate-stimulated immune T lympho-
cytes and lymphokine-activated NK cells (LAK cells), which 
was not funded, for those clinical investigators, who possibly 
could obtain the financial support (161). This article provided 
a review on the interactions of astrocytes and microglia with 
the tumor cells (based on work being carried out up to 2006 
at M.D. Anderson Hospital). It concluded that after the eradi-
cation of the tumor bulk by surgery and radiotherapy, it will 
be immunotherapy that will prevent the relapse with resistant 
tumor cells. At M.D. Anderson and elsewhere, a vaccine of bone 
marrow-derived dendritic cells pulsed with tumor homogenates 
was recommended (162,163). A genetically engineered onco-
lytic adenovirus was another choice (reviewed in ref. 164). The 
splice variant of the epidermal growth factor receptor EGFRvIII 
vaccine was already in its earliest clinical trials. The article 
(161) recommended a viral oncolysate vaccine subcutaneously, 
and adoptive immune T cell/NK cell therapy to be administered 
through an Ommaya reservoir into the tumor bed. In support, it 
was known that the brain readily accepted extravasated immune 
T and NK cells (165-167). NK cells attack glioblastoma cells 
(168,169). However, TGFβ inactivates NKG2D cells (170). 
Adoptive lymphocyte-therapy is a target of Treg cells/MDSCs. 
While the lymphoid cells (immune T cells, NK cells) kill tumor 
cells in vitro, they are disabled to do so in vivo. It appears that 
postoperative temozolomide and the EGFRvIII vaccine became 
the current standard therapy, except, tumor cells emerged 
without EGFRvIII expression, that recurred (171,172).

Inflammatory events are essential in the induction and 
sustenance of glioblastoma. These events are supported by the 
alleviating effects of anti-inflammatory drugs on the clinical 
course of this malignancy. Non-steroidal anti-inflammatory 
drugs activate the genes NAG-1 (non-steroidal anti-inflamma-
tory drug-activated gene), and growth and differentiation factor 
(GDF-15) in glioma cells. NAG-1 is usually silenced by dense 
methylations of its promoter; demethylation restores NAG-1 
(173). NAG could stop migration and induce apoptosis (with 
troglitazone) of tumor (gastric cancer) cells (174). The distant 
TGF-relative, GDF, may be unpredictable: GDF-15 reduced 
susceptibility of HER2/neu+ breast cancer cells to trastuzumab, 
and GDF-9 induced EMT in prostate cancer cells (175).

Inflammatory changes in the cerebrum bring about and 
sustain an incurable tumor of the highest lethality, and of 
chemoradiotherapy resistance. The most complex genomics of 
glioblastoma exhibit somatic mutations and loss of heterozy-
gosity in its numerous oncogenes. The platelet-derived growth 
factor and VGF are up-regulated; tumor suppressors p53, RB 
and CDKN (cyclin-depedent kinase inhibitor) are deleted (176). 
An Achilles heal of this tumor is revealed by its epigenomics. 
The oncosuppressor microRNAs-487ab are down-regulated 
and the oncoprotective microRNA-502 and microRNA-532 are 
up-regulated. Two other microRNAs (miR-17-5p and miR-106a) 
are related to tumorigenesis and survival (177). Could the onco­
protective miR-502/532 be attacked by complementary siRNAs? 
Will targeted therapy (suppression of PDGF with imitanib, 
VEGF with bevacizumab, iNOS with mercaptoethyl-guanidine, 
cyclooxygenase with sulindac sulfide, or indomethacine, etc.) 
induce remissions, which could be maintained with the immuno­
therapeutic modalities (vaccines and adoptively administered 
immune T lymphocytes and LAK cells), which, however, unfor-
tunately seldom if ever are supported outside the NIH/NCI (161). 

Papillary carcinoma cells of the thyroid release inflamma-
tory cytokines. The pathogenesis of Hashimoto's autoimmune 
thyroiditis and its consequences of B cell lymphoma or papil-
lary carcinoma have recently been reviewed, but without being 
able to recognize the initiator(s) of these conditions (178). The 
customary chain of events is followed: DCs recognize thyroglo­
bulins and thyroid peroxidases, instruct CD4+ T cells to engage 
B cells to produce antibodies. The expanding B cell popula-
tion first is polyclonal, until after one MALT-like B cell clone 
emerges for monoclonal expansion. In the background, because 
of CTLA-4 (cytotoxic T lymphocyte-associated antigen 4) gene 
polymorphism, the inhibitor of autoimmunity becomes deficient. 
The autoimmune B cell clone shows some rearrangement of its 
IgM heavy chain locus and may undergo the translocation t(8;14)
(q24;q32). Apparently no Treg clones rise to inhibit the prolifera-
tion of the autoimmune B cell clone (178,179).

The fusion oncoprotein RET/PTC (re-arranged transforma-
tion papillary thyroid cancer) is formed and the MAPK signaling 
pathway is activated. Elevated levels of nitric oxide synthases 
(NOS) increased NO levels; vascular endothelial growth factor 
and its receptors VEGFR-1, -2, angiopoietin-2 and its receptor 
Tie2 were overexpressed; so was the endothelin-1 pathway (180). 
The RET oncoprotein activates inflammatory genes within 
thyrocytes; these are the granulocyte/monocyte growth factor, 
IL-1β, cyclooxygenase-2, chemokine ligands 2 and 20, IL-8 
(chemokine ligand 8), chemokine receptor 4 (CXCR4), extracel-
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lular matrix-degrading enzymes and lymphocyte selectin genes, 
mRNAs and gene product proteins. NFκB and transforming 
growth factor β (TGFβ) levels are high and protect tumor cells 
from apoptotic death. The activated STAT pathway drives tumor 
cell replication and inhibits DC maturation, thus immature DCs 
establish a tolerant Th2-type internal environment (181). The 
presence of CD4+CD25+FoxP3+ tumor-associated lymphocytes 
allowed larger tumors and their locomotion to form lymph node 
metastases (182).

Further pecularities in autoimmune thyroiditis, the thyroid 
lymphoma and carcinoma are that: i) The background immu-
nologic milieu of the host is Th1-type, so much so that the 
inducer T cell clone may turn malignant. The malignant T cell 
clone was CD8- but CD3+CD4+TCR+ and chemokine-producer 
(CXCR+CCR5+) (183). In contrast, is it not so that the antibody 
producer B cell clone is the product of a Th2-type environment? 
ii) A combat of the reactive lymphocyte clones results in the 
appearance of many apoptotic cells (184). The question is who 
are the killers and who are the victims? iii) The inhibitory signals 
against autoimmunity derive from the CTLA-4 pathway of T (and 
B) lineage lymphocytes. However, the CTLA-4 pathway does 
not appear inactivated, even soluble CTLA-4 receptors circu-
late and are able to react with their ligands CD80/86 (185). Yet 
autoimmunity occurs and culminates in a B lineage lymphoma. 
There is an effort to block CTLA-4 with ipilimumab to induce 
autoimmunity against tumor cells (melanoma) masquerading for 
exemption and acceptance as self. However, in an environment of 
autoimmunity already in existence, papillary carcinoma cells are 
able to arise and prevail. These questions remain unanswered even 
in the best and most recent texts (186). The papillary carcinoma 
cells release the inflammatory cytokines (181). The situation 
in Greaves' autoimmune hyperthyroidism is better understood. 
There, autoantibodies to the overexpressed thyroid-stimulating 
hormone receptor (TDHR) and decreased Treg cells in number 
and function co-operate with IFNα-producer plasmacytoid DCs 
that cause apoptotic death of the Treg cells (187). It is still unclear 
what inflammatory process activates the plasmacytoid DCs in 
the first place: may be an endogenous retrovirus? 

Barrett's esophagus and esophageal adenocarcinoma. Barrett's 
esophagus (BE) is a premalignant condition consequential to 
chronic gastroesophageal reflux disease (GERD). BE may be 
viewed as an inflammasome, which harbors a chronic inflam-
matory process and the germline mutations of one or all three 
suspect genes: macrophage scavenger receptor-1 (MSR1, locus 
at 8p22); adenosquamous cell carcinoma-1 (ASCC1, locus 
at 10q21-22); and collagene triple helix repeat containing-1 
(CTHRC1, locus at 8p22.1-24.22). MSR1 mutations are 
frequently of somatic, and occasionally of germ-line causation. 
MSR1 mutation leads to up-regulation of the cyclin D1 gene 
both in adeno-, and squamous cell esophageal carcinomas 
(CCND1) (188-190). The major inducer of the inflammatory 
reactions is deoxycholic acid (DCA); its effects on esophageal 
carcinoma cell lines (squamous cell carcinoma HET-1A, 
adenomatous carcinoma SKGT4) were studied in vitro. DCA 
induced IL-8 in both, and IL-1αβ in the adenomatous cell line 
(191). The tribbles-homology-3 (TRB-3) gene (a gene control-
ling mitogen-activated protein kinase cascades) (191,192), was 
induced in the squamous, and silenced in the adenomatous cell 
line; it was suppressed in most other esophageal carcinoma 

cell lines in silico. It could be experimentally silenced by 
small interfering RNA (siRNA) preparations. Re-induction of 
the TRB-3 gene into the adenomatous cell line resulted in the 
release of NFκB, a cytokine known to activate inflammatory 
cytokines upon its intranuclear translocation (190,191). In BE 
active are IL-6 and signal transducer and activator of transcrip-
tion (STAT) (192,193), oxidative stress inducible NO synthase 
(194), cyclooxygenase-2 (195), and prostaglandins (196). In BE, 
inflammatory gene expression is associated with the activity 
of miRNA-375. Poor prognosis-associated lymphokines were 
IFNγ, IL-1α, IL-8, IL-21, IL-23. Co-expression of miRNA-375 
improved the prognosis, so did expression of the pro-apoptotic 
and cell proliferation inhibitor annexin-1 (ANXA1), which was 
inhibited in most esophageal tumors (197).

In the benign stage of Barrett's esophagus, the artificial 
induction of intracellular acidification elicited the appearance 
of reactive oxygen species (ROS) followed by double-stranded 
DNA breaks. These were detected by immunofluorescence 
for histone H2AX phosphorylation and were prevented by 
pretreatment with isothiocyanate-stilbene-disulfonate or acetyl-
L-cysteine.

Non-repaired dsDNA breaks are considered to be precan-
cerous events (198). MicroRNAs intervene in esophageal 
carcinogenesis. In comparison with healthy and cancerous 
tissues, down-regulated microRNAs in the cancer tissue are 
considered to be tumor suppressors lost, whereas up-regulated 
microRNAs are suspect cancer inducers. Elevated level of 
miR-21 in non-cancerous tissues of patients with squamous cell 
carcinoma, and reduced levels of miR-375 in cancerous tissues 
of patients with adenocarcinomas foretold adverse clinical 
course. This review describes the micro-RNA technology 
(isolation and quantification) in good details. The very valuable 
Fig. 2A of the cited article compares adenocarcinoma cancerous 
tissue and non-cancerous tissue levels (with a typographic error 
overlooked by the editors): in tumor tissue overexpressed were 
miR-21, miR-223, miR-192, and miR-194; underexpressed was 
miR-203. In Fig. 2B, squamous cell carcinoma tumor tissue 
overexpressed miR-21 and underexpressed miR-375. In Fig. 2A, 
miR-375 is not mentioned in connection with adenocarcinomas, 
but in the conclusion it is pointed out to be an adverse prognostic 
factor for BE-associated adenocarcinomas (199).

Pancreatic adenocarcinoma. Chronic pancreatitis leads to 
adenocarcinoma induction. In Romanian patients studied 
at Haţieganu Medical School in Cluj-Napoca (Kolozsvár), 
Transsylvania, TNFα and IL-6 are the dominant cytokines in 
that condition. In the malignantly transformed tissue, IL-8 and 
macrophage inflammatory protein-3α appear in elevated levels 
(200). In tumorigenesis of the gastrointestinal tract, TGFβ first 
exerts anti-inflammatory and anti-oncogenic effects. Once a 
malignant tumor is generated, TGFβ becomes its supporter by 
promoting its invasion and metastases, and by subverting its 
stroma for the production of cytokines with paracrine circuitries 
to receptors of the tumor cell (201). For example, fibroblasts of 
the pancreatic cancer's microenvironment secreted neuregulin-1 
for the phosphorylation and thus activation of Erb3 (epidermal 
growth factor receptor) and AKT (activated kinase transforming/
thymic, also known as protein kinase B) signaling pathways in 
the tumor cells. Erlotinib and the Erb3-directed mcab MM-121 
shut down this pathway and halted the growth of pancreatic 
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cancer xenografts (202). The sHH oncogenic pathway is active 
in pancreatic cancer cells. Here stem cell gene product proteins 
Nanog, c-Myc, Oct-4 (nanogs were the celtic people remaining 
eternally young, avian myelocytic leukemia oncogene, octamer-
binding motif) drive tumor cell growth. A laboratory product 
small hairpin shRNA is inhibitory to Nanog. Natural products 
epigallocatechin-3-gallate and quercetin synergistically inhibited 
the sHH pathway and by overcoming Bcl-2- and XIAP- (X-liked 
inhibitor of apoptosis) promoted tumor cell death (203). A 
masterfully constructed cartoon depicts the oncogenic genome 
within pancreatic cancer cells and the cancer-supporting and 
inflammatory and immunoevasive activities (cyclooxygenase-, 
prostaglandin-, and VEGF-production, Treg cells, myeloid-
derived suppressor cells and tumor-associated macrophages) of 
the tumor's microenvironment (204). The tumor cell itself exerts 
effective immunoevasive maneuvers. Supernatants of pancreatic 
cancer cells inhibit CD4 T cell proliferation and migration, but 
induced (failed to inhibit) IFNγ production. However, allowed 
CD69+ lymphocyte subset expansion (205). The cluster of 
differentiation marker CD69 characterizes most NK/NKT cells 
and as such it regulates CD17 lymphocytes in establishing Th-17 
type immune environment (206). In imitating Treg cells for the 
neutralization of immune T cells, pancreatic cancer cells are 
able to express Fox3 under the inducing effect of TGFβ2. When 
siRNA suppressed Fox3 expression, the cancer cells secreted 
IL-6 and IL-8 (that were suppressed when Fox3 was expressed). 
Mimicking Treg, pancreatic cancer cells antagonized immune 
T cell clonal expansion (207).

The lectin galectin-3 is targeted by matrix metalloproteinase-7 
(MMP-7, matrilysin). MMP-7 levels are high in the blood of 
patients with pancreatic adenocarcinoma. In mice STAT3 dictates 
the pace of pancreas adenocarcinoma cell divisions and MMP-7 
expression (208,209). The ZIP4 protein (zink transporter protein; 
Zrt/Irt-like protein: zink/iron responsive transporter) works with 
IL-6 and STAT in stimulating pancreatic cancer cell growth; 
silencing it with shRNAs inhibits cancer cell growth (210,211). 
Of cancer cells growing in holo-, mero-, and paraclones, it is 
the holoclone stem cells that are most chemoresistant, express 
most of the stem cell genes and corresponding microRNAs and 
yield most of the tumor-initiating cells (212). In pancreatic ductal 
adenocarcinoma cells miR-155 targets and destroys the tumor 
suppressor p53-induced nuclear protein 1 (TP53INP1). Next, 
the tumor metastasis suppressor E1A-binding protein (EP300) 
is neutralized by miR-194, miR-200b, miR-220c and miR-429. 

The tumor suppressors DPC/Smad4 (DNA-picked chro- 
matin; signaling mothers against decapentaplegic; decapen-
taplegic  = TGFβ ligand) are knocked out by miR-421 and 
miR-483. The miR-132 and miR-212 inhibit the binding and 
neutralizing the E2F protein by RB. The NFκB-repressing 
factor (NKRF) is neutralized by miR-301, thus liberating NFκB. 
The ‘sprouty homolog’ of drosophila, Spry2, is neutralized by 
miR-27a. The tumor suppressor inhibitor of growth protein 
ING4 is targeted for neutralization by miR-214. In contrast, those 
miRs that may act as tumor suppressors (miR-34, a p53 activator; 
miR-96, a K-ras inhibitor; miR375, a pro-apoptotic stimulator by 
inhibiting 14-3-ζ and down-regulator of Akt; miR-15a, a wing-
less drosophila Wnt/β-catenin and fibroblast growth factor-7 
inhibitor) (213) remain silent in the inflammatory carcinogenesis 
process within the pancreas. A detailed tabulation of up- and 
down-regulated microRNAs in pancreatic cancer with literature 

citations was made available (214), both references from M.D. 
Anderson Hospital (213,214).

In the human genome, the promoter gene of the inflamma-
tory cytokine IL-1β undergoes single nucleotide polymorphisms 
(215), that alone without a specific pathogen may initiate an 
inflammatory process. The stimulated IL-1 signaling pathway 
up-regulates the tumor promoters nicotinamide phosphoribosyl 
transferase and prostaglandin H2 synthase in human pancreatic 
cancer cells (216). 

Oncogenesis in the pancreas shows how an inflammatory 
process can trigger a cascade of oncosuppressor gene silencing 
and oncoprotein activation, and that the DNA is a willing partner 
in the plot. It appears as if in an ancient cross-talk resumed, 
the RNA mobilizes its forces to rescue the DNA from a host 
threatened with an impending demise (vide infra). 

Inflammatory breast cancer. Lymphangitic loco-regional 
spread of tumor cells results in the occlusion of lymph channels 
causing the ‘peu d'orange’ cutaneous edema. However, there is 
redness, warmth and pain. No infectious pathogens are present 
(negative stains and cultures). The host defensive reactions are 
dominated by scanty monocytic-lymphocytic infiltrates; no 
eosinophils, no granulocytes, no purulence. It appears to be 
an endogenously activated inflammatory process (‘intrinsic 
inflammation’) without any explicitly recognizable external 
pathogen. The breast cancer associated BRCA gene-defective 
cancer cells can not repair, but live with, dsDNA breaks. The 
repair enzyme polyadenosine diphosphate ribose polymerase 
[PARP, to be distinguished from PPAR, the peroxisome 
proliferator (vide infra)] would initiate ssDNA strand repairs. 
However, PARP inhibitors (olaparib, and the anti-inflammatory 
cordycepin) send BRCA-mutated breast cancer cells through the 
apoptotic death pathway. 

In a murine breast cancer model, leptin activated the Notch 
signaling pathway and IL-1 and VEGF/VEGFR-2 overexpres-
sion (217). The thymic stromal lymphopoietin (TSLP, a IL-7-like 
type 1 inflammatory cytokine signaling through TSLP-R in 
CD4+ cells and thus inducing IL-10 and IL-13 production for a 
Th2-type host immune environment) promotes the progression 
of breast cancer cells both by lymphatic and vascular routes. 
Inactivation of TSLP in a mouse model, resulted in the cessation 
of all tumor metastases (218). The inflammatory cytokine, TNFα 
promotes the growth of HER2/neuT breast cancers in mice. 
Deprivation of TNFα resulted in disarranged tumor vasculature 
and conversion of Th2-type to Th1-type inner immune environ-
ment (unexpected, as TNFα with IFNγ are classical inducers of 
the Th1-type inner environment) (219). The relevance of these 
pathways to human breast inflammatory cancers is unknown. 
However, TNFα-308 polymorphism comes with reduced breast 
cancer incidence in Caucasian women (220). The polycomb 
protein, zeste homolog-2 (EZH-2) is overexpressed in human 
inflammatory breast cancer cells with cell cycle progression 
resulting. Patients with zeste-expressor inflammatory breast 
cancer cells had short survivals (221). ErbB1/2 overexpres-
sion is also frequent in inflammatory breast cancer cells. The 
patented lapatinib analog GW583340 induced cytoplasmic ROS 
(vide infra) formation with apoptotic cell deaths following; 
these effects were reversed by superoxide dismutase (SOD). 
Inflammatory breast cancer cells with elevated levels of SOD 
and glutathione resisted apoptotic deaths due to no H2O2 (ROS) 
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formation upon treatment with the lapatinib analog or paraquat 
(222).

The infiltration of human breast cancers with CD8+ 
T lymphocytes is correlated with better prognosis (223). However, 
a subclass of CD8+ T cells, appears to promote lymphangitic 
spread of human breast cancer cells toward regional (axillary) 
lymph nodes. These breast cancer cells undergo EMT. The 
lymphocytes are of the ILEI subclass (interleukin-like EMT 
inducers). This subclass of T lymphocytes expresses TNFα and 
TGFβ and needs the co-operation of mutated Ras and Snail 
oncoproteins in the tumor cells (224). This author proposed 
the terminology of traitor/transforming T cells (T/T T) for this 
subclass of lymphocytes (225). However, no matter how attrac-
tive it is to presume it, it is not known if the T/T T subclass of 
lymphocytes induces the inflammatory type of breast cancer. In 
cooperation with chemokines CCR4/CCL22, DC-activated and 
tumor antigen-specific CD4+ Treg cells infiltrate breast cancers 
and contribute to the cancer's immunosuppressive process (226a).

Gene sequences related to the mouse mammary tumor 
retrovirus (Bittner virus) occur in human breast cancers 
(226b), but further proof is needed for the causative, and/or 
inflammation-inducing effects of these agents. Many human 
tumors (teratocarcinomas, melanoma, ovarian adenocarcinoma, 
and malignant lymphomas express endogenous retroviruses, but 
without solid proof for etiologic connections (225) (vide infra at 
Kaposi's sarcoma).

The Michigan Cancer Foundation's human breast cancer 
cell line MCF-7 contains cells of the luminal cancer stem cell 
markers (ESA, CD44hi hyaluronate-binding pro-metastatic 
adhesion molecule, CD24lo selectin-binding adhesion molecule, 
CD133+, and chemotherapy-resistance DrugRES MCF-7). Numb-
peptide-activated cytotoxic T cells killed CD44hi/CD24lo cancer 
stem cells. Patients with breast cancer may benefit from treat-
ment with Numb-specific adoptive lymphocyte infusions, or 
vaccination with Numb peptides (Numb, Notch oncoprotein 
antagonist, from drosophila) (227). However, if Numb+ cells are 
eliminated, its antagonist Notch may prevail. Further, in breast 
cancer cells Numb protects pro-apoptotic p53 from degradation 
(cited in ref. 228).

The M.D. Anderson team recognized a chain reaction with 
the pro-inflammatory TNFα activating IKKβ (I κ kinase), which 
then inactivated the cancer suppressing complex of TSC1/TSC2 
(tuberous sclerosis), which usually acts by holding down mTOR. 
NFκB gets liberated in the process and transits from cytoplasm 
to nucleus to activate inflammatory and potentially oncogenic 
genes (229,230). A comparison of the genomics of inflammatory 
and non-inflammatory breast cancers revealed overexpression 
of immune system and mTOR pathways in inflammatory breast 
cancers (231). The Michigan Comprehensive Cancer Center 
found overexpressed EGFR and disabled p53 genes. More 
significantly, the RhoC (Ras homolog) GTPase GTP-binding 
protein gene was overexpressed in 90%, whereas the Wisp3/
LIBC tumor suppressor gene (Wnt-induced secreted protein, 
from wingless drosophila; lost in inflammatory breast cancer) 
was deleted in 80% of the specimens examined (232). In France, 
those inflammatory breast cancer stem cells that overexpressed 
aldehyde dehydrogenase (ALDH) metastasized most frequently. 
Graphs show high rate of mortality in ALDH+ inflammatory 
breast cancers (233). However, non-inflammatory breast cancers 
expressing ALDH also run an adverse clinical course.

Breast cancer stem cells' DNA is highly oncogenic showing 
100 to 1,000-fold increased tumorigenicity in xenografts, more 
than that of the general cell population of the MCF-7 (Michigan 
Cancer Foundation) established cell line (vide supra). The stem 
cell phenotype is ESA+CD44+CD24+/low (epithelial-specific 
antigen). The oncogenic stem cell DNA is highly chemoresis-
tant. The cell line under the effect of miR-27b overexpresses 
the drug-metabolizing enzyme CYP1B1 (cyclophilin). The 
active miR-21 targets the mRNAs of tumor suppressor genes 
tropomyosin (TPM1) and PDCD4. The tumor promoter gene 
pleomorphic adenoma (PLAG) is targeted by miR-200a and 
miR-224 and the activities of these miRs are curtailed in the 
oncogenic stem cells (234). A report names six microRNAs that 
are overexpressed (miR-335, miR-337-5p, miR-451, miR-486-3p, 
miR-520a-5p, miR-548d-5p) and seven microRNAs (miR-1a, 
miR24, miR-29a, miR-30b, miR-320, miR-342-5p, miR342-3p), 
that were down-regulated in inflammatory carcinomas of the 
breast. However, the exact genomic origins of most of these 
miRs have not as yet been pinpointed (235). Inflammatory 
cytokines IFNγ, IL-6, LPS endotoxin, and poly(I:C) activate 
microRNA-155 in breast cancer cells; miR-155 then activates 
the STAT and JAK (Janus kinase) ‘cell survival’ pathways 
connecting inflammatory immune stimulation with the incep-
tion of oncogenesis (236).

The inflammatory COX-2 expression appears early: already 
active in ductal carcinoma in situ (DCIS), catalyzing arachi-
donic acid to prostanoids. Its inducer is 12-myristate 13-acetate 
that could be blocked with the flavonoid apigenin (237,238).

The very rare incidence of anaplastic large cell lymphoma 
(ALCL) beneath silicone breast implants occurred in women 
receiving the implants for cosmetic reasons (not after maste-
ctomies for breast cancers). The lymphoma cells are ALK-CD2+ 

CD3+/-CD30+CD20-CD45-granzyme B+EBV- T cells of defective 
T cell receptors. The lymphoma cells express the anti-apo­
ptotic myeloid cell leukemia-1 protein (MCL-1) controlled by 
microRNA-29 (it suppresses MCL-1 expression). In ALCL, low 
miRNA-29 levels allow high expression of MCL-1 (providing 
protection against apoptosis). It is presumed to be induced by 
unidentified cytokines from histiocytes reactive to silicone 
particles (239-241).

Non-silicone implant-related ALK+ anaplastic large cell 
lymphomas overexpress the anti-apoptotic MCL-1 protein 
(while Bcl-2 is silent). The MCL-1 protein is under the control 
of microRNA-29a: in ALK+ALCL miR-29a levels are low due 
to methylations of the miR-29a gene, thus MCL-1 is liberated. 
In this lymphoma the nucleophosmin (NPM) and ALK genes 
fuse: t(2;5)(p23;q35), thus creating the NPM/ALK oncoprotein 
(NPM is nuclear phosphoprotein B23 numatrin). The NPM/
ALK oncoprotein activates the PI3K/Akt and mTOR pathways; 
the reaction chain continues in the constitutive activation of 
signaling from sHH/GLI (sonic hedgehog; glioma-associated 
oncogene homolog) (242,243). 

Colonic polyps and adenocarcinoma. The classical ‘Vogelgram’ 
describes the sequential gene deletions, mutations and fusion 
oncoproteins that lead to the transformation of colonic polyps 
into adenocarcinomas (244). In this scheme, peroxisome 
proliferator-activated receptor δ (PPARδ), a potential tumor 
promoter, responding to its natural ligands of fatty acids pros-
tacyclins/prostaglandins and active in inflammatory processes, 
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is suppressed by the product of the adenomatous polyposis 
coli gene (APC), whose tumor suppressor pathway consists of 
APC/β-catenin/T cell factor-4 (TCL-4). This pathway is lost to 
mutations and deletion at 5q21. In the healthy tissues, the APC 
gene product protein inhibits the complex formation between 
β-catenin and TCL-4. Among others (c-Myc), PPARδ is another 
target of the β-catenin/TCL-4 complex (the PPARδ promoter 
contains the TCL-4 binding sites). PPARδ mRNA levels are 
high in colorectal tumor tissues, but suppressed by the functional 
APC. Deleted (or lost to mutation or silencing) are at 17p the pro-
apoptotic p53, the Waf1/CIP1 (wild-type p53 activated fragment; 
cycline kinase inhibitory protein) at 21p, the Dickkopf, the Wnt 
antagonist, the colon cancer suppressor gene (DCC) at 18q21, 
the nm23, the non-metastatic gene at 17q21, and the mutated 
colorectal cancer gene (MCC) at 5q. Point-mutated is at 5q in 
its codon 12 the K-ras with activation of c-Myc at 8q24. Loss of 
heterozygosity at 5q21 involves the APC/MCC genes (244-247).

The colonic polyps are ‘inflammasomes’ expressing great 
histiocytic, leukocytic and mast cell activities; CXCL12 (stromal 
derived factor, chemokine) switches from IL-10 to IL-17 and 
from anti- to pro-inflammatory Treg cells. The advancement 
of adenomas (polyps) into adenocarcinomas is through an 
‘inflammatory phenotype’ characterized by attraction of leuko-
cytes and macrophages into these lesions by IL-8. Knock-out 
of the pro-apoptotic p53 gene secures cell survival. Paracrine 
neovascularization is elicited and activation of the cell motility 
processes by chemokines (CCL20-to-CCR6; up-regulation of 
cyclooxygenase-2 by CXCL1) initiate the process. Activation of 
‘cell survival pathways’ (STAT, MAPK, PI3K/Akt) overcomes 
the opposing forces of MyD88 and IL-18 driving the cell to the 
stage of no return, that is, the switch of stem cell genes away 
from differentiation to immortalization (recognized clinically 
as ‘malignant transformation’). The proinflammatory genes 
involved, many TLRs (especially TLR4), and chemokine 
genes originating from the innate era, are identified: CXCL1, 
CXCL2, CXCL3, IL-8, CCL5. CCL19, CCL20, CCL21, CCL23, 
CCL5; and inflammatory iNOS+ macrophages are activated 
(248-253). However, Hanahan and Weinberg omitted inflamma-
tory contributions from the list of carcinogenic events. Mantovani 
et al supplemented trait number 7: inflammatory carcinogenesis 
(254-256).

At the Semmelweis University, Budapest, Hungary, a major 
engagement is underway for the elucidation of key mecha-
nisms in colonic carcinogenesis (257). What goes wrong in 
the lymphoid follicles receiving stem cell supplements for the 
regeneration of the colonic mucosal lining? The colonic epithe-
lial cell layer is shed and regenerated by an upward flow of 
new cells in the crypts in rapid successions. The gut-associated 
lymphatic tissue (GALT) is dispersed as isolated lymphatic 
follicles (ILFs). ILFs receive bone marrow-derived stem cells 
(BMDSC) through their blood and lymphatic vascularization. 
In ILFs, the resident multiple lymphoid elements, dendritic 
cells, and syncytia of myofibroblasts encounter and interact 
with the arriving BMDSCs. The ILFs preserved innate immune 
faculties and as such, are immediately reacting through TLRs. 
For the repair of mucosal bowel wall damage, ILFs initiate the 
mobilization of epithelial cells in the crypts (257,258). The 
contact between ILF cells and epithelial cells is through the 
Wnt-Lgr5 (wingless in drosophila; leucin-rich repeat containing 
G protein-coupled receptor 5) pathway. Lgr5 is overexpressed 

in metastatic colorectal cancer cells. These cells undergo 
EMT, either by mobilizing their own Twist and Snail gene 
product proteins, or by fusing with subverted tumor-associated 
macrophages (257-260). The colonic mucosa continually is 
at an inflammatory alert (252,256), that facilitates the switch 
diverting from the regenerative function in the stem cells, to the 
process of immortalization (malignant transformation), upon 
repeated intake of nutritionally introduced chemical toxins.

The commonly present LPSs and TNFα readily activate 
REL/NFκB. The gene of this ancient transcription factor 
was discovered in a strain of the avian reticuloendothelial 
virus (c-rel → v-rel). NFκB up-regulates TGF-RβII. In colon 
cancer cells NFκB is constitutively activated. When the NFκB 
up-regulator IκB kinase γ was knocked out by iRNA, tumor 
cell xenografts regressed (261,262), The tumor suppressor 
oncostatin M (OSM) is silenced early in colonic polyps and 
colon carcinomas. When active, OSM reduces tumor cell prolif-
eration, induces differentiation or apoptosis. It is neutralized by 
DNA methylation, or histone deacetylation. Methyl-transferase 
inhibition (5-aza-deoxycytidine) and histone re-acetylation 
(deacetylase inhibitor, trichostatin) re-activated OSM in colon 
cancer cell lines (263). The microRNA-137 acts as a colon 
cancer cell suppressor, but early in the process of carcinogenesis, 
CpG islands of its gene are hypermethylated and thus silenced 
(264). In contrast, microRNA-21 interacts in a mutual stimu-
latory way with inflammatory events (IL-6, IL-8, IL-12a, the 
tolerogen IL-10, and with the genotoxic NOS2). These actions 
spelled out a high inflammatory risk score and cancer-specific 
mortality (265). In mice, inflammation in the bowels mediates 
the methylation and silencing of the polycomb target genes 
(for example, lysine 27 on histone 3 was trimethylated) (266). 
In contrast, reacetylation of histones by histone deacetylase 
inhibitors (DHDACI, vide supra) could induce intrinsic (mito-
chondrial) apoptosis of colon cancer cells (267). In Shanghai, 
P.R. China, a genetically engineered adenovirus delivers the 
XIAP-associated factor 1 gene (XIAF), which neutralizes the 
anti-caspase activity of the apoptosis inhibitor XIAP (X-linked 
inhibitor of apoptosis). The TNF-related apoptosis inducing 
ligand (TRAIL) is then administered. In colon cancer cell xeno-
grafts in mice thus treated, the entire anti-apoptotic machinery 
(XIAP, c-IAP-2, survivin) was neutralized, and the xenografts 
were destroyed (268).

The colon is the battlefield between bacteria and bacterio-
phages and bacteria and the host (164). Its genomics/proteomics 
and epigenetics have gone through a very long evolutionary 
history. Add the uninvited guest, the human polyomavirus JC, 
whose T antigen inactivates p53, while it liberates β-catenin 
for intranuclear entry for interactions with proto-oncogenes. 
It is present in 271/766 (35%) of human colon cancers (269). 
Now emerges the enterotoxigenic Bacteroides fragilis, as a 
major contributor to colonic carcinogenesis, according to data 
emanating from the Johns Hopkins' Cancer Institute (270).

The B. fragilis enterotoxin cleaves E-cadherin and thus 
activates the β-catenin/sHH/Wnt cascade. The enterotoxin is 
neoangiogenic. Colonic mucosal epithelial cells proliferate 
due to the activation of the STAT/MAPK cascades. Activated 
NFκB and c-IAP2 (X-linked inhibitor of apoptosis) protect 
these cells from apoptotic death. The proliferating mucosal 
cells exude IL-8, an activator of NFκB, cyclooxygenase-2 and 
prostaglandin. The bacteroides enterotoxin re-arranges the 
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cytoskeleton of the mucosal epithelial cells. In the process, proto-
oncogenes K-ras and c-myc are activated. Further, the human 
homolog of the drosophila gene ‘legless’, the B cell lymphoma 
gene BCL9 becomes activated. This gene is an activator of the 
β-catenin/Wnt cascade. The major inhibitor of this cascade, 
the dickkopf-1 gene product protein is not produced due to the 
silencing of the dickkopf-1 gene (or its promoter). Some other 
dickkopf genes (dickkopf-3, -4) are up-regulated; their gene 
product proteins are neoangiogenic, but the Dickkopf-4 protein 
is inhibitory to the β-catenin signaling pathway. Other cyto- and 
lymphokines activated by the bacteroides enteroxin-stimulated 
colonic mucosal cells are IL-6, IL-8, IL-10 and TGFβ. Cytidine 
deaminase, TNFα, NFκB, IL-4 and IL-13 somehow eliminate 
‘the guardian of the genome’, p53, in the colonic mucosal cells. 
Reactive T  lymphocytes liberate β-catenin for intranuclear 
entry. Reactive lymphocytes express T cell factors: TCF-1 
promotes, TCF-4 inhibits the Wnt/sHH cascade. Colon cancer 
cells often express the Fas ligand (FasL+), thus FasR+ immune 
T cells upon contact with these cancer cells die apoptotic death 
(extensively reviewed in ref. 62 and original references cited in 
ref. 270). IL-17 appears. This lymphokine may act as a tumor 
suppressor, when it activates DCs and NK cells; however, if it 
activates vascular endothelial cells, granulocytes and macro­
phages, it acts as a tumor promoter (70). In human CpG island 
methylator geno-phenotype colon cancer tissue (proven by 
assaying eight genetic markers), the effect of lymphocytic 
infiltrates on survival was favorable. The lymphocytes assume 
Crohn-like, peritumoral, intratumoral periglandular reactions, 
and tumor-infiltrating patterns (shown in microphotographs). 
The tumor-infiltrating pattern was associated with significantly 
improved tumor-specific and overall survival (271).

Further recent reviews of carcinogenesis in ulcerative colitis 
explain the genomics and proteomics of that condition, the role 
of IL-13 in the activation of the cell survival STAT pathway 
(272), but without being able to recognize the ultimate inducing 
agent(s) (recently reviewed in ref. 62). The highly methylated 
genes in the inflamed mucosa are the promoter of E-cadherin 
(CDH1), the transmembrane protein containing epidermal 
growth factor hyperplastic polyposis (TPEF/HPP), the glial 
cell line-derived neurotrophic factor (GDNF) and the myoblast 
differentiation genes (273). Of these genes, CDH1 and HPP 
exert tumor suppressive functions. This author is impressed by 
one rare side effect of ipilimumab: ‘the hemorrhagic colitis’ 
syndrome. A middle-aged male patient D.L. with metastatic 
melanoma was sent to the NIH/NCI clinics (Bethesda, MD) to 
receive a then investigational mcab ipilimumab. While he expe-
rienced a better than 50% partial regression of his melanoma, 
he developed ‘hemorrhagic enterocolitis’ with perforation and 
died in septic shock. Even though he received corticosteroids to 
alleviate his ‘autoimmune enterocolitis’, at postmortem exami-
nation (performed by Dr László Karai), the ulcerated intestinal 
tract, especially the colon, was infiltrated by lymphocytes 
(unidentified as to clonality) (unpublished data). The inflamma-
tory reactions in ulcerative colitis are of internal autoimmune 
causation without an external pathogen. Autoimmune diseases 
of the gastrointestinal tract involve different organs (pancreatitis 
with ulcerative colitis) (274). Adenocarcinomas and primary 
lymphomas of the entire gastrointestinal tract, especially those 
of the colon with ulcerative colitis, are of autoimmune inflam-
matory causation (275).

In the non-polyposis colon cancers, Lynch syndrome, inducer 
genes are named after their ancestors discovered in yeast cells 
(276): postmeiotic segregation (PMS), mutated S and L homolog 
(MSH, MLH) (277). In the MSH2-associated Lynch syndrome, 
the epithelial cell adhesion molecule (EpCAM) gene is also 
deleted (278,279). In Lynch syndrome, the oncogenic DNA is 
repaired mismatched. Mismatched repaired DNA proved to be 
quite viable in the highly malignant transformed cells. Cancers 
due to germ-line gene mutations may not need much inflam-
matory stimuli. However, the sporadic mucinous colon cancers 
arising in hypoxic, inflamed microenvironment are commonly 
right-sided, multifocal and express the PMS. These mucinous 
colon cancers are infiltrated by lymphocytes, and express PMS2 
gene mutations. In a mouse model, the histone deacetylase 
inhibitor suberoylanilide hydroxamic acid (SAHA) decreased 
peritumoral colitis and NFκB levels (280).

The intestinal tract suffers from protracted inflammatory 
processes in ulcerative colitis, Crohn's disease and in non-
healing rectal fistulas-fissures (281-283). Polymorphisms of the 
IL-6 genes, epigenetic methylations of the CpG islands of the 
WTp53 and KRAS2 genes translate into the CIMP (CpG island 
methylator phenotype) (vide supra). Oxidative-induced DNA 
breaks initiate and hypoxia-induced inflammation sustains the 
growing tumor (284-286).

Dietary anti-oxidants (α-tocopherol; β-carotene, the caro­
tenoid, lycopene) and anti-inflammatory agents, aspirin or 
ibuprofen) are claimed to reduce the rate of inflammatory 
mutations. Lycopene and tocopherol decreased the rate of p53 
mutations; carotens decreased the rate of KRAS mutations. 
In women, α-tocopherol was protective to p53 against CIMP, 
whereas in men α-tocopherol was associated with increased 
mutation rate in these situations. Only in GG IL-6 genotype did 
high tocopherol levels reduced risks of p53 and KRAS muta-
tions (287).

Prostate cancer. Apart from vertically transferred somatic 
(acquired), or germ cell mutations (in the minority of cases), this 
tumor has long been suspected to originate with somatic gene 
mutations against the background of a chronic inflammation 
(in the majority of cases). For example, if Mycoplasmataceae 
are carcinogenic by activating the vav oncogenes (vide supra), 
could a genitourinary mycoplasma infection be inductive to 
prostatic adenocarcinoma? Prostatectomy specimens freque­
ntly yield (35%) Propionibacterium acnes, or corynebacteria, 
or nanobacteria (288-291), but preceding genitourinary myco-
plasma infections in the prostate might have been unrecognized. 
Calcifications in cancerous breast or prostate tissues may indicate 
reactions of hydroxyapatite and nanobacteria, if nanobacteria 
as true life forms really existed on Mars and were transferred 
to Earth by meteorites (292). As to genetic predisposition and 
inflammation, the deletion of glutathione S-transferase gene 
in combination with the histologic picture of ‘proliferative 
inflammatory atrophy’ lead to the precancerous intraepithelial 
neoplasia (293).

Mice transgenic for vav3 overexpression (vide supra) in the 
prostate develop NFκB- and PI3K-driven prostate cancers by 
3 months of age. These cancer cells also expressed androgen 
receptor (AR) overactivity. The cancerous glands showed 
hypervascularity and heavy lympho-mononuclear cell infil-
trates. Up-regulation of HER2 and down-regulation of PTEN 
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occurred. When vav3 is activated in the prostate, it may posi-
tively interact with the AR, or it may stimulate the growth of 
prostatic cancer cells independently from AR by activating 
the PI3K/Akt ‘cell survival’ pathway (294,295). The human 
vav proto-oncogene was mapped to 19p12-12.2 (137). Vav3 
expression was significantly elevated in androgen-independent 
human prostate cancer cells. A siRNA complementary to vav3 
mRNA inhibited the growth of both androgen-dependent and 
independent human prostate cell lines. Molecular inhibitors of 
PI3K were also effective in inhibiting the growth of vav3+ pros-
tate cancer cells (296). These authors speak of ‘non-bacterial 
prostatitis’ (not to misread as ‘nanobacterial’), but do not state if 
attempts at culturing mycoplasma from the precancerous gland 
were actually attempted. These authors succeeded in docu-
menting vav3 oncogene activation in 81% of the human breast 
cancer specimens. Vav activated estrogen receptor expressions 
(297). These studies done at Mount Sinai Hospital, New York 
and at Albert Sabin Way, Cincinnati, OH, are entirely compa-
rable with similar experiments conducted at the University of 
Miami's Miller School of Medicine (295,296,298). Here, the Rho 
GTPase guanine nucleotide exchange factor Vav3 was found 
markedly increased in androgen-independent human prostate 
cancer cells. The stimulation of AR by Vav3 protein was active 
in the presence of subnanomolecular androgens. Thus, Vav3 
could maintain prostate cancer cell growth in patients receiving 
androgen deprivation therapy, which is seldom absolutely 
complete. Intact pleckstrin strands are KSTR amino acid strings 
(lysine for K, serine for S, threonine for T, arginine for R, in 
the substrate of leukocyte kinase C of leukocytes and platelets)  
obligatory to the activity of Vav3 (298).

A pro-inflammatory condition in the pre-carcinomatous/
carcinomatous prostate is consequential to the lipooxygenase 
product, eicosatetraenoic acid (5-oxo-ETE). H2O2 stimulated 
the increase of 5-oxo-ETE, nicotinic acid adenodinucleotide 
phosphate (NADP) and glutathione disulfide. Glutathione 
reductase-dependent generation of NADP was blocked by 
N-ethylmaleimide (NEM). 5-oxo-ETE exerted strong chemo­
attraction toward granulocytes. Granulocytes further released 
inflammatory cytokines. Arachidonic acid and calcium iono-
phore induced self-stimulation of granulocytes by 5-oxo-ETE 
release, that could be blocked by NEM (299). Thus, these chem-
ical reactions could induce prostatitis without a pathogen. A 
macrophage inhibitory cytokine-1, member of the TGF-family 
prostate-derived factor is claimed to inactivate suppressor genes 
and activate oncogenes (300).

Two genes held highly suspect in promoting inflamma-
tory carcinogenesis in the prostate were the ribonuclease L 
(RNASEL) and the MSR1 genes. Further, the Toll-like receptor 
family genes and the cyclooxygenase gene have been under 
suspicion. Finally, single nucleotide polymorphism (SNP) 
of some lympho- and cytokine genes was considered to be 
contributory to inflammatory carcinogenesis of the prostate: 
IL-1β, IL-6, IL-8, IL-10, and the TNF family genes. SNP in four 
inflammation pathway genes IL-4, IL-6; posttranscriptional 
gene silencing (PTGS2); and STAT3 were most significantly 
associated with inflammatory carcinogenesis in the prostate. 
Aggressive prostate cancers were associated with SNP in AKT1, 
PIK3R1 (phosphoinositide-3-kinase regulatory subunit  1) 
and STAT3 genes (301). (Prostatic intraepithelial neoplasia 
surrounded by heavy inflammatory infiltrate emerges as one 

of the most adverse prognostic factors. Rider JC, AACR Press 
release, Sept 27, 2011). 

This most versatile tumor may use nitric oxide (NO) for 
its cells' survival. The plasma membrane molecule carboxy­
peptidase-D (CPD) obtains arginine from extracellular sources. 
Arginine is converted to NO intracellularly. Low doses of 
testosterone or prolactin up-regulate CPD. Through the arginine 
pathway more NO was generated; these tumor cells gained resis-
tance to apoptotic death (302). NO suppresses Snail and activates 
Raf-kinase (rat fibrosarcoma) inhibitory protein (RKIP), thus 
inhibiting EMT of tumor cells (303). The prostate cell genes 
stearoyl CoA desaturase 1 (SCD1) and the insulin-induced 
gene 1 (INSIG1) may engage proto-oncogenes, the mesenchymal 
differentiation inducer gene MAF (musculoaponeurotic fibrosar-
coma, MAP) and the Notch receptor ligand jagged (304), thus 
statins acting on SCD1, and metformins acting on insulin-like 
GF genes may suppress prostate cancer cells. Some prostate 
cancer cells de-differentiate toward bone marrow mesenchymal 
stem cell (305). Promoters of EMT are, among others, the loss of 
tumor suppressor genes p53 and PTEN (306); β-microglobulins; 
β-catenin induced by HIF-1α; ester-12 myristate 13-acetate; 
TGFβ; VEGF; and growth and differentiation factor 9 (GDF-9). 
Estrogen receptor β (ERβ) expression is suppressed in aggressive 
high Gleason grade prostate cancer cells. The ligand to the ER, 
5α-androstane-3β-17β-diol, maintains the epithelial cell pheno-
type. Hypoxia and TGFβ suppress ER. Active ER suppresses 
HIF-1α and VEGF-A. In the absence of ER activity, VEGF-A 
(neurophilin-1) promotes Snail-1 in the nucleus, which activates 
vimentin and all other genes to encode the mesenchymal pheno-
type (307). Prostate cancer cells undergoing EMT metastasize. 
Most circulating tumor cells display EMT phenotype (308a). 
Hypoxia, TGFβ and VEGF are notoriously active in the inflam-
masomes. The inflammatory oncoprotein NFκB activates the 
snail oncogene; the Snail oncoprotein is a major inducer of EMT. 
The proteasome inhibitor NPI-0052 (nonapeptide inhibitor sali-
nosporamide A from marine actinomycete Salinospora tropica), 
and the NFκB inhibitor DHMQ (same as TMDQ, dimethyl or 
trimethyl-1,2-dihydroquinoline) repress Snail and reverse the 
process of EMT (308b).

MicroRNAs miR-143 and miR-145 inhibit EMT and 
bone metastases; however both miRs are down-regulated in 
high Gleason grade tumors and thus are inhibited to act (309). 
In aggressive prostate cancers, miR-221/222 canceled the 
mRNAs-to-protein translation of p27 (CDKN1B), and p57 
(CDKN1C), thus cell growth suppressive cyclin-dependent 
kinases were silenced. The miR-16 can arrest the cell cycle in 
G0-G1 by negatively regulating (suppressing) HMGA1 (high 
mobility group) and CAPRIN (cytoplasmic activation/prolif-
eration-associated protein) genes (310). ‘The oncogene from 
hell’, c-myc → c-MYC, can be silenced by miR-145, except that 
miR-145 is rendered non-functional in aggressive tumors. Some 
c-MYC supportive miRs (miR-363, miR-92a, miR-20b, and 
miR-18b) are up-regulated. Three genes up-regulated in aggres-
sive prostate cancers (Gleason >8) are CCNA2 (cyclin-A2), 
CDCA5 (cell division cycle-associated) and KIF23 (kinesin 
family, for rolling movement of the cell nucleus). The two miRs 
(miR-145 and miR-331-3p) negatively regulating these genes 
normally, are silenced. When ectopically re-expressed in pros-
tate cancer cell lines, these two miRs exerted growth inhibitory 
effects (vide infra) (311).
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The TMPRSS2-ERG gene fusion at locus 21q22 takes 
place early in prostate cancer cells (transmembrane protease 
serine 2; ets-related gene; ets E26 avian erythroblastosis retro-
virally acquired cellular-to-viral oncogene: c-ets → v-ets) (312). 
Androgen-signaling brings these two genes into proximity, 
thus inducing their fusion (313). Altogether, the untranslated 
5'UTR region of gene TMPRSS2 (21q22) may fuse with ERG 
(21q22), ETV1 (7p21), SLC45A3 9 (solute carrier gene) and 
with HERV-K, the human endogenous retrovirus gene, that in 
extravillous cytotrophoblasts exerts immunosuppressive prop-
erties in the defense of the fetus (314,315). It is the ERG element 
that dictates the malignancy, even when not fused: patients with 
increased copy number of the ERG gene in chromosome 21 have 
a high chance for relapse after radical prostatectomy (316). High 
expression of HSP-27 encoded from 7q11.23 independently 
from ETS gene rearrangement (vide supra) predicted high risk 
disease (Gleason >8) and poor prognosis (317). ETS1, ETS4 
gene expressions are responsible for anchorage-independent 
high proliferative tumor cell growth (318).

Another retroviral genomic sequences (and mature virions, 
in this case) had allegedly existed in some human prostate 
cancer cells, both in the stroma and in the tumor cells. This is 
the xenotropic murine leukemia virus-related gammaretrovirus 
(XMRV). The chain of events is such, that TNFα activates 
NFκB, which activates XMRV. Herpesviruses are known to 
activate retroviruses (reviewed in ref. 108) and in the human 
prostate EBV latent membrane protein-1 (vide infra) also 
activates XMRV. The p65/RelA (reticuloendothelial) compo-
nent of NFκB attaches to two sites κB-1 and κB-2 in the UT3 
region of the long terminal repeat of XMRV. The wild-type 
XMRV replicates in human prostate carcinoma cell lines, in a 
Burkitt's lymphoma cell line, and in an EBV-immortalized cell 
line (319). However, strong new evidence indicates that human 
prostate cancer xenografts passaged in nude mice picked up two 
murine proviruses (PreXMRV-1 and 2) which recombined to 
produce replicating XMRV retroviral particles (320). Picking 
up murine endogenous retroviruses by human tumor xenografts 
was observed before (321). The role of XMRV in inflammation-
induced human oncogenesis, or in chronic fatigue syndrome, 
appears to have been negated (320,322). Under these circum-
stances, it remains a tantalizing puzzle how positive results of 
viral isolations and serological evidence of human infection 
with the XMRV could possibly be reported. (High risk ‘lethal 
prostate cancers’ xenografted in immunosuppressed mice 
revealed the well known mutations of the TP53 gene and large 
numbers of highly individual non-germ-line somatic mutations, 
‘hypermutations’, in DLK2, δ-like homolog, GPC6, glypican-6, 
and SDF4, stromal cell-derived factor  4, genes; androgen 
suppression-resistance occurred in Wnt mutated tumors. The 
individual mutations continued to evolve in the xenografts. 
(Kumar A, et al, press release on Sept 26 from Fred Hutchinson 
Cancer Research Center, Seattle, WA).

Finally, the B cell-specific Moloney mouse leukemia-
sarcoma viral genome's insertion site BMI1 in the human 
genome remains a point of interest, inasmuch as this site 
is involved in the activity of stem cells with (or without) the 
oncogenic activities of the Sox oncoprotein (SRY-related high 
mobility box family transcription factor; sex-determining 
region in Y chromosome, vide infra). The BMI1 protein is a 
transcriptional repressor of the polycomb group gene family. 

The immunoreactivity of the BMI protein is in the cytoplasm, 
where it acts as a negative regulator of the cell cycle (Ink4a/
Arf, inhibitor cyclin-dependent kinase 4; alternative reading 
frame), thus cell proliferation. BMI1 is active in stem cells and 
in several tumors, including gastric and prostatic adenocarci-
nomas (323,324).

Both stromal and malignant epithelial cells in the prostate 
gland express keratinocyte growth factor, also known as fibro-
blast growth factor-7 (KGF, FGF) and its receptor (KGFR). 
KGF exerts anti-apoptotic (by activating Bcl-2 and BclXL) and 
cell proliferation promotional activities (by activating the Akt or 
MAPK pathways) (325,326ab). While KGF induces differentia-
tion into epithelial basal cells, it promotes AR expression (327). 
The LNCaP human prostate cancer cell line does not express 
KGF, but its exposure to external KGF promotes its growth; this 
is antagonized by flutamide or activin A or vitamin D3 analogs 
V and BXL-628, Université Libre de Bruxelles (328ab-330). AR 
is readily activated in prostate cancer cells by IGF, EGF, and 
KGF (331). Several human established prostate cell lines exhib-
ited malignant growth without expressing KGF/KGFR (332), but 
high Gleason grade and metastatic tumor cells were KGF- and/
or KGFR-positive (333). Benign prostatic hyperplastic cells were 
negative, but 65% of human prostate cancer tumors were posi-
tive for KGF expression, especially in their hormone-insensitive 
stages (334). From these data, it appears that in benign prostatic 
hyperplasia, whether chronically infected or not, there is very 
little if any KGF activity, whereas the appearance of KGF 
activity signifies advanced and probably hormone-resistant 
disease. The rare paraneoplastic syndrome, bilateral palmar 
hyperkeratosis with prostate cancer (335) could be an adverse 
prognostic sign, especially if persists during therapy.

The WW (double tryptophane) domain contains oxidore-
ductase. The WWOX tumor suppressor gene is best understood 
in its relation to Tax oncoprotein of the human T cell leukemia 
virus, HTLV-I, and osteosarcomagenesis. While the HTLV-I 
Tax oncoprotein activates the NFκB pathways, WWOX 
inhibits the HTLV-I/Tax/NFκB pathway (336). In osteosarco-
magenesis, WWOX is frequently absent (silenced; mutated). 
Active WWOX neutralizes the RUNX2 oncoprotein (runt box 
transcription factor) (337,338). Transduced adenoviral and lenti-
viral vectors are available for attempts at correcting WWOX 
deficiency. Tested in xenografted human breast cancer cells, 
WWOX was either re-instated through the adenoviral vector, or 
reactivated by the de-methylating agent 5-aza-deoxycytidine. 
Active WWOX inhibited tumor cell growth (339). Naturaly, 
WWOX is activated by its ligand PPXY (P = proline, Y = tyro-
sine, X = any amino acid, W = tryptophane) (340). WWOX is 
suppressed in adenocarcinomas other than that of the breast 
(osteosarcoma, colon cancer, small cell carcinoma of the lung, 
prostate cancer) (336,337,341-343). In small cell carcinoma, it 
is the BmI1 protein (vide supra) that suppresses WWOX (342). 
In prostate cancer, active WWOX not only suppressed tumor 
growth, but actually induced apoptotic deaths of tumor cells, 
but in actively growing tumors WWOX is silenced (344). Since 
WWOX suppresses HER2/neu+ breast cancer cells, it was 
tested against prostate cancer cells expressing ErbB2, equiva-
lent of HER2/neu. The transcription factor Ap2y activates the 
Erb2/neu promoter. When ErbB2 is active in prostate cancer, it 
enhances AR expression and promotes hormone-independent 
growth (343). The tumor cells either function on minuscule 
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amounts of testosterone, or activate their own testosterone 
production, the ligand for an autocrine loop (AR). The tumor 
cell carries out the conversion of adrenal androgens into 
testosterone and dihydrotestosterone and is able to synthesize 
androgens from cholesterol; these reactions are enhanced by 
insulin (344,345). These androgens as ligands bind the AR 
in an autocrine circuitry. Cytochrome enzymes P (CYP) are 
active in this conversion. The CYP enzymes can be antago-
nized by abiraterone, but they can gain abiraterone-resistance 
(344).

The Sprouty 1 (Spry1) gene product protein is a tyrosine 
kinase receptor inhibitor for the fibroblast growth factor 
(keratinocyte growth factor, vide supra). Prostate cancer cells 
down-regulate Spry1 both by hypermethylation of its DNA, 
or by silencing its mRNA by targeting it at its 3'UTR region 
with microRNA-21 (345). The high cysteine-rich protein gene 
(HPCX) encoded from locus Xq27-q28 is considered to be a 
susceptibility gene in hereditary prostate cancer. It is closely 
associated with genes SPANX (sperm protein associated with 
nucleus) and MAGE-C1 (melanoma antigen gene protein). The 
SPANX genes exhibit frequent gene deletions, duplications, 
homology-based sequence transfers and recombinations. The 
MAGE-C1 gene's mRNA offers 12 target sites to miRNAs. 
Gene MAGE-11 resides at Xq28; its protein product belongs to 
the ‘cancer-testis antigen family’; it increases the transcriptional 
activity of the AR. AR is mapped to Xq11-12 (347-350a). The 
ectopically expressed super elongation complex gene SEC23A 
reduced the growth rate of human prostate cancer cell lines 
without inducing apoptosis. When its mRNA was targeted by 
microRNAs miR-200c and/or miR-375, this inhibitory effect 
was abolished (351). There appeared a report on genes in the 
prostate, which are activated by inflammatory events (301). Of 
the genes reviewed here, only SPANX appears to be labile and 
versatile enough to be up-regulated by an inflammatory process. 
The most recent assessment lists those genes that foretell aggres-
sive disease, relapses and prostate cancer-related deaths. These 
genes are LEPR (the leptin receptor gene), CRY (the mamma-
lian clock cryptochrome gene), RNASEL (the ribonuclease L 
gene; latent endoribonuclease, pro-apoptotic unless suffered 
gene polymorphism), the IL-4-gene, and the ARVCF (armadillo 
repeat protein deleted in velo-cardio-facial syndrome gene, 
δ catenin genes, neurojungin, plakophilin, plakoglobin genes) 
(352). Except for IL-4, the reactions of these genes to inflamma-
tory signals is not well defined at all. The ARVCF gene family is 
best understood in the context of the metazoan evolution of the 
catenin gene family (353). The epigenomics of prostate cancer-
associated genes (methylation and de-acetylation) (354), and the 
relationship of gene-derived mRNAs as targets for microRNAS 
reveals extraordinary complexity. MiRNA-141 levels correlated 
with those of PSA, lactic dehydrogenase, and circulating tumor 
cells during the clinical course of prostatic carcinoma (355). 
The miRNA-200c is activated by oxidative stress (in the inflam-
masome); by inhibiting oncogene ZEB, it is more of a tumor 
suppressor gene (356); so it is, when it reduces adenocarcinoma 
formation in Barrett's esophagus (vide supra), or suppresses 
squamous carcinoma cells in the head and neck region (85,357); 
but by reducing tumor suppressor Sec23A protein levels, 
miRNA-200c becomes a promoter of prostate cancer cell prolif-
eration (350a). In comparison, miR-203 is expressed high in 
normal prostatic tissues, but it is down-regulated in cancerous 

tissues. In bone metastatic prostate cancer cell lines, miR-203 
is active in inducing the reversal, the mesenchymal to epithelial 
reaction (350b).

The Sox (vide supra) family genes are highly up-regulated in 
pluripotent embryonic stem cells to maintain clonogenicity, self-
renewal and pluripotency, therefore they are active in fetal life. 
Sox9 is expressed in intestinal crypts and hair follicles (sites of 
high cellular activities). Stem cells in the basal epithelium of the 
healthy prostate express Sox9. The sHH, Wnt/β-catenin pathway 
regulates Sox9. Sox9 is highly expressed in hormone-refractory 
prostate cancer cells. The Sox9 mRNA can be neutralized by 
shRNA (358). The single exon sox2 gene is embedded within a 
long non-coding RNA at 3q26.3-27, and exists also in an over-
lapping transcript: Sox2ot. The sox2ot → SOX2OT is transcribed 
from a highly conserved element. The ncRNA exercises regula-
tory function over the expression of the sox2 genes. In active 
sox2 gene, lysine (K) 4 of histone 3 is trimethylated (H3K4me3); 
in inactive sox2 gene lysine 27 of histone 3 is trimethylated 
(H3K27me3) (359).

In fetal life, Sox is an inducer of ectoderm and neurogen-
esis. It is down-regulated (silenced) upon differentiation. Sox2 
undergoes amplifications and mutations, for example in squa-
mous cell carcinomas of mucous membranes of the head and 
neck and esophagus (82). Up-regulated Sox2 with or without 
Sox4, Nanog, Oc4, BMI-1, and Myc induces adenocarcinomas 
of breast, endometrium, and prostate (360-363). In the prostatic 
adenocarcinoma stem cells, Sox2 with Nanog, Oct-4, Myc, Ras, 
Klf4 (Krüppel-like family transcription factor, from drosophila), 
Oskar (drosophila oocyte) co-exist and co-act. Sox is a major 
contributor to the grade of malignancy: with up-regulated CD44 
and PSA; apoptosis resistance (without high Bcl-2, but with 
down-regulation of Ca2+ entry), high Ki67 (K index nuclear 
protein for cell divisions), high Gleason score (8-9-10), and easy 
transplantability as xenografts. The Sox2 protein was expressed 
both in the cytoplasm and in the nucleus of the cancer cells. 
These cancer cells proliferated at an accelerated rate. These 
cells resisted apoptosis-induction by thapsigargin and cisplatin. 
In some prostate cancer cells doxycycline induced shRNA 
release. In mice reeeiving doxycyclin in their drinking water, 
SOX2+ tumor xenograft grew very slowly (363).

Sox2 being the major contributor to all these, when its 
mRNA is neutralized by a complementary short hairpin 
shRNA, there is a complete reversal of all malignant scores 
close to normal: drop of Sox protein, restored apoptosis suscep-
tibility, decreased Ki67 due to a standstill of cell proliferation, 
drop of Gleason score, and loss of growth potential in xeno-
grafts (363).

Prostate cancer bone metastases appear ‘blastic’ (osteo-
blastic), but osteoclastic bone lytic activity is substantial. 
The runt-related transcription factor RUNX family proteins 
(RUNX2, pivotal in osteogenesis) in heterodimers with the 
Cbf-β protein (C-repeat binding factor; core binding factor) are 
overexpressed in those prostate cancer cells that metastasized to 
the bone. These cells have already undergone EMT (364,365). 
However, when an αv-integrin antagonist re-arranged the tumor 
cell surface, E-cadherin expression went up and vimentin 
expression went down, forcing the cell to present itself with less 
mesenchymal and more epithelial phenotype, thus with reduced 
locomotion and metastatic spread (366). The RUNX complex 
continued to exert pro-metastatic acts. The DNA proviruses of 
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mouse leukemia retroviruses readily integrated into the runx2 
locus (367). Regulatory Treg cells maintain Fox3 expression 
through the protective effect of RUNX/cbf complexes on the 
Fox3 mRNA (368). The RUNX/cbf complex suppresses the 
IL-4 silencer gene Il4, and thus releases IL-4 production (369). 
While RUNX maintains Treg and IL-4 levels, when anti-RUNX 
targeted therapy becomes available for the treatment of bone 
metastases by RUNX suppression, IL-4 levels and the supply of 
Treg cells may drop. Tumor cells notoriously utilize IL-4 (toler-
ance-induction) and Treg cells (immune T cell elimination), thus 
RUNX inhibition may result in some immunological benefits as 
well. The mcab denosumab is directed at the ligand of RANK, 
the activator receptor of NFκB; it inhibits bone resorption by 
osteoclasts (370). The standard osteoclast inhibitors remain the 
zoledronic acid preparations.

The oncogenic DNA of high grade prostate cancer cells is 
endowed with a great deal of biological-hormonal, radio- and 
chemotherapy resistance. The Dendreon DC vaccine sipuleucel 
(Provenge), while immunizing against prostatic acid phospha-
tase, an antigen of minor significance; it barely prolongs life. 
The PROSTVAC-VF (Bavarian Nordic) contains a poxvirus 
(vaccinia and fowlpox virus) expressing PSA with immunostim-
ulatory molecules with or without GM-CSF. The PSA-TRICOM 
induces powerful immune responses, but as yet without signifi-
cant clinical benefits (371,372).

Oncolytic viral therapy induces stabilization of disease, 
minor and partial responses (especially by intratumoral injec-
tion, that is, into the prostate) and only occasionally complete 
responses (usually of short duration). Clinically meaningful 
durable remissions would occur if antiviral immune reactions 
of the host could be suppressed, or by-passed by using serially 
and sequentially alternating different oncolytic viruses (164). 
Naturally oncolytic (Newcastle disease virus, attenuated poxvi-
ruses, reovirus), or genetically engineered oncolytic viruses 
(adenoviruses, herpesviruses, vesicular stomatitis virus, measles 
virus, etc.) are available in clinical trials (373-389).

Among others, the special AT-rich sequence-binding gene 
product proteins (Satb1, 2) regulate gene expressions in embry-
onic stem cells. Nanog is a major determinant of stem cell 
gene expressions. Nanoglow stem cells lose their pluripotency 
to differentiation into somatic cells. Nanoghigh stem cells may 
self-renew, but remain undifferentiated. Low Satb1 protein 
levels favor the rise of Nanoghigh stem cells. Satb2 acts by 
down-regulating Satb1. Both Satb1 and 2 proteins actually bind 
5'-flanking sequence of the Nanog gene. Further, in action, the 
Satb1 and 2 proteins form homo- and heterodimers. Thus, the 
balance of Satb1/Satb2 directs Nanog in the stem cell toward 
differentiation, versus the stem cell keeping its pluripoteny 
persistently (390). The persistence of pluripotency renders the 
stem cell conducive to malignant transformation. The transcrip-
tion factor FoxP3 suppresses the Satb gene in breast and prostate 
cancer cells; its effect is regulated by miR-7 and miR-155 (391). 
This system is deleted in cancer cells, and is awaiting for its 
re-insertion by a viral vector. However, the Satb1 mRNAs can 
be destroyed by a small hairpin RNA. The uniquely prostate 
cancer specific gene's DD3 (differential display code 3) presence 
in prostate cancer (DDR3/PCA3) could regulate as a promoter 
the expression of the shRNA (392,393). An oncolytic adenovirus 
was constructed to express the gene of SATB1-shRNA under 
the DD3 promoter regulation. This adenoviral vector expressed 

the anti-Satb1 shRNA in prostate cancer cells (cultured in vitro) 
and was cytopathic to the tumor cells (394).

The genomic complexity of prostate cancers is extraordinary. 
While seven genetic patterns have been fairly well sequenced 
(395), many more remain still unrecognized. In addition to the 
well known androgenic pathway, prostate cancer cells over­
express EGF-R, IGF-R and prolactin receptors (396-399). The 
appearance of periostin (and tenascin) exclusively in the tumor 
stroma indicates that they are tumor-induced and as such they 
should be targeted for therapy (400). 

However, this tumor is not targeted as yet with individual-
ized gene therapy. The primary tumor is treated with the ‘fits all’ 
radical prostatectomy, or high dose linear accelerator external 
beam, and brachy-radiotherapy with or without androgen-
deprivation therapy. The ‘Beaumont regimen’ revealed that in 
high risk disease (Gleason >8) apparently still confined to the 
gland (always questionable), hormonal therapy (non-curative, 
palliative) delaying high dose radiotherapy was of disadvan-
tage (‘detrimental’) (401-403). This is known since 2007, yet 
androgen-deprivation is still recommended to precede radio-
therapy. Unless leuprolide and/or bicalutamide induce tumor cell 
apoptotic deaths (other than promoting the ‘metabolic syndrome’ 
of the patient), the tumor cells arrested in G0-G1 survive the radio-
therapy (402). These are the metabolically active, but rendered 
irreversibly stagnant (not replicating), ‘senescent’ tumor cells. 
This is the situation in which AR-negative neuroectodermal 
prostate cancer cells may arise (without producing PSA). 

The best results for high risk disease would appear to be 
the immediate high dose interstitial radiotherapy (iridium 
Ir-192 source brachytherapy within the gland and its immediate 
periphery), preceding the external beam intensity-modulated 
radiotherapy (IMRT). External beam radiotherapy may induce 
late carcinogenesis (adenocarcinomas, sarcomas) in the pelvis, 
and brachytherapy in the prostatic urethra (404,405). These 
tumors probably arise from radiation-induced gene-mutated cells 
escaping apoptotic death, but without inflammatory etiology. 
The predicted incidence of radiotherapy-induced tumors is as 
high as 1/250 at 5 years, and 1/70 at 10 years (405).

For metastatic disease, no curative treatment is available, 
but various cytotoxic chemo-, or targeted therapeutic regimens 
with alternating androgen suppression prolong life. Epigenetic 
interventions (cancer suppressor gene demethylations or histone 
re-acetylations) hold promise bordering the spectacular, for the 
restoration of cancer suppressor genes and for the suppression 
of oncogenes (354,406). For the promise of targeted therapy, 
abiraterone inhibiting the cytochrome enzyme CYP17A1, and 
the src family kinase-inhibitor, dasatinib, are the examples 
(407-409). Dasatinib is a wide-spectrum oncogenic kinase 
inhibitor, acting against the break-point/Abelson fusion onco-
protein (BCR/ABL), platelet-derived growth factor receptor 
(PDGF-R) and c-KIT (kinase target). However, the sequentially 
and serially mutated oncogenic DNA switches from those 
suppressed to several new (more than 3) oncoprotein-driven 
pathways.

For the promise of improved immunotherapy, ipilimumab 
releases autoimmune reactions against cellular targets masquer-
ading as ‘self’ and as such, it could induce durable remissions 
in cases of prostatic carcinoma (407,409). Subclasses of cyto-
toxic/cytolytic lymphocytes are able to recognize and attack 
transforming stem cells. In order to attack prostate stem cell 
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antigen-expressing senescent prostate cancer cells, the T cell 
receptor could be re-directed by bispecific antibodies (410,411).

Estimations in the literature put the incidence of inflam-
mation induced cancers in general at the 35-40% range, except 
for prostatic carcinoma: there 85% for inducing inflammatory 
somatic mutations, and 15% for various forms of inherited 
(SNP, gene mutations and familial vertical transfers) etiology. 
Non-steroidal anti-inflammatory agents and anti-oxidants 
[aspirin, ibuprofen, celecoxib, curcumin (Anand P, et al, Press 
release from M.D. Anderson Hospital, Houston, TX, Sept 8, 
2011), resveratrol, epigallocatecholamine-gallate, licorice roots' 
triterpenoids' metabolite glycyrrhizin, lycopene, quercetin, 
pomegranate polyphenols, silibinin, soy isoflavons, vitamin D 
analogues, etc.] are of some preventive value in reducing inci-
dence, but have no proven clinical efficacy against established 
disease; however, it is claimed that they improve the efficacy of 
standard therapy, and in combinations (the anti-inflammatory 
celecoxib and antiandrogen hormonal therapy) may induce 
remissions (412). The preventive value of dutasteride is in doubt: 
indeed it has utterly failed to prevent high grade disease. These 
data explain the increased attention inflammation-induced 
prostate cancer, frequent, most versatile, and devastating, 
received in this article.

Endometrial adenocarcinoma. The menstrual cycles were 
recognized to be inflammatory processes imitating wound 
healing and inviting the outpour of inflammatory cells (leuko-
cytes, macrophages, NK cells). Even in the menopausal stage, 
the endometrium is receiving an influx of estrogens without 
the counterbalance of progesterone; androgen levels may 
rise. Carcinogenesis in the endometrium may occur both by 
the intrinsic (cancer is initiated first and then is supported by 
inflammatory cytokines), or by the extrinsic (chronic or period-
ical inflammatory processes induce carcinogenesis) pathways. 
Inactivation of PTEN and consequential activation of the PI3K, 
and Akt ‘cell survival’ pathways follows. Cytoplasmic NFκB is 
liberated to transfer into the nucleus, where it activates a series 
of inflammatory genes. Chemokine and cytokine showers imbue 
the tissues. The first gene to undergo point mutation is the Kras 
(Werner Kirsten's Moloney virus-induced rat sarcoma). The 
transforming tissues exude prostaglandins and cyclooxygen-
ases. Irreversible malignant proliferation of the endometrium 
takes place (413,414).

The Sox4 oncogene at 6p22 encodes the Wnt/sHH onco-
gene cascade with Notch and TGFβ signaling. Sox4 is under 
the suppressive control of the non-coding small miRNA-129-2. 
In cancerous endometrium the CpG islands of miRNA-129-2 
are hypermethylated and thus silenced. In response, the Sox4 
oncoprotein is up-regulated. Patients with hypermethyl-
ated miRNA-129-2 experience poor prognosis and short life 
expectancy. DNA demethylation (for example, with 2'-deoxy-
5-azacytidine) and histone re-acetylation (for example, with the 
deacetylase inhibitor trichostatin) with resulting restoration of 
miRNA-129-2 activity promptly stabilize the course of their 
disease. Sox4 oncoprotein levels drop; cancer cell proliferation 
falls to a standstill. Patients with stable disease or actual remis-
sion experience prolonged survival (361,362).

Melanoma. Ultraviolet light- (UV irradiation-) induced 
acquired somatic mutations against the background of UV 

light-induced subcutaneous inflammation induce this tumor. 
The inflammatory mechanisms, if any, that induce visceral, 
or uveal, melanomas, are unknown. Oncogene B-raf (rat 
fibrosarcoma) is the most common mutation encoding a 
serine-threonine oncoprotein kinase. This oncoprotein kinase 
induces abnormalities of the mitotic spindles with aneuploidy 
in the melanocytes (415). This author repeatedly reviewed his 
experience with this tumor, both at the basic science level and 
in the practice of medical oncology (416,417). Patients with 
melanoma express weak tumor-specific immune reactions 
in addition to the ‘non-specific inflammatory background’. 
In past decades, Bacille Calmette-Guerin (BCG) was widely 
used to stimulate the anti-melanoma-specifc immune reactions 
(418). Some human melanoma cells activate an endogenous 
retrovirus, whose role in the etiology of the disease, and in the 
induction, or suppression, of host immunity remain unresolved 
(419-421).

As to pre-molecular medicine era immunotherapy, Newcastle 
disease virus-, or influenza A virus-oncolysates cancelled or 
retarded the appearance of metastases after surgical resections 
of metastatic lymph nodes in stage III disease; in stage  IV 
disease significant prolongation of life was observed in not 
prospectively randomized patients treated with viral oncolysates 
(164,422,423). However, overvaccination could be detrimental. 
Was this due to chronic inflammatory reactions, or overstimula-
tion of leukocytes and macrophages by GM-CSF? Eggermont 
analyzed the problem in his superb editorial (424). Patients 
with metastatic melanoma eliminate the Th1-type internal 
immunological environment and replace it with the actively 
tumor-tolerant Th2-type setting (425). Through the expression 
of the ICOS-L/B7H ligand (inducible T cell costimulatory 
ligand) by melanoma cells, the host generates large tumor-
protective Treg cell populations (426).

The broken chromosomes 1 and 10 undergo mismatched 
fusion encoding the Fas receptor from 10q23-26 on the cell 
surface, while the cytoplasmic tail is the granulocyte colony 
stimulating factor encoded from 1p32-34. Capturing the Fas 
ligand (FasL →  FasR) induces mitoses of these melanoma 
cells (Horvath JC, et al, Proc 89th Annual Meeting American 
Association Cancer Research, New Orleans, LA, 39: 584, abs. 
3971, 1998) (427). Glioblastoma cells utilize the FasL → FasR 
pathway for their divisions (vide supra) (154). The malignant 
cell DNA can use chromosomal breaks and fusions to its own 
advantage. The malignant cell DNA enlists microRNAs for its 
propulsion; in melanoma, the miRs-30b/30d silence the inter-
cellular communication enzyme N-acetyl-α-D-galactosamine 
polypeptide or N-acetyl galactosamine transferase (GALNT7) 
and induce the lymphokine IL-10 for promoting tumor cell 
spread in an immunologically tolerant microenvironment (428).

The mcab ipilimumab and tremelimumab, and the mutated 
B-RAF oncoprotein inhibitor vemurafenib lead the proceed-
ings toward the possible cure of metastatic melanoma.

Sarcoma. The classical tumor with possible inflammatory 
etiology is the malignant fibrous histiocytoma (429-431). Under 
the inquiry ‘malignant fibrous histiocytoma’ PubMed lists 
several examples of this tumor occurring in a lumbar abscess, 
in the retroperitoneum, in the thymus, in the kidney, in the 
spermatic cord, etc. HIF promotes the inflammatory process. 
In the chronic inflammasome, reactive oxygen and nitrogen 
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(N-synthase, iNOS) species induce DNA strand mutagenesis. 
A mutagenic product is 8-nitroguanine. Co-expression of 
8-nitroguanine in the nuclei and HIF1α in the cytoplasm of 
the targeted cell resulted in NFκB-driven sarcomagenesis with 
adverse prognosis (432).

Inflammatory lymphocytes reactive to sarcoma cells usually 
represent complex clones of lymphoid elements. Autologous 
small round immune T cells and autologous and allogeneic 
large granular lymphocytes (recognized as NK cells) react 
to sarcoma cells exploring the target in emperipolesis and 
either practicing tolerance, or launching a cytolytic attack. 
Cytotoxicity is expressed either (or both) as cytoplasmic lysis, 
or ‘nuclear clumping’, a morphological sign of apoptosis (433). 
In a desmoplastic small tumor cell sarcoma, talcum-induced 
reactive macrophages attacked tumor cells in the pleural cavity 
(430).

An established human chondrosarcoma cell line was 
observed to undergo a slow process of differentiation in vitro. 
The chondrosarcoma cell line was in advanced passages (over 
30 transfers in the 5th year of its establishment), thus considered 
to be free of any healthy stromal cells, including fibroblasts. 
To the 33rd passage population of the tumor cell line, small 
compact, and large granular buffy coat-derived lymphocytes 
(T cells and NK cells) of a healthy donor (JGS) were added. 
The large often polyploid tumor cells were explored by the 
donor lymphocytes (in emperipolesis), but suffered very rare 
incidence of cytolysis or ‘nuclear clumping’. Dividing tumor 
cells gradually yielded elongated fibroblast-like cells in their 
progeny with single round nuclei without aneuploidy. These 
cells eventually showed signs of senescence (documented in 
serial microphotography). The laboratory was experienced 
in punctually marking and observing cultures with a very 
good record of avoidance of mix-ups or cross-contaminations 
(321,434). The unexplained (and held doubtful) ‘spontaneous’ 
differentiation of a chondrosarcoma cell line can now be 
explained by the reaction of PPARγ uniting with their ligands 
(435). The artificial ligands of the system (the glitazones, 
indomethacin) are known, but if lymphocytes could deliver 
the natural ligands, that has not as yet been explored. If found, 
a balance of sarcomagenesis in the inflammasomes could be 
envisioned: the activation of oncogenes counterbalanced by 
re-differentiation of the transforming cells through ligand-
activation of their PPARγ receptors. However, the PPARδ 
pathway (not to be mistaken for the PARP pathway) appeared 
to be tumor-promoting in adenocarcinomas (vide supra). A 
chain of events were recognized following the growth arrest 
of chondrosarcoma chondrocytes by FGF beginning with the 
dephosphorylation of the RB protein p107, and repression of 
the E2F genes (436).

Retrovirally induced sarcomas dominate in the animal world 
from fish up to simian hosts (429), but human sarcomas appear 
as an outstanding exception. Even when retroviral particles are 
visualized in a human sarcoma, these have not as yet been isolated 
and identified (431). It is not clear at all how human sarcomas 
may be induced by inflammatory reactions, and how inflam-
matory cells (cytolytic lymphocytes) are actually mobilized to 
attack them (433). One can envision inflammasomes generating 
sarcomas. However even the most scholarly reviews of inflam-
masomes abstain from such suggestion (437). Sarcomagenesis in 
the inflammasome: is it overlooked or is it not happening? 

Instead of the expected sarcomagenic retroviruses, two 
human sarcomas harbor herpesviruses: in multifocal leiomyo-
sarcoma of children EBV, and in all forms of Kaposi's sarcoma, 
the human herpesvirus-8 (HHV-8, KSHV) prevail. However, 
both herpesviruses may activate, or co-exist with, endoge­
nous retroviruses (108,433). Herpesvirally induced sarcomas 
(Kaposi's sarcoma; EBV-induced leiomyosarcoma), evoke their 
own virus-specific immune reactions (vide infra). Weather 
these immune reactions are defensive against, or promotional 
to, these tumors, will be best settled, if both directions are 
recognized to co-exist (vide infra). 

Concluding remarks. It was in 1972, when Ruckdeschel et al 
described their clinical observation on postoperative empyemas 
reducing relapses of surgically removed lung cancers (438a). A 
decade later, postoperative intrapleural administration of BCG 
not only failed to inhibit, but it possibly enhanced, recurrent 
tumor growths of lung cancer (438b). Nowadays, inflammation 
is named in the pathogenesis of lung cancer (439,440) and we 
construct immunotherapy for lung cancer ‘from inflammation 
to vaccination’ (441).

In the 1970's, the re-organized and lavishly supported NIH/
NCI for the Conquest of Cancer issued contracts and grants for 
the ‘non-specific immunostimulation of patients with leukemias 
and solid tumor cancers’. It would be interesting to find out if 
corynebacteria (C. parvum) actually promoted tumor growth. 
BCG did better: it induced partial regression of some tumors 
(melanoma, transitional cell carcinoma of the urinary bladder). 
It became a vogue and a bandwagon to show 5-10% improve-
ments of chemotherapy results, when BCG was added in the 
case of practically every tumor; it was then ‘the state of art’ 
therapeutical intervention. Yet it has been almost completely 
abandoned. There was a balance to be found between onco-
genic and oncosuppressive immune reactions. The oncogenic 
inflammatory reactions were not immediately recognized or 
simply overlooked, and the oncosuppressive immune reactions 
were overestimated. 

At that time (the 1960's), the NIH/NCI steadfastly withheld 
funding for a ‘tumor-specific’ immunotherapy protocol (viral 
oncolysates against melanoma and sarcoma) with or without 
chemotherapy. Grant applications for viral oncolysate vaccine 
therapy with chemotherapy combination were rejected as 
‘mutually exclusive and useless’. However, in the last decade 
over a dozen clinical trials prove that tumor-specific immuno-
therapy is additive or even synergistic with chemotheapy, as 
if chemotherapy inhibited the tumor-promoting inflammatory 
reactions, and opened up an avenue for the immunotherapy to 
target the tumor: ‘Evidence accumulating in support of cancer 
vaccines combined with chemotherapy’ (442).

Considering the impressive documentation of inflammatory 
carcinogenesis, the induction of any new inflammatory reaction 
(oncolytic viruses, vaccines) into a tumor-bearing host should be 
carefully balanced. Oncolytic viruses and vaccines may work 
best when combined with a moderate chemotherapy regimen 
(reducing the tumor load and controlling the oncogenic inflam-
matory reactions). The newly induced inflammatory reaction 
of a vaccine or an oncolytic virus should be very specific and 
forcefully directed against its target; it should be re-inforced by 
chemo-cytokines and microRNAs with the proven reputation 
to be pro-apoptotic and anti-carcinogenic. 
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4. Pathogens with potentially oncogenic genomic sequences

Viral I. Kaposi's sarcoma cell nuclei are loaded with immature 
HHV-8 particles and frequently release an endogenous retro-
virus (similar to, but not identical with, human T cell leukemia 
virus, HTLV-I) (Fig. 4: if printed in a diminutive size, please 
view under a magnifying glass).

KS-associated herpesvirus (KSHV, HHV-8) reprograms 
vascular endothelial cells into lymphoendothelial cells (KS 
cells). The virus infects B lymphocytes and turns them into 
plasmablasts. Occasionally tonsillary T lymphocytes are also 
infected. KS cells express the c-Kit (kinase tyrosin) receptor. 
The major viral oncoprotein is the G protein-coupled receptor 
(guanyl nucleotide-dependent protein). Open reading frame 
K12 encodes kaposin A accelerating the MAPK and PI3K 
pathways, and kaposin B producing endothelial cell regulator 
Prox 1 (after drosophila gene prospero) (443). The KS cell 
genome induces anti-apoptotic Bcl-2, down-regulates Rb and 
p53, induces mTOR and Notch proto-oncogenes, and releases 
autocrine, or receives paracrine growth factors: IFNγ, TNFα, 
IL-6 (reviewed in ref. 444). KSHV induces ubiquitin ligases and 
HIF-1α, thus contributing to the Warburg effect of anaerobiosis 
(445a). The viral FLICE inhibitory protein FLIP (FADD-like 
IL-1β converting enzyme, Fas death domain) contributes STAT 

activation and spindle cell formation. Viral ORF57 encodes 
vIL-6; its mRNA transcript accumulation (TA) and miRNA 
recognition elements (MRE) stabilize viral and host cell IL-6 
mRNAs (443,445b).

The human interferon (IFN) regulatory factor-related 
KSHV gene (vIRF-3) inhibits types I and II IFN production in 
effusion lymphoma cells; it inhibits histocompatibility complex 
class II expression (thus antigenic presentations). In a peculiar 
way, IFNγ production was also inhibited (whereas IFNγ was 
shown to be a growth factor for KSHV) (446,447).

KS cells release 17 adenylated miRNAs. KS miR-K12-7 
and miR-K12-7-5p target the 3'UTR of RTA (replication and 
transcription activator) and the viral immediate early gene, 
thus maintaining viral latency (448). The genome of KSHV 
releases 12 microRNAs (miR) from its LANA-associated 
intron. These miRs post-transcriptionally regulate host cell 
gene expressions by silencing the corresponding mRNAs. 
The translation of the miR of thrombospondin is inhibited; 
thrombospondin is a strong tumor suppressor and anti-neoan-
giogenic factor (449). The nuclear ribonuclease Drosha-cleaved 
hairpin RNA exits the nucleus with exportin5, is processed 
by cytoplasmic ribonuclease Dicer, is incorporated into the 
RNA-induced silencing complex and thus is guided to the 
3'UTR of the targeted mRNA, which is degraded. These viral 

Figure 4. (A), Kaposi's sarcoma cell from the pre-AIDS era shows immature intranuclear, and mature cytoplasmic herpesviral particles (not known then to be 
HHV-8). Original magnification, x47,500. (B), Budding retroviral particles (not HIV-1) from Kaposi's sarcoma cell of the same patient. The activated endogenous 
retroviral particles by histochemical stains and attempts at culturing them were not identical with HTLV-I. Original magnification, x16,000. In the case of diminutive 
reproduction, please use magnifying lens to view the virus particles. Transmission Philips electron microscopy from the material of the Veterans' Medical Center, 
Department of Pathology (Head, Professor Ferenc Györkey), Houston, TX, USA.

 A  B
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miRs have no sequence conservation to metazoan miRs. But 
the KSHV-induced miR-K12-11 is homologous to the host 
lymphoma cell-induced miR-155. These miRs regulate the 
BTB (bric á brac) and CNC (cap'n collar) homology domains, 
abbreviated as BACH (450-453). BACH-1 is a negative 
regulator of transcription recognizing antioxidant response 
elements within gene promoters. In suppressing BACH-1, the 
membrane-bound subunit of the amino acid transporter xCT 
increases, thus intracellular glutathione stores remain full 
providing protection against oxidative stress. Further, xCT 
is the cell surface receptor for the entry of KSHV (454). The 
Orf63 of KSHV is homologous to the cellular NLR (nucleotide 
binding and oligomerization, leucine-rich repeat), which acti-
vates innate immune reactions in the inflammasome. KSHV 
Orf63 protein blocks the cellular NLR at its initiation (IL-1β, 
caspase-1 and IL-18), thus the virus escapes the activation of 
innate immunity and its consequences (455).

Classical pre-AIDS KS had the reputation to be a tumor 
afflicting immunosuppressed hosts (immunosuppressed organ 
transplant recipients). The classical Southern European patients 
were elderly. Even in the virulent African KS, an immune system 
exhausted by bacterial, protozoal and helminthic infections 
was blamed for the acceptance of these tumors. Severe immu-
nosuppression in HIV-1-infected patients with the acquired 
immunodeficiency syndrome was thought to render these 
patients defenseless to these tumors. However, in the most para-
doxical way, the recrudescence of virulent KS in these patients 
after viral inhibitory therapy-induced remission of AIDS with 
recovery of the immune competence proved that KS could be 
subject of inflammatory oncogenesis. A long list of references 
attest to this concept (E.A. Mesri citing articles from Y. Aoki, 
C. Boshoff, J.L. Douglas, B. Ensoli, R.C. Gallo, P. Monini, 
L. Pantanowitz, G. Riva, etc.) (456). To the dissatisfaction of this 
author, these articles speak in generalities and fail to pinpoint 
the exact tumor-supporting infectious-immunological mecha-
nisms. Constituents of the inflammatory infiltrates around the 
tumors are listed one by one (DCs, several different classes of 
lymphoid cells including plasma cells, NK cells, monocytes/
macrophages), but without their roles in oncogenesis, or in 
the defense against it, specified. In patients with KS, immune 
T cells and cytolytic NK cell are generated, exert cytotoxity 
to malignantly transformed cells, but eventually fail to control 
tumor growth (457-459). However, there is recovery from KS, 
that is regressions of these tumor may occur, for example in 
organ transplant recipients, when the immunosuppressive medi-
cation is withdrawn or modified (460-462). Immunosuppression 
with rapamycin exerts also anti-tumor effects by the inhibition 
of the mTOR pathway (mammalian target of rapamycin), thus 
it may reduce post-transplant Kaposi's sarcoma generation with 
retention of the graft. HHV-8/KSHV remains in latency failing 
to enter its lytic cycle in rapamycin-treated virus-carrier cells. 
Rapamycin specifically inhibits the replication and transcription 
activator (RTA), the lytic switch protein (463).

Viral II. Dreyfus and Sinkovics independently have made the 
elaborate suggestion, that an ancestor of the gammaherpes-
viruses transferred the genomics (genes, operons) into the 
ancestors of sharks, which in unison for the first time, encoded 
the adaptive immune system (reviewed in ref. 62). The HHV-4 
Epstein-Barr human gammaherpesvirus (EBV) causes infec-

tious mononucleosis; while the infected large B lymphoblasts 
are rejected by immune T cells, epigenomic latent viral genomes 
remain silent for the rest of the patient's life. The viral genome 
persists epigenetically located in memory B cells. EBV contrib-
utes to the pathogenesis of lymphoepithelioma-nasopharyngeal 
carcinoma (type II latency), African Burkitt's lymphoma (type I 
latency with EBNA-1 expression), NKT cell lethal midline gran-
uloma (type II latency), and Reed-Sternberg cells of Hodgkin's 
disease (type II latency with EBNA-1 and LMPs expression). 
EBV immortalizes human B lymphocytes in in vitro suspen-
sion cultures (type III latency with expression of EBNA-1-6 and 
LMP1, 2A, 2B); it induces posttransplant lymphoproliferative 
disease; it induces the EBV+ diffuse large B cell lymphoma in 
the elderly; it is associated with brain lymphomas in patients 
with AIDS, it is present in multifocal pediatric leiomyosar-
comas, and in gastric carcinomas in Japan (reviewed in 
refs. 62,443). In autoimmune diseases (lupus erythematosus, 
multiple sclerosis), there is an interaction between EBV and 
latent endogenous retrovirus(es). Herpesviruses trigger the 
maturation of latent endogenous retroviruses, which appear 
budding from lymphoid cells, Reed-Sternberg cells, and even 
the transformed lymphoendothelial cells of Kaposi's sarcoma 
(62,108,178,464).

The EBV genome is present in T cells of angiocentric 
lymphomas presenting as ‘lethal midline granuloma’ (465), a 
pathological entity different from the lethal midline granulomas 
caused by malignantly transformed NKT cells (466-468). In 
patients with X-linked lymphoproliferative disease with SAP 
gene mutation (SLAM-associated adaptor protein containing 
SH2 domain; SH2, Src homology; SLAM, signaling lymphocyte 
activation molecule), EBV infections are life-threatening (469). 
It is the tolerogenic, Th2-type immunological environment-
inducer IL-10 that activates the expression of EBV's LMP1 in 
Burkitt's lymphoma and in NK cell lymphomas (470). After 
EBV infection in healthy individuals, the viral genome rests in 
a circular configuration in the epigenome. The cytokines IL-4, 
IL-13 and IL-21, DNA-methylations and histone acetylations-
deacetylations control the mode of expression of the latent EBV 
genome. For the host's health, the most ominous change is the 
expression of the latent membrane protein (LMP1, 2A, 2B) 
(471-475).

In order to neutralize host cell mRNAs, which are to be 
translated into defensive inflammatory proteins, the EBV 
genome generates numerous (may be over 25) microRNAs 
(EBERs) (474,475). The EBV genome BamHI-A rightward 
fragment (BARF) and BamHI (Bacillus amyloliquefaciens 
endonuclease) fragment H rightward open reading frame 
(BHRF1) release the viral microRNAs most frequently in the 
case of type III latency in nasopharyngeal tissues. EBV miRNAs 
target chemokine CXCl-11, inhibit transition from latent to lytic 
viral replication, and suppress the p53 up-regulated mediator 
of apoptosis (PUMA), and regulate the expression of LMP 
(476). The N-terminus of the BARF protein activates Bcl-2 
and proto-oncogene c-myc. Soluble BARF protein imitates 
a CSF and thus is mitogenic; it suppresses IFNα production. 
Gammaherpesviral miRs are orthologs and interrelated (shared 
seed sequences) among Marek's disease HV of turkeys, KSHV 
and others (miR-155) (477).

IL-4 and IL-13-induced STAT pathway elicits EBV's LMP 
induction (471-473). LMP is a proto-oncogene. EBNA-2 and 
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EBNA-5, IL-10 and IL-21 induce LMP expression. The trun-
cated LMP transforms and immortalizes B cells and activates 
Bcl-2, NFκB, STAT-1 and JAK3 (janus kinase). LMP suppresses 
pro-apoptotic p53 and Bax signals (Bcl-2-associated X protein). 
LMP induces miR-29b, and thus down-regulates TCL1 (T cell 
leukemia) oncogene (478). The negative regulation of an onco-
protein by EBV LMP must have some so far unclear biological 
implications. LMP2A activates PI3K/Akt/mTOR pathways. In a 
mouse model of Burkitt's lymphoma with c-myc translocation, 
rapamycin suppressed splenomegaly and tumor metastases 
(479). Host snail and twist gene activations lead to epithelial-to-
mesenchymal transition of EBV-infected cells in NP carcinoma. 
Translocated β-catenin from cytoplasm to nucleus activates 
proto-oncogenes (480). LMP1 increases intranuclear transfer 
and accumulation of β-catenin (481). The LMP of EBV activates 
STAT protein kinase C (PKC) and ERK (extracellular signal 
regulator kinase) (482). Malignantly transformed cells operate 
these very same signaling pathways.

In the EBV granuloma/inflammasome there are lymphoid 
cells infiltrating (CD8+CD4+ T cells and CD4+CD25+Fox3+ Treg 
cells, NK cells, B lineage cells depositing immunoglobulins), 
mast cells, neutrophil and eosinophil leukocytes and inflam-
matory lymphokines (IL-1β, IL-3, IL-6, IL-8) and chemokines 
(CXCL1, the IL-8 analog, CXCL22, CXCL5-6), further, 
RANTES and MCP1 (regulated on activation normal T cell 
expressed secreted; macrophage chemoattractant protein) and 
NFκB and TNFα lubricate the interstitium. These agents one 
by one or in unison maintain an inflammatory environment 
serving the virus and the tumor to the disadvantage of the host 
(483).

EBV-associated multifocal smooth muscle tumors occur 
worldwide and target children. These tumors are now being 
recognized in Singapore as leiomyosarcomas in EBER+ 
immunosuppressed kidney transplant recipient adults. EBV 
latency was considered to be type II (vide supra). The tumors 
persisted and advanced after the discontinuation of the immu-
nosuppressive medication (cyclosporine and prednisone). 
The tumors activate the mTOR/Akt pathway of oncogenesis. 
The Ras association domain family gene (RRASSF1A) was 
methylated (considered to be silenced) and the MGMT gene 
(methylguanine-DNA methyltransferase) was hypomethyl-
ated (yet considered to be silenced) in every case. It is known 
that EBV LMP attacks (suppresses) RASSF1A. The mTOR 
inhibitor sirolimus (rapamycin) induced remission in a patient 
with a leiomyosarcoma in the liver. The tumors were chemo-
therapy-resistant. Demethylation of the RASSF1A gene could 
be attempted, however, demethylators can liberate the latent 
EBV genome (484). A lung transplant patient developed EBV+ 
uterine leiomyosarcoma (485). A retroperitoneal inflammatory 
leiomyosarcoma was first mistaken for a malignant fibrous 
histiocytoma (vide supra) (486). It is not known if this tumor 
was EBV-associated. May be all leiomyosarcomas should be 
submitted to the Chang-Moore digital transcriptome subtrac-
tion technology in search for an epigenetically hidden circular 
EBV genome (as this technology worked for the recognition of 
HHV8/KSHV, vide supra).

In activating the ras (Harvey or Kirsten rat sarcoma) 
proto-oncogenes gammaherpesviruses can induce a cascade of 
intracellular events, the most prominent being the pre-oncogenic 
PIK3 ‘cell survival pathway’ (487a). 

Viral III. In the chronically inflamed uterine cervix, the high 
risk papilloma virus deposits its E6 (to target p53) and E7 (to 
target RB) oncogenes; after neutralizing these tumor suppressor 
genes, actual activation of oncogenes follows (487b). High 
risk human papillomavirus, (HPV-16/18), causes squamous 
cell carcinomas of the uterine cervix, and with or without 
EBV, is responsible for carcinogenesis in the oral cavity and 
nasopharynx (487c,488). These are the lymphoepithelioma-like 
HPV-related head and neck carcinomas (489,490). In North 
America the incidence of HPV-16+EBV- nasopharyngeal carci-
nomas are increasing (491). High risk HPV-16 shows up in anal 
warts (491) and in anal squamous cell carcinomas (493).

The target cells of the virus are keratinocytes and other 
epithelial cells. Against the background of non-specific chronic 
inflammation (in the uterine cervix, in the nasopharynx, in the 
ano-rectum), the HPV-16 E6 and E7 oncoproteins heterodi-
merize with the p53 protein and the RB protein and these 
complexes are removed by ubiquitination. HPV-16's oncogenes 
E6 and E7 share a common promoter. The complex formation 
involves the LXCXE (L, leucine; C, cysteine; E, glutamine 
and X, any amino acid) motif of E7 fitting into a pocket of the 
RB protein (494-496). The virally infected cell loses its major 
propensity toward apoptosis and cell cycle control. Degradation 
of the regulator of hTERT, nuclear factor binding box 1 (NFX1), 
removes hTERT repression (human telomerase reverse trans­
criptase) and thus immortalizes the infected cell. Normally 
NFX1 promotes the generation of protein p105, an inhibitor 
of NFκB (497). With degraded NFX1, the p105 protein is not 
generated; consequentially NFκB levels rise. The virus induces 
centriole overduplication and the infected cells divide with 
supernumerary mitotic spindles; consequentially, aneuploidy 
sets in and the chromosomes become missegregated. HPV-16 
activates the polo-like kinase 4 promoter; plk4 mRNAs are 
overproduced and the cell cycle accelerates its G2 to M progres-
sion. Under hypoxic inflammatory conditions, E6 inactivates the 
human tumor suppressor de-ubiquitinase gene CYLD (cylin-
dromatosis); this act rescues NFκB for unrestricted activity 
(498-500a). The inflammasome of the uterine cervix is bathed 
in high levels of the tolerogenic IL-10. It is the peripheral blood 
mononuclear cells that produce IL-10; the CpG islands of the 
proximal promoters for IL-10 production in the epithelial cells 
were silenced by hypermethylation (500b).

There appears to be an abundance of identified and un- 
identified microRNAs released from the genomes of papillo-
mavirus-infected tumor cells and from the viral genome (501). 
An outstanding example is miR-200a, which down-regulates 
oncogenes ZEB1, 2 and TGFβ (vide supra). These onco-
genes work through the E-cadherin/β-catenin pathway in 
promoting EMT of the tumor cells, thus initiating metastatic 
spread. Expression of miR-200a suppresses tumor metastases 
(502).

The oncoprotein E7 down-regulates the oncosuppressor 
and cell differentiation inducer miR-203. The target for nega-
tive regulation by miR-203 is p63, the level of which gradually 
drops as stem cells differentiate. Viral oncoprotein E5 lowers 
miR-203, and raises p63 levels. The cancer cell prolifera-
tion inducer miR-146a is active in cervical cancer cells (also 
active in breast, pancreatic and some prostate cancer cells, 
as well as in psoriasis). The immunosuppressive miR-146a is 
strongly up-regulated in cervical carcinoma cells; miR-146a 
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is up-regulated by oncoprotein E5. From the point of view 
of inflammatory carcinogenesis, it is important to observe 
the suppressor of cytokine signaling proteins, SOCS-3: they 
suppress IL-6 and IFN production. Whereas, miR-203 targets 
SOCS-3 for negative regulation, thus inducing increased 
inflammatory responses (503). 

Host immunity can eliminate early lesions of cervical carci-
nogenesis, but the immunity thus gained may be ineffective in 
protecting against a newly acquired papillomavirus infection 
(504). High grade cervical dysplasia persists with the continuous 
expression of the HPV-16 E7 oncoprotein. This oncoprotein over-
rides the suppressor activity of p21cip1 (505). Tumor-infiltrating 
macrophages are subverted and assume the CD45+, F4/80+ 
and CD11b+ M2 phenotype of tumor-associated macrophages 
(TAM). TAM expressed IL-10 and Fox3 and thus antagonized 
CD8 tumor-immune T cells. CD45+CD11b+Gr1+ myeloid-derived 
suppressor cells also invaded the tumors. Depletion of TAM with 
clodronate liposomes restored tumor-immune T cell activity 
with tumor regression (506). Mice carriers of lung-metastasizing 
E7+ tumors could be induced into remissions by immunizing 
them with intra-lymph node injections of an E7 vaccine and 
treating them with a dsRNA TLR3 ligand (507). 

Nitric oxide synthases generate the free radical from 
L-arginine. The bioreactivity of NO consists of the induction 
of ss and dsDNA breaks and DNA cross-linkages. In the DNA 
molecule G:C and T:A transversions occur resulting in the 
formation of the mutagenic 8-nitroguanine. The wild-type p53 
eliminates damaged cells by inducing their apoptotic death. 
However, when E6 causes the degradation of p53, and E7 
blocked the retinoblastoma protein, the mutated virus-carrier 
cells survive and replicate. Thus an inflammatory condition 
with the release of free radicals is co-carcinogenic (508a).

About one third (38%) of the inflammasomes of actinic 
keratosis and the non-melanoma skin cancers (basal cell and 
squamous cell carcinomas) that follow harbor HPV genomic 
sequences (by PCR assays), but practically none herpesviral 
(EBV, CMV) sequences (508b).

Viral IV. Hepatitis B and C viruses with or without alcohol and/
or aflatoxin exposure induce hepatocellular carcinoma (HCC), 
after keeping the liver parenchyma inflamed and becoming 
cirrhotic for several years (or decades). G1896A and A1762T/
G1764 double mutant HBV induces cirrhosis and HCC. Serum 
HBV DNA levels may clear to the negative stage of HBeAg and 
HBsAg. G1776A viral genomic mutations favorably prognosti-
cated the achievement of a negative HBeAg status (509,510). 
The proteomics of infected hepatocytes in patients with hepa-
titis B surface antigen (SHBs) expression revealed high rate of 
apoptotic deaths. Apoptosis-susceptibility or resistance was 
regulated by the following genes: glucose-regulated protein 
78  kDa (GRP78), heterogenous nuclear ribonucleoprotein 
H3, Rho GDP (guanine diphosphate) dissociation inhibitor, 
cystatin B, far upstream element-binding protein and TNF 
receptor associated protein 1. The gene GRP78 encoded apop-
tosis-resistance; siRNA treatment silencing this gene resulted 
in apoptosis susceptibility. Circulating hepatitis B surface 
antigen (HBsAG) rendered infected hepatocytes susceptible to 
apoptosis (511). 

The HBV genome is directly oncogenic; it is often compared 
to the retroviral genome's RNA transcribed into proviral DNA 

by the viral RT. Like in the case of retroviruses, the HBV 
genomic DNA also integrates into the host cell's genome. The 
HBV X gene (Hex) and its oncoprotein eliminate the pro-
apoptotic p53 protein, activate methyltransferases to silence 
more tumor suppressor genes, or gene promoters, by hyper-
methylation and increase telomerase activity. In summation, it is 
an anti-apoptosis and anti-senescence agent (512). HBx activates 
miR-29a, which suppresses PTEN and promotes the migration 
of transformed liver (hepatocellular carcinoma) cells (513). 

Hepatitis C virus (HCV) enters cells through the integral 
tight junction protein occludin and its membrane-associated 
MARVEL domain (MAL proteins, myelin and lymphocytes; 
MAL-related for vesicle trafficking and membrane link) (514). 
MARVEL-defective cells were non-permissive to HCV entry. 
The HCV envelope proteins E1 and E2 interact with the phos-
pholipid scramblase 1 securing attachment of the viral particles 
(515). Only hepatocytes are susceptible to CV entry and its core 
proteins (Core 3a) interact with host proteins, the heterogenous 
nuclear ribonucleoprotein H1, nuclear factor 45, and C14 
open reading frame 166 (516). These interactions trigger the 
pre-oncogenic pathways in the infected cells. These processes 
occur against the background of anti-viral immune reactions in 
the liver parenchyma, which include oxidative stress and neo-
angiogenesis. Generation of iNOS, Cox-2, VEGF, PGE2 and 
activation of the Akt pathway occur. Administration of Core 
3a and Cox-2 specific siRNAs reduced all these reactions and 
the size of the viral progenies released (517,518). HCV genome 
encodes p7, a peptide functioning as an ion channel in lipid 
bilayered membranes. RNA interference (siRNA) inhibits the 
encoding of HCV envelope proteins E1, 2 and thus reduces 
intracellular viral replication (519abcd). Chronic HCV infec-
tion could culminate into MALT lymphoma with t(14;18) IgH/
Bcl-2 translocation (520).

About 55% of the patients with HCV infection treated 
with pegylated IFNα and ribavirin can achieve sustained viral 
remissions depending on the viral genotype and the type of the 
patients' immune response. Of the lympho-cytokine response, 
steady levels of IL-4 (a Th2-type inducer) and TNFα (a Th1-type 
inducer) were necessary (521). 

Nrf2, the nuclear factor erythroid-2 related factor-2 is acti­
vated in response to oxidative stress in HCV-infected cells. 
MAPK is the activator. Under these circumstances phosphory-
lated Akt is also activated. Activated Nrf2 and the ‘cell survival 
pathways’ overcome BAD (Bcl-2 antagonist of cell death) and 
prolong the life of HCV-infected cells (522). In HCV-induced 
liver cirrhosis and HCC, TGFβ induces EMT resulting in 
invasion and metastasis by the transformed tumor cells (523). 
Notoriously, NFκB protects HCC from apoptotic death. The 
protein NEMO (NF essential modulator) activates NFκB; if it is 
switched off, NFκB remains silent, thus HCCs are allowed to die 
apoptotic death (524). In patients with advanced pre-cancerous 
liver cirrhosis, the anti-inflammatory agent colchicine prevented 
malignant transformation: this occurred in Ciudad Mexico in 
9% of colchicine-treated patients versus in 29% of untreated 
patients (525). Previously, treatment with lamivudine, adefovir, 
tenofovir protected somewhat patients with hepatitis B from 
HCC advancement (526). Now, surgically non-resectable HCC 
is being treated with sorafenib or sunitinib, or with oncolytic 
virus therapy, i.e., genetically engineered adeno-, herpes-, 
measles-, myxo-, retrolenti-, vaccinia-, and vesicular stomatitis-
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viruses (164,527-531). Sunitinib reduces the number of myeloid 
suppressor and Treg cells (532). The mechanisms of viral 
oncolysis directly targeting cancer cells should override any 
possible adverse effect on inflammatory carcinogenesis.

Bacterial. Helicobacter pylori (Hp) is the classical bacterial 
pathogen that induces severe, host-damaging inflammatory 
reactions, while depositing its oncogene cagA (cytotoxin-asso-
ciated gene product protein) in epithelial cells of the gastric 
mucosa, or in lymphocytes invading the lesions. Its pathogenesis 
generated an excessive literature that was recently and repeat-
edly reviewed in ref. 62. In a brief summary for a very complex 
issue (by a clinical oncologist-hematologist-infectious diseases 
specialist, who has had the opportunity to diagnose and treat 
patients with H. pylori-induced MALT lymphomas): CagA 
entering lymphocytes and/or gastric mucosal epithelial cells, 
undergoes phosphorylation, binds Src kinase and src homology 
domain 2-containing tyrosine phosphatase (Rous sarcoma c-src 
proto-oncogene) and activates extracellular signal-regulated 
kinase (ERK). The MAPK cascade is activated. In lymphocytes, 
the anti-apoptotic BclXL proteins take over. In gastric mucosal 
cells, H. pylori induces hypermethylation of the CpG dinucleo-
tides, and deacetylation of histone tailes, and methylations of 
selected lysine and arginine groups of histones in gene promoters. 
The inactivation of the gene for RUNX3 (533) by CpG island 
hypermethylation provided apoptosis-resistance of the involved 
cells, mediated by Bcl-2 and BclXL overriding the pro-apoptotic 
BAX and BAK proteins (runt-related transcription factor, B cell 
lymphoma extra large, Bcl-2-associated X protein, Bcl-2 antago-
nist killer) MALT lymphomas are originated in the stomach and 
elsewhere (534,535). Gene translocations characterize MALT 
lymphoma cells: t(11;18)(q21;q21), t(14;18)(q32;q21) favoring IgH 
and Bcl-2 and the activation and release of NFκB. Hp-infected 
macrophages release a proliferation inducing ligand (APRIL) to 
B cell receptors (536-538).

The epithelial cells assume goblet cell phenotypes (‘intes-
tinal metaplasia’). The cytoplasmic β-catenin translocates to the 
nucleus, where it is to activate some proto-oncogenes (539,540). 
Several CpG islands are methylated in a reversible fashion: 
most of the sites (not all of them) get demethylated after the 
eradication of Hp (541). The WWOX tumor suppressor gene 
(vide supra) is silenced by hypermethylation of its promoter 
(542). Overriding cell senescence, CagA induces the guanine 
exchange factor/cMyc/miRNA-p21waf/cip axis for driving the cell 
cycle toward uncontrolled proliferation and EMT, tantamount 
to local invasion and distant metastasis formation (535). In 
Germany, a second Hp protein GroEL emerges independently 
from CagA, as a major contributor to gastric carcinogenesis 
(543). Lymphocyte- and granulocyte-monocyte-mediated 
immune reactions are generated, but fail. Reactive oxygen and 
nitrogen species rise to induce dsDNA breaks. H. pylori-stimu­
lated macrophages in MALT lymphoma release APRIL, the 
proliferation-inducing ligand (537). Early H. pylori invasion is 
reversible (with specific antibiotic regimens). In a case, H. pylori 
infection was disgnosed and was immediately treated, while 
lymph node biopsy results were not immediately available. 
Treatment for H. pylori infection resulted in rapid regression of 
lymphadenopathy. Thereafter the lymph node biopsies revealed 
Burkitt's-like lymphoma EBV-negative with c-Myc rearrange-
ment, but without Bcl-2 translocation (544).

Hungarian clinicians are very interested in those enzyme 
inhibitors (targeting urease, carbonic anhydrase, γ-glutamyl 
transpeptidase, efflux pump inhibitors) that may inhibit the 
growth of chlarythromycin-resistant strains of Hp (545).

Genitourinary parasites. Schistosoma haematobium induces 
squamous cell carcinoma of the urinary bladder in Central and 
North Africa (Burkina Faso; Cameroon; Egypt, Entebbe, at Lake 
Victoria, Uganda; Msambweni, Kenya; Southwestern Morocco, 
Lake Malawi, Nyasa/Niassa, Mozambique and Tanzania; Erinia 
River, Osun, Nigeria; Niger; Lusaka province, Zambia; lakes 
and Limpopo River, Zimbabwe). The intermediate host is the 
snail sp Bulinus (especially B. truncates/truncatus). However, it 
was in Brazil, where the hemocytes of the snail sp Biomphalaria 
were found to be self-protective against S. mansoni. The snail 
hemolyph contains amoebocytes and haemocytes; the haemo-
cytes are granulocytes and hyalinocytes. The granulocytes 
move on psedopods, phagocytose and encapsulate the parasites 
(546). Eli Metchnikov (ИЛЬЯ ИЛЬИЧ МЕЧНИКОВ 1845-
1916) observed the phenomenon of phagocytosis in the belly 
of Daphnia pulex, whose entire genome has just now been 
sequenced in full. The innate immune faculties of the snail 
offer better protection against the cercaria (547), than the united 
innate and adaptive immune faculties of the human host. The 
snail phagocytes generate nitrite oxide to kill the parasites. In 
the human host, tumor cell genomics give no clear explanation 
of the pathognesis. Genomics (including the mt genome) of the 
parasites revealed the lines of their phylogenesis, but so far gave 
little information as to their ability of evading the infested host's 
defenses (548,549). However, an extraordinary study on the 
snails' innate immunity as it is activated against the trematodes, 
revealed that their thioester-containing protein (TEP) regu-
lates the phagocytosis and encapsulation of the parasites. The 
fibrinogen-related proteins (FREPs) in a specific and variable 
manner react with polymorphic mucins of the parasites. These 
reactions are between diversified immune receptors of the 
host, and antigenic variants of the parasite (550). In the human 
host, the tumor suppressor gene p53 may or may not be down-
regulated, but the anti-apoptotic Bcl-2 gene is activated (551). 
Only the mucinous and signet ring adenocarcinomas expressed 
intense c-Myc (552). The RB gene was occasionally suppressed; 
p53 mutations occurred in 57% of the tumors. Ras gene point 
mutations, EGFR c-Erb2 amplifications occurred irregularly 
(553). The detectable genomic changes (p53, H-ras, VEGF) 
could not be used as prognostic factors as to the outcome of the 
disease (554). However, p53 mutation and high Ki-67 expression 
indicated advanced disease and poor prognosis (555). Human 
cancer cells, especially those of colon carcinoma, overexpress 
the highly conserved oncofetal antigens TA1/E16 (tumor-
associated, embryonic day 16 lymphocyte activating). Protein 
homologues of these antigens are expressed in schistosoma 
species (S. mansoni) (556), and as such, they may act as onco-
genes in human cancers.

Polo-like kinases (Plk-1-5) encode centrosome spindle 
formatting proteins in schistosoma and in cancer cells. The 
patented drug Bl2536 inhibits mitoses in schistosoma and in 
cancer cells (557).

Opisthorchis viverrini, and Clonorchis sinensis, the liver 
flukes, induce cholangiocarcinoma of the bile ducts. In the 
tumor cells Ski/SnoN oncoproteins are highly overexpressed 
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(Sloan-Kettering Institute). These are avian retrovirus-related 
oncoproteins discovered at the Sloan-Kettering Institute, New 
York. Proto-oncogene v-ski was captured by an avian erythro-
leukemia retrovirus SKI-T (c-ski → v-ski). The human c-ski locus 
maps to 1q22-24. Oncoproteins c-Ski/SnoN (Ski novel protein) 
are overexpressed in cholangiocarcinoma with or without 
induction by O. viverrini. SnoN binds the Smad complex and 
repress TGFβ's inhibitory effect on cell proliferation, thus acting 
as an oncogene. SnoN binds the promyelocytic leukemia (PML) 
protein and they thus stabilize p53; the cell undergoes senes-
cence and apoptosis. SnoN acted as an anti-oncogene (EMBO 
J 2889). In cholangiocarcinoma cells, the retinoblastoma (Rb) 
and p16(INK4) proteins are reduced. Cyclin D1, CDK4 and 
Smad4 are up-regulated (inhibitor of CDK4, cyclin-dependent 
kinase; mothers against decapentaplegic, from drosophila; 
decapentaplegic = TGFβ ligand). Oncoprotein c-Ski suppresses 
TGFβR, as its direct antagonist. Active TGFβ antagonizes c-Ski 
by suppressing its neoangiogenic and metastatic potentials. The 
negative c-Myc regulator tristetrapolin (TTP) is disabled by a 
CpG site methylation, thus liberating c-Myc for the suppression 
of the anti-proliferative effect of TGFβ (558-566).

Are the notoriously present latent polyomaviruses JC and 
BK contributory to carcinogenesis in the GU tract? Extending 
the question to SV40 simian polyomavirus, that was present in 
some live attenuated poliomyelitis vaccines, and to the Merkel 
cell carcinoma polyomavirus, these agents are highly suspect 
contributors to some rare human neuroectodermal cancers 
expressing the T oncoprotein and/or integrated viral genomic 
sequences in the tumor cells' genome. Inflammatory monocytes 
serve as a reservoir for the Merkel cell polyomavirus (567-572).

5. Mechanisms of inflammatory carcinogenesis

Proteomics. Granule-loaded eosinophil granulocytes are 
expected to exert complex anti-tumor effects wihin inflamma-
somes (vide supra). In Hodgkin's granulomas the eosinophils 
fail to subdue the Reed-Sternberg cell (Fig. 2). The eosinophil 
granulocytes themselves may succumb to malignant transfor-
mation in the form of various hypereosinophilic syndromes 
including eosinophilic leukemia. The fusion inducing protein/
oncogene includes the platelet-derived growth factor receptor 
α gene (FIP/FDGFR), susceptible to inhibition by imatinib 
mesylate or dasatinib. Inflammatory defensive cells, be mono-
cytes, granulocytes, lymphoid cells (lymphocytes and NK cells) 
or mast cells, do readily succumb to malignant transformation. 
TAMs are often subverted supporters of growth factors to the 
tumor. Immature dendritic cells (DCs) are often tolerogenic. 
The presence of CD123+ plasmacytoid DCs in breast cancer 
tissue is associated with poor prognosis (13).

Genetic polymorphisms (single nucleotide polymorphisms, 
SNP) may bring out the unexpected: a defensive immune 
reaction may be the inducer of malignant tranformation in 
these individuals. SNP of the TLR4 or some of the ‘inflamma-
tory genes’ increases the risk of high grade prostate cancers. 
Pro-inflammatory IL-1 gene cluster polymorphism increases 
the risk of gastric cancer induction in the H. pylori-infected 
organ (vide supra). When TLR4 recognizes LPS endotoxin, it 
signals through MyD88/IL-1 to induce NFκB and the MAPK 
pathway. Polymorphism of the TLR4 gene may result in defec-

tive signaling, lack of defensive reactions and consequentially 
severe direct tissue damage by the endotoxin (13). 

Of damage-associated molecular pattern (DAMP) mole-
cules, high mobility group proteins A and B emerge (HMGAB), 
as they are released from necrotic cells. The cognate receptors of 
HMBAB proteins are the RAGE (receptors for advanced glyca-
tion end products, glycation, non-enzymatic glycolyzation), or 
TLR2, TLR4. These receptors generate NFκB, E-selectins and 
insulin-like growth factor and/or its receptor, IGF-R (selectins 
are ligands to sialylated cell surface carbohydrates) (13).

How could defensive inflammatory reactions of a host 
derailed toward carcinogenesis? The promotion of the HER2/
neu oncogene by Freund's adjuvant settled the issue (573). 
Dormant oncogenes are awakened and activated, when the host 
mobilizes inflammatory reactions. The importance of chronic 
inflammatory processes in carcinogenesis is best proven by the 
anti-oncogenic efficacy of anti-inflammatory agents. The most 
efficient anti-inflammatory and oncogenesis inhibitory agents 
are ethyl pyruvate, non-steroidal anti-inflammatory drugs 
(acetyl salicylic acid, ibuprofen), prostaglandin- and COX2-
inhibitors (celecoxib) (13). 

The human nitric oxide synthase gene is up-regulated by the 
Wnt/β-catenin/Tcf4 signaling (T cell factor/lymphoid enhancer 
factor). TNFα, IL-1β and IFNγ induce nitric oxide expres-
sion (hiNOS) by acting on the NOS gene promoter. NFκB is 
suppressed by β-catenin. The summation of these reactions is 
a decrease of hiNOS production in colon cancer and hepato­
cellular cancer cell lines (574).

Autophagy. Reduced HMG proteins induce mitochondrial 
superoxide production promoting autophagic cells. Other 
inducers of autophagy are perifosine (an mTOR inhibitor), and 
TGFβ (a multifunctional cytokine) (575,576). In autophagic 
cells, induced by autophagy genes, the cell survival pathway 
PI3K and the pro-apoptotic beclin (the mammalian ortholog 
of yeast autophagy gene, atg) compete; Bcl-2/BclXL antagonize 
beclin (577). Autophagic tumor cells may recover as progres-
sive tumors; this can be inhibited by hydroxychloroquine 
(578). Autophagy may protect tumor cell during genotoxic 
and metabolic stress. However, resveratrol and curcumin may 
induce tumor cell death in autophagy and in mitotic catas-
trophe (579-581). The mitochondrial alternating reading frame, 
p14ARF exerts anti-tumor effects by antagonizing MDM2, thus 
protecting p53, and suppressing c-myc/MYC. In autophagic 
cells, p14ARF removes the Beclin/BclXL complex and suppresses 
tumor cell recovery from autophagy (582). Inflammatory events 
in the tumor environment may induce autophagy of tumor cells 
as a stress adaptation response (583ab).

Autoimmunity. The epigenomics of EBV (474,584,585), and 
reactivated endogenous retroviruses definitely are major 
contributors to the etiology of autoimmunity, especially in 
lupus erythematosus and multiple sclerosis (reviewed in 
ref. 178,474,586). 

While the omnipresent cytoplasmic filamentous structures 
were not unenveloped myxo-, or retroviral strands (587ab,588), 
but products of the endoplasmic reticulum in response to 
IFNαβ oversecretion, serological and biochemical evidence for 
a herpesvirus (EBV) triggering the maturation of endogenous 
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retrovirus(es) is becoming steadily more convincing throughout 
of the passing decades (62,152,474).

One would expect that the chronic (but self-directed) 
immune reactions would increase the incidence of malignant 
tumors, especially those of the lymphatic system. Increased 
lymphomagenesis in patients with autoimmune diseases (lupus) 
is well confirmed. The incidence of parotid gland marginal 
zone lymphoma in patients with Sjøgren's syndrome is 1000-
fold increased. In SLE, lymphomagenesis is minimally (3-fold) 
increased (589). Further, it is suspected, but not proven, that 
EBV in the background, and sporadic buddings of endogenous 
retroviruses in the lymphoma cells in the foreground, are the 
etiological agents (178). Unexpectedly, there is lower incidence 
of adenocarcinomas (breast, colon, prostate) against the back-
ground of a bona fide autoimmune disease, treated or untreated 
(590,591). The German Cancer Research Center in Heidelberg 
suggests that the natural risk for cancers in autoimmune 
diseases is increased, but is artificially reduced by suppressing 
the inflammatory component of cancer induction by anti-
inflammatory medications (592). MicroRNA-155 emerges as 
one of the master regulators of immune cell generation, as it 
has the ability to target mRNAs of a wide variety of the cellular 
immune system. Should a lymphoid cell population turn malig-
nant, miR-155 may be able to suppress its mRNAs (593). 

The IL-17+CD4+Th17 lymphocytes are known to mediate 
autoimmune reactions. A stimulatory role to anti-tumor immune 
CD8+ T cells of a Th17+ lymphocyte subpopulation was recog-
nized; chemokines CCL2 and CCL20 and IL-2 mobilized this 
population of Th17 lymphocytes, which did not have the ability 
to directly kill tumor cells (594). An IL-17+CD4+FoxP3+ regu-
latory Th17 cell population forms the minority of Treg cells. 
This population of Th17 cells derived from CCR6+ memory 
T cells under the effect of myeloid antigen-presenting cells, 
IL-2 and TGFβ. In the colon, the CD4+Fox3P+Th17 lymphocyte 
population suppressed CD8+ T cells, and induced inflammatory 
cytokines. The Th17reg cells promote ulcerative colitis and thus 
colon carcinogenesis (595). 

Reactive oxygen species and related genotoxic events. Positive 
comments on inflammatory carcinogenesis based on dsDNA 
damage (breaks, mutations) by reactive oxygen and nitrogen 
species abound in the literature (596-598). Followers of 
Professore Flaviano Magrassi, distinguished member of the 
‘Accademia Nazionale dei Lincei’, from Naples, Italy, state ‘A 
mutated cell is a sine qua non for carcinogenesis’ (596). Hypoxia, 
DNA damage and genome instability; DNA breaks misrepaired 
(in the form of fusions of distant genes); aging and cancer; the 
necessity of G protein-coupled receptor for p53-dependent cell 
survival in response to genotoxic stress; nicotinamide phos-
phoribosyltransferase: a molecular link between metabolism, 
inflammation and cancer; aldehyde dehydrogenase-expressing 
colon stem cells contributing to tumorigenesis in the transition 
from colitis to cancer; high mobility group A1 gene: trans-
forming inflammatory signals into cancer; oxidative stressing 
in prostate cancer is required for aggressive phenotype; role of 
IAPs in NFκB activation by genotoxic stresses; mitochondrial 
dysfunction and reactive oxygen species imbalance promote 
breast cancer motility through CXCL14; tyrosine kinase c-Src 
in the regulation of reactive oxygen species generation; role 
of mismatch repair in the control of oxidative DNA damage; 

genetic instability and tumorigenesis; induction of epigenetic 
alterations by chronic inflammation and its significance in 
carcinogenesis, are the long list of topics recommended for 
review from the Epub service. Indeed, a high innate production 
of pro-inflammatory cytokines was a signal for increased risk 
for death from cancer (599). 

Oxidative DNA damage occurs consequentially to ‘leaks’ 
from electron transport chains. Leak electrons acting with 
oxygen produce superoxides often released in bursts. Certain 
enzymes also generate superoxides released in bursts. This is 
the established practice of phagocytic cells for the destruction of 
pathogens. Peroxisomes practice normal oxidative metabolism. 
The unintentional oxidative damage to DNA is caused by the 
highly reactive hydroxyl radicals abstracting H atoms from the 
methyl groups (CH3) of thymine and from the C-H bonds of 
2'-deoxyribose. Additions to the C5-C6 double bond of pyrimi-
dines transforms these into C5-OH and C6-OH adduct radicals. 
H atom abstraction from thymine forms an allyl radical. The 
C5-OH adduct radicals are reducers, and the C6-OH adduct radi-
cals are oxidizers. Addition of oxygen to C5-OH adduct radicals 
yield C5-OH-6-peroxyl radicals. C5-OH-6-peroxyl radicals 
eliminate O2··; after reaction with water, thymine and cytosine 
glycols are formed. Allyl radicals reacting with oxygen form 
5-hydroxymethyluracil and 5-formyluracil. Thymine peroxyl 
radicals are reduced to hydroxyhydroperoxides decomposing 
into thymine glycol, and 5-hydroxyl- and 5-formyluracyls and 
hydroxyl-methylhydantoin. In certain early stages, oxidative 
DNA damage can be repaired. Genome repair begins with 
the enzymatic reactions: glycolases removing single lesions, 
or enzymes excising nucleotides. These are highly specific 
processes, like the removal of purin-derived, or pyrimidine-
derived oxidative lesions. The repair may be defective, but the 
DNA remains functional. For example, deamination of cytosine 
to uracil is a pro-mutagenic mistake (600). The glutathione 
peroxidase gene (GPX1) in the short arm of chromosome 3 
frequently suffers loss of heterozygosity (LOH), thus producing 
a defective enzyme, the gene product protein peroxide scav-
enging enzyme (600).

These events occur when the repair genes suffered SNP (vide 
supra). In response, mammalian cells express stress-induced 
genes encoding antioxidant reactions. However, further reac-
tions along these lines leave the DNA molecule either mutated 
or non-functional. The scientific community hypothesizes that 
if the mutated cells are not eliminated by the ‘guardian of the 
genome’, the WTp53 pro-apoptotic machinery, mismatched 
repairs and gene fusions may resurrect the damaged cell in a 
shape and condition not fit into the orderly operation of a multi-
cellular organisms, as if the resurrected cell would not fit into 
an organized cell community, but could live as a unicellular 
organism on its own. For example in a tissue culture vessel nour-
ished and cleansed. Under these circumstances it would prove 
itself to be exempt of senescence and natural death. Its DNA 
would dictate incessant cell divisions ‘forever’. This author, 
growing EBV+ human lymphoblasts in suspension cultures and 
sarcoma and melanoma cells in solid cultures for over a decade, 
wrote in 1976 (321,601a): ‘Could the cancer cell be viewed as 
an individual that extricated itself from boundaries exposed 
(imposed) on it by 500 millions years (3 billion) of evolution 
and recaptured the immortality of unicellular organisms that 
existed before the social order of cell communities was estab-
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lished? Certainly, some cell cultures of mammals, including 
man, create the impression of immortality of archaic unicel-
lular life forms (i.e., lymphoblastic cells grown in suspension 
culture as long as nutrients are provided and metabolic waste is 
removed)’ (601a). However, if the resurrected cell remains in its 
cell community, it may be attacked and killed. It may be able 
to evade such attacks and continue to replicate and eventually 
consume its host, as if it were an alien invader (601a).

‘Demonstrating a link between defects in repair of oxida-
tive DNA damage and a propensity for disease has not been 
easy’. Carcinogenesis probably requires combined gene 
mutations or knock-outs. ‘The mere presence of damage is 
not proof of a causative link’ (600), a scientifically justified 
most cautious comment in 2003; by 2010 the evidence for a 
positive relationship between inflammatory processes and 
carcinogenesis has reached an overwhelming volume and 
quality (599). 

The empress (RNA) and the emperor (DNA) of all molecules. The 
ancient RNA/DNA interactions continue in the most complex 
intracellular environments. The position of the stem cell gene 
Sox2 residing embedded in a long non-coding RNA strand (359), 
strongly suggests that such constellations might have already 
been formed in the precellular era on Earth. The microRNAs 
retain the power over DNA as they are capable of silencing the 
mRNAs of DNA-derivation. Actually, the microRNAs coop-
erate with the DNA, when the stem cell- or somatic cell-serving 
DNA genome transforms itself into a set of multiple oncogenes, 
thus preventing the cells' senescence and death. It may appear as 
if the microRNAs dictated the reversal of the cell-serving DNA 
into its primordial ‘immortal’ format (vide infra). The stem cells 
may rest, self-renew, yield daughter cells for specific differentia-
tion in the form of functional somatic cells, or transform toward 
immortalized cell populations, whereby the DNA genome 
undergoes ds breaks; misrepaired, the dsDNA breaks result 
in gene fusions and oncogene formations, while genes inhibi-
tory to this process (the ‘tumor suppressor genes’) are deleted. 
Inflammatory processes frequently signal the stem cell (or the 
differentiated somatic cell) toward the latter pathway. It appears 
as if microRNAs guide the DNA toward which way to go. Thus 
inflammatory reactions indirectly through miR-mediation 
penetrate the epigenome and act through its modification. A 
scholarly review spreads the word in Hungarian (so convinc-
ingly, as if the crosstalk between RNA and DNA actually went 
on in Hungarian) (601b). Indeed, the ancient RNA/DNA cross-
talk should be understood in all languages. It is spelling out the 
verdict of life or death for the cell, from the time on, since cells 
lived on Earth. The extraordinary versatility of the DNA in its 
transformation into sets of oncogenes and its interaction with 
the epigenome in the process was well recognized even before 
the discovery of the microRNAs (602).

The question arises if it is not so, that hyperthermia (HSF), 
hypoxia (HIF), reactive oxygen/nitrogen species (ROS, iNOS) 
and stress, and showers of inflammatory cytokines release their 
danger signaling to the RNA/DNA complex. The somatic cell-
serving DNA in multicellular organisms accepted senescence 
and death, but retained suppressed but preserved, its primordial 
faculties of independence and ‘immortality’ in the germ cells 
and in the stem cells. The haploid germ cells in their unisons 
become differentiating somatic cells. However, the self-renewing 

stem cells, instead of the route to differentiation, may choose a 
reversal toward a primordial stage of life: restoring the ancient 
DNA and the ways it existed under precellular conditions 
intimately reacting with RNA and with ‘amorphous proteins’, 
as amino acid chains ‘self-replicating’ (603,604). In the first 
cellular life forms, DNA was highly resistant to physicochemical 
damage and voraciously accepting for fusion and recombination 
alien genomic sequences (62). Upon the encounter of amor-
phous proteins and naked DNA, the proteins engulf the DNA 
and DNA strands penetrate to the helices of the proteins, while 
the proteins undergo subtle morphological changes of their 
nanoparticulate architecture (604). Innumerable such newly 
formed structures may exist in nature without being able to 
enter cells for replications, inasmuch as the natural proteins can 
not serve as specific ligands to any cell receptors (whereas, the 
proteins generated in the Domingo-Espin laboratory were actu-
ally encoded by borrowed viral genes from the foot and mouth 
virus and from the SV40 virus, and thus have become ‘artificial 
viruses’ able to react with cell and nuclear membrane receptors 
and transgress them) (604). In contrast, the natutally formed 
entities may show up in the metagenomic samples (in a mixture 
with regular incomplete virions), as the ‘gene transfer agents’ 
of Kristensen et al (605), or among the structures considered to 
form a ‘fourth domain of life’ on Earth (606).

The spheroplasts of a crenarchaeota and a prokaryota 
might have been fused by a fusogenic phage of an ancestral 
mycoplasma (like that of the Acheloplasma sp) to form the first 
eukaryotic cells (an experiment of Nature that could be repeated 
in the lab today) (607). Since their origin by cell fusion, eukary-
otic cells continue to readily communicate through cell fusions 
in physiological or oncogenic terms; all oncogenic viruses are 
able to fuse cells (62,608,609). Lymphoma cells naturally fused 
with specific antibody-producer plasma cells (referred later to 
as ‘natural hybridomas’) discovered in mice in the late-1960's 
are presumed to exist in human patients (62,225,610-614). In the 
first unicellular nucleated eukaryotes, with or without the acqui-
sition of mitochondria or chloroplasts, the RNA/DNA complex 
maintained its superiority over all other molecules, either within 
the cell, or outside the cell, as phages converted into RNA 
(‘the burst’ of picornaviruses) (615), and into DNA eukaryotic 
viruses (616). Those sophisticated cells divided before senes-
cence and death; natural death was not encrypted in their DNA 
genomes. In adverse circumstances, the most versatile ancient 
DNA transformed them into morphological and physiological 
entities grossly different from their basic original life forms: as 
if into a different (from an a-flagellate to a flagellate) species. 
The Naegleria DNA still practices such transformations of its 
host (617,618). Later, in the unicellular parasite Theileria under 
immunological attack in an invaded bovine host, the most 
versatile theileria DNA encodes an elaborate physiology for the 
parasite to evade that immunological attack from its host (619). In 
the theileria-induced fatal lymphoproliferative disease, the East 
Coast fever, the parasite induces NFκB to secure apoptosis-free 
state of the schizont-infected lymphocytes. Theileria-infected 
macrophages bring into existence an autocrine loop for TGFβ2 
and induce MMP9 for their survival and invasiveness (620,621), 
thus using the same molecular mechanisms cancer cells utilize 
for their survival and invasiveness. In the glioblastoma cell, 
the DNA can switch from the anaerobic glycolysis to oxidative 
phosphorylation and metabolism (622).
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The Namalwa Burkitt's lymphoma cell DNA under attack 
with heavy irradiation, suffers severe ds breaks. The γH2AX 
(ataxia) histone detects an extraordinarily high incidence 
of these ds breaks. However, the oncogenic DNA (with the 
help of repair enzymes like the recombinase Rad51, forming 
nucleoprotein complexes from ss/ds broken DNA sequences) 
recovers from the ‘mitotic catastrophe’ (623). In the enzyme-
free (except for the ribozymes) pre-cellular RNA/DNA world, 
ss or dsRNA/DNA breaks might have been repaired telomere-
free by end-to-end seals (which are chromosome fusions in the 
celluler world) (624). 

The existence of viral genes related to RNA/DNA replica-
tion, but not shared with cellular genes (the ‘viral hallmark 
genes’ of Koonin et al, vide infra) strongly suggests that the 
origin of these genes predates the appearance of protocells 
(625). For self-replicating macromolecules in hypercycles (a 
symbiosis of molecules self-replicating in hypercycles, Ghadiri  
et al, vide infra), the Eigen's error catastrophe phase transited 
into a thermodynamic phase governing templated RNA/DNA 
synthesis (626). 

Following the ideas of old-time astute observers, Arguello 
proposes that the cancer cell is the result of an ‘atavistic meta-
morphosis’ (627a). Duesberg et al (627b) consider the cancer 
cell to be the product of a trans-speciation process.

The oncogenic DNA bioengineers the neoplastic cell as its 
ancestors could (and still do) bioengineer the naegleria cell, while 
it remains close to indestructible, as its predecessor, the primor-
dial DNA, must have been (628). Are oncogenes representing a 
reversal of the cell-serving DNA to its primordial format? Is the 
multiply fused and most powerful oncogenic DNA a replica of 
the primordial DNA? Is it not so, that the malady that we diag-
nose as ‘cancer’, is the expression of an inherent fundamental 
attribute of the DNA, its reversal from the differentiated to the 
native undifferentiated format in order to sustain life under any 
conditions and in any shape (628)? Were it not our killer, scien-
tists would admire the cancer cell and its DNA ‘oncogenes’ as 
the ultimate achievement of bioengineering. 

A ‘precellular virus world’ and a ‘primordial gene pool’ 
could have formed on Earth (629). That world can not only be 
imagined, but could possibly be duplicated in the laboratory. 
How the naked DNAs interacted with amorphous amino acid 
clusters (603,604), hypercycling RNAs in the hydrothermal 
vents at the bottom of the oceans (and in their laboratory 
reactors) (630), the catalytic hammerhead ribozymes (631), 
and the circular self-replicating (‘rolling circle’) viroid RNAs 
(preserved from the pre-cellular world in extant plant and 
mammalian cells, the hepatitis δ viroid, some with a tandemly 
repeated homologous DNA attached) (632-635)? In order to 
envision these interactions in a most hostile precellular envi-
ronment without potent protein enzymes, that were not being 
able to form without cellular ribosomes and without a genetic 
code, both advanced knowledge in proteomics and genomics, 
and a great deal of imagination, are required. This author for 
one, subscribes with gratitude the review, Professor W. Ford 
Doolittle (Dalhouise University, Halifax, Nova Scotia, Canada) 
rendered, to Koonin et al: ‘Virus-like entities surely predated 
the appearance of modern cells…Evolutionary scenarios are 
an artform. They usefully exercise the brain…They do not 
have to be true! I do not disfavor the publication…’ (629). 
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