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Combining magnetic resonance spectroscopy and molecular
genomics offers better accuracy in brain tumor typing and
prediction of survival than either methodology alone
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Abstract. Recent advents in magnetic resonance spectroscopy
(MRS) techniques permit subsequent microarray analysis over
the entire human transcriptome in the same tissue biopsies.
However, extracting information from such immense quantities
of data is limited by difficulties in recognizing and evaluating
the relevant patterns of apparent gene expression in the context
of the existing knowledge of phenotypes by histopathology.
Using a quantitative approach derived from a knowledge base
of pathology findings, we present a novel methodology used
to process genome-wide transcription and MRS data. This
methodology was tested to examine metabolite and genome-
wide profiles in MRS and RNA in 55 biopsies from human
subjects with brain tumors with ~100% certainty. With the
guidance of histopathology and clinical outcome, 15 genes
with the assistance of 15 MRS metabolites were able to be
distinguished by tumor categories and the prediction of
survival was better than when either method was used alone.
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This new method, combining MRS, genomics, statistics and
biological content, improves the typing and understanding of
the complexity of human brain tumors, and assists in the
search for novel tumor biomarkers. It is an important step for
novel drug development, it generates testable hypotheses
regarding neoplasia and promises to guide human brain tumor
therapy provided improved in vivo methods for monitoring
response to therapy are developed.

Introduction

According to the Central Brain Tumor Registry of the USA
(www .cbtrus.org), the worldwide incidence rate of primary
malignant brain and central nervous system (CNS) tumors,
age-adjusted using the world standard population, is 3.7 per
100,000 person-years in males and 2.6 per 100,000 person-
years in females. The incidence rates are higher in more
developed countries (males, 5.8 per 100,000 person-years;
females, 4.1 per 100,000 person-years) than in less developed
countries (males, 3.0 per 100,000 person-years; females, 2.1 per
100,000 person-years).

Management of brain tumors in patients would benefit from
improved characterization, diagnosis and prognostic bio-
markers. The diagnostic utility of biomarkers for tissue typing
lies in their biological relevance. Highly informative biomarker
profiles are difficult to establish, due to current technical
limitations and the small sample sizes of tissue biopsies, which
pose challenges for producing accurate magnetic resonance
spectroscopy (MRS) and transcriptome data. Further develop-
ment and application of microscale MRS and genomics can
overcome these limitations and identify new biomarkers to
accurately type cancers. This report focuses on applying these
technologies to brain tumors, the leading cause for high
mortality in older adults (1,2).
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Our hypothesis is that current tissue characterization is
enhanced by developing and applying a classification strategy
analysis algorithm that produces unique tumor fingerprints by
combining biomarker profiles from ex vivo MRS and whole-
genome expression profiling performed on microscale pediatric
brain tumor biopsies. Brain-tumor specific biomarkers can be
identified using high-resolution ex vivo MRS at high magnetic
field strengths and a combination of microarray, bioinformatics,
and computational analyses. In the near future, combining
clinical MRI, MRS and MR imaging of gene expression in vivo
should produce superior images to enhance the specificity of
cancer diagnosis in clinical medicine. Knowledge acquired
from these studies can also be used to type inoperable cancers.
This hypothesis builds upon prior reports (3-16). Prior data
have provided the following information and advances: a)
measurements using one-dimensional (1D) ex vivo High-
Resolution Magic Angle Spinning (HRMAS) proton (‘H) MRS
at 94 T correlated directly with the neuropathology of intact
brain tumor biopsies. The intracellular metabolite phospho-
choline (PCho), a constituent of the choline (Cho) peak, was
associated with cellularity and proliferative activity (17); b)
MRS-detectable lipid changes were implicated in brain tumor
apoptosis and necrosis (17); ¢) in vivo MRS spectra correlated
with ex vivo MRS measurements (17); d) Gene expression
analyses of embryonal CNS tumors distinguished between
tumor types that could not be clearly distinguished by histo-
pathology (18,19); e) HRMAS 'H MRS and genomic analyses
of microscale tissue biopsies (~2 mg) yielded quality data,
enabling MRS-derived metabolites and gene expression
differences to be related and cross validated (15); f) an
optimized adiabatic solid-state NMR method, Total Through-
Bond Spectroscopy (TOBSY), maximized the advantages of
HRMAS applied to intact biopsies when compared to more
conventional liquid-state NMR approaches (20,21); g) a
structured network knowledge-based approach was
demonstrated to be capable of analyzing genome-wide trans-
criptional responses in the context of known functional
interrelationships among proteins, small molecules, and
phenotypes (13); and h) the design and initial testing of our
classification algorithms was successful (22).

While considerable work has been done on the classification
of cancers based on genomic data (23-33), and some work
has been done using MRS data (22,34-42), these two datasets
have yet to be integrated along with other clinical features. We
hope to improve cancer diagnosis accuracy immediately
following biopsy collection by uncovering and exploiting
complementary information in the MRS and genomic data.
We undertook this challenge by employing machine-learning
methods that combine the data generated from MRS and
genomics. Our rationale for using methods that emerged under
the machine-learning framework, such as the support vector
machines (SVM), is that these methods have already been
employed successfully for cancer classification for more than
ten years (25,32,43-45) and have replaced other traditional
methods such as linear discriminant analysis, logistic regression,
density-based methods (Parzen window, Naive Bayes), neural
networks with PCA pre-processing, and decision trees (32).
As aresult of its wide acceptance as a state-of-the-art method
for gene-based diagnosis, the SVM constitutes an important
module of modern software tools for gene expression analysis
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(46). On the other hand, statistical methods are limited mostly
to the task of ranking individual genes with respect to their
ability to act as individual markers, thus they can be useful in
the feature selection task. Also, the SVM approach has been
proposed for classification of heterogeneous data sources
using a weighted combination of multiple similarity measures
(kernels), (one kernel for each data source). This methodology
has already been successfully applied in several medical
diagnosis tasks (47,48) and is a promising technique for
combining data from multiple sources. In our line of research,
the data sources to be combined are genomics, MRS, and
clinical data. Here, we report that a new classification system
using the sensor fusion approach, which combines genomics,
MRS, statistics and biological content, improves the typing
and understanding of the complexity of human brain tumors, as
well as the search for novel tumor biomarkers, an important
step for novel drug development. It also generates testable
hypotheses regarding neoplasia and promises to guide human
brain tumor therapy provided that improved in vivo methods
for monitoring response to therapy are developed.

Materials and methods

Experimental design. We carried out experiments on a dataset
of 55 gene expression profiles derived from normal (9 cases)
and tumor (46 cases) classes. The tumor class samples belonged
to three categories: high grade (H) [20 cases, 12 glioblastoma
multiforme (GBM); 8 anaplastic astrocytoma (AA)], low grade
(L) (17 cases, 7 meningioma; 7 schwanoma; 7 pylocytic astro-
cytoma) and metastasized (M) (11 cases, 5 adenocarcinoma;
3 breast cancer metastasis; 3 other metastasis). Subjects ranged
in age from 17 to 54 years.

HRMAS 'H MRS using adiabatic TOBSY. We used a previously
designed 2D ex vivo HRMAS 'H MRS procedure for brain
tumors, based on novel concepts rooted in solid-state NMR
spectroscopy (49). All HRMAS 'H MRS using TOBSY
experiments were performed on a Bruker BioSpin Avance
NMR spectrometer (600.13 MHz) using a 4-mm triple
resonance ('H, *C, 2H) HRMAS probe (Bruker). Specimens
were pre-weighed and transferred to a ZrO, rotor tube (4 mm
diameter, 50 ul), containing an external standard [trimethylsilyl
propionic-2,2,3,3-d4 acid (TSP), M,=172, d=0.00 ppm] that
functioned as a reference both for resonance chemical shift and
quantification. The HRMAS 'H MRS was performed at -8°C
with 3 kHz MAS speed to minimize tissue degradation.
Typical acquisition parameters were, 2 k points direct
dimension (13 ppm spectral width), 200 points indirect
dimension (7.5 ppm spectral width), 8 scans with 2 dummy
scans, 1 sec water pre-saturation, 2 sec total repetition time,
45 msec mixing time and total acquisition time 45 min.

Analysis of 2D TOBSY MR spectra. The spectra of intact
specimens were analyzed using the XWINNMR 3.5 software
package (Bruker Biospin Corp, Billerica, MA). Before Fourier
transformation and phasing, the 2D free induction decays were
subjected to QSINE=3 window apodization. Baseline correction
was then performed using a low order spline function. After
Lorentzian and/or Gaussian fitting, the area under the curves or
the volumes of the 15 most intense spectra resonances were
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calculated. Relative quantification using the TSP standard
was performed as described below. These resonances were
identified and assigned to the corresponding metabolites.

Quantification of brain metabolites from the 2D TOBSY MR
spectra. To quantify the brain metabolites, we used the ratio
of the cross peak volumes of the metabolites [CPV(M)] to the
TSP diagonal peak volume [DPV(TSP)]. This ratio was further
divided by the biopsy weight (w) to yield the normalized
metabolite intensity, [.=1/w x CPV(M)/DPV(TSP).

Microscale transcriptome analyses to determine the gene
expression profiles of the tumor biopsy samples after HRMAS
'H MRS. We performed microscale genome array studies with
the commercially available Affymetrix U133Plus® array (Santa
Clara, CA).

Platform choice. The Affymetrix GeneChip® DNA
microarray platform has several significant advantages over
competing technologies, including coverage of the entire
human genome, access to probe sequences, probe redundancy
(11 sequences per gene) to optimize fidelity of the signal-to-
noise ratio, ready commercial availability, standardization of
hybridization, washing, staining and scanning processes, quality
control built into the manufacturing processes, available tech-
nical support, and a relatively low cost per investigated gene.

RNA purification. Total experimental RNA were isolated
from the biopsy samples used for HRMAS 'H MRS. Total
control RNA was isolated from normal tissue removed along
with the tumor biopsies, or from age-matched patients under-
going epilepsy surgery. RNA was isolated using the modified
protocol of the RNeasy purification kit (Qiagen) that our
Stanford colleagues have optimized. Briefly, during tissue
homogenation and deproteination, 1 mg of tRNA and 10 mg
linear polyacrylamide are added as carriers. This greatly
improves RNA yields to ~500 ng of total RNA per mg of
tissue, an amount x20 greater than that required for our
optimized RNA labeling procedure. RNA purity was assessed
from the OD 260/280 ratio, with only samples having ratios
>1.9 retained for further use. In addition, RNA integrity was
assessed by the Agilent 2100 Bioanalyzer, where good quality
samples exhibit a relatively flat and low baseline in the
capillary electrophoresis elution and have 18S and 28S peaks
between 1:1 to 1:2, as scored by the Bioanalyzer software.

RNA labeling. We used the Ribo-SPIA protocol
(www.nugeninc.com) for mRNA labeling and amplification.
Ribo-SPIA is superior to all other labeling methods, when
the amount of RNA is <1 mg. An overview of the Ribo-SPIA
amplification process was described previously by Tzika ef al,
(15). We used 20 ng total RNA for first strand cDNA synthesis,
and the entire procedure for amplification, fragmentation and
labeling was performed in one day.

Data analysis of gene expression. The expression profiles of
tumor biopsies analyzed and compared to those of control
tissue. Specifically, the raw Affymetrix CEL files were
normalized and analyzed to obtain expression values using
both dChip (http://biosunl.harvard.edu/complab/dchip/) and
GC-RMA (50,51). Both sets of obtained expression values
analyzed (as described below) and the results from the two
methods were compared. We used significant analysis of
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Figure 1. Classification system architecture.

microarrays (SAMs) (http://www-stat.stanford.edu/~tibs/SAM/)
to obtain a list of differentially expressed genes with a false
discovery rate (q-value) <0.05 and to properly take into account
the substantial multiple comparison problem (52,53). BRB-
Array Tools (http://linus.nci.nih.gov/BRB-ArrayTools.html)
were used to classify tumor types based on expression patterns,
using several major built-in methods including SVM and
Bayesian classifier. BRB-Array software was used to divide
samples into training and test datasets and to perform gene
selection and model building in each cross-validation run of
the training dataset. This cross-validation ensured an unbiased
final predication accuracy for the test dataset. The top genes
selected by the classifiers were clustered and visualized in
dChip. The enriched Gene Ontology and pathway groups in
these top genes were identified by dChip and Ingenuity
Pathway Analysis software and correlated with pathways
implicated in CNS tumorigenesis. Analysis results were
produced in both tabular and graphical formats.

Classification strategy. The architecture of our classification
system is shown in Fig. 1. We first fine-tuned the feature
selection process by which the high dimensionality of the
SMAs output was reduced by selecting only the most relevant
genes for the classification task. Then, a classifier was
constructed to these reduced feature vectors in order to
optimally partition the space according to class. We chose to
use the SVM classifier (54). Finally, the constructed reduced
feature space from the gene expression values was combined
with the NMR features in order to examine their impact on
the classifier.

Feature selection (FS). Feature selection methods typically
rank genes according to their differential expressions among
phenotypes and pick the top-ranked genes. There are two
general schemes for feature selection, filters and wrappers
(50,55). We used the minimum redundancy - maximum
relevance (MRMR) method (51), because it is a powerful
framework for selecting features that capture class
characteristics in a broad spectrum by reducing mutual
redundancy within the feature set. Thus, it offers greater
robustness and generalization properties to the reducing
feature space of samples, which can significantly improve
classification accuracy.
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Figure 2. Typical TOtal Through-Bond SpectroscopY (TOBSY) using ex vivo HRMAS MRS on anaplastic astrocytoma (left) and meningioma (right)
biopsies. HRMAS '"H MR spectra using TOBSY, with 45 msec mixing time, 3 kHz MAS speed, and -8°C at 600 MHz. (Ala, alanine; Cho, choline; GABA,
y-aminobutyric acid; Gln, glutamine; Glu, glutamate; GPC, glycerophosphocholine; Lip, lipids; Myo, myoinositol; PC, phosphocholine; PE, phospho-
ethanolamine; PUFA, polyunsaturated fatty acids; Tau, taurine). Note that Cho, PC, GPC, PE, Etn, are clearly separable here due to the use of the 2D TOBSY
method. Also note that the anaplastic astrocytoma (high-grade) exhibits different MR spetrum as compared to meningioma (low-grade).

SVM classifier. SVM (54) is a very powerful classification
method that draws hyperplanes in the feature vector space by
maximizing the margin between data samples of different
classes. SVM is built upon the use of kernels to construct
nonlinear decision boundaries. Here, we used linear kernels
and the LIBSVM environment for multi-class SVMs (52). It
should be noted that during all experiments with SVM, we
adopted the standard leave-one-out training/testing scheme.
That is, one element of the data was used as a training set,
and the left-out element was used for testing the predictive
performance of the resulting classifier. The SVM soft-margin
constant C was set to 10, chosen based on the results of a few
runs on one training set. The results indicated that the value of
this parameter was not crucial for our experimental dataset.

Statistical analysis. Multiple stepwise logistic regression
analysis was done to evaluate whether genomic and/or HRMAS
MRS data can predict clinical outcome. Maximum likelihood
estimation of the logistic model provided coefficients, SEs,
adjusted odds ratios, 95% confidence intervals, the likelihood
ratio 2 test for parameters as well as sensitivity, specificity and
accuracy of the prediction of the clinical outcome. Statistical
analysis was conducted with the SPSS software package
(version 16.0, SPSS Inc., Chicago, IL), and two-tailed P-
values of <0.05 were considered statistically significant.

Results

The impact of each the following 16 NMR features on the
classifier were examined, alanine (Ala), aspartate (Asp), choline
(Cho), ethanolamine (Etn), y-aminobutyric acid (GABA),
glutamine (Gnl), glutamate (Glu), glycerophosphocholine
(GPO), lactate (Lac), lipids (Lip), myoinositol (Myo), N-acetyl
aspartate (NAA), phosphocholine (PC), phospho-ethanol-
amine (PE), polyunsaturated fatty acids (PUFA) and taurine
(Tau). Typical 2D TOBSY MR spectra are shown in Fig. 2.

A classification strategy analysis algorithm to identify
combinatorial biomarker profiles that uniquely define tumor
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Figure 3. The rich feature space created by the two first selected genes
(shown in x and y axis) that is linearly divided into normal and tumor class
regions; 202126_at is PRP4-pre-mRNA processing factor 4 (gene symbol,
PRPF4B); 202508_s_at is synaptosomal associated protein, 25 kDa (gene
symbol SNAP2S5). Further details on the biological function(s) of these
genes and correlation with diseases are included in Table I.

types. Two classification problems were studied: 1)
distinguishing between normal and tumor classes. All
46 samples of the three tumor categories belonged to the
same parent-class, tumor (two-class problem); ii) studying
the different tumor categories (H, L and M) and subtypes i.e.,
GBM, AA, meningioma, etc. Experiments were designed for
the 55-9=46 samples in an attempt to distinguish among the
different types of tumors (multiple-class problem). In the two-
class problem, the performance of the SVM classifier using
gene values was perfect. In particular, we obtained 100%
accuracy using only the first two features (genes 202126-at
and 202508-s-at) that were selected by the MRMR feature
selection method. As shown in Fig. 3, their discriminative
ability was highy significant as they established a feature
space, which could be easily divided into normal and tumor
sub-regions. The ability of two other genes to discriminate
between tumor (either high grade or low grade) and metastasis
is summarized in Fig. 4. Gene 1552797_s_at is relevant to a
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Figure 4. The rich feature space created by the two genes shown in the x and
y axis with discriminatory ability between tumor and metastasis; 230207_s_at
is dedicator to cytokinesis 5 proteing (gene symbol, DOCKS); 1552797_s_at
is prominin 2 (gene symbol, PROM2). Further details on these genes'
biological function(s) and correlation with diseases are included in Table I.

stem cell marker for malignant brain tumors, cd133 (53); iii)
tumor typing and subtype classification. As expected, this
classification scheme was more difficult. The classifier had
near excellent behavior using the first 9-25 features selected
by the MRMR method (Table I). Using the first 15 genes, the
classifier reached 100% best accuracy. Specifically, after
adding gene 209771 _x_at to the feature vectors, the
classification performance was 80.4%; adding gene
229851_s_at increased the performance to 91.3%; adding
gene 225491 _at increased it to 95.6%; adding genes
211991 _s_at, 1552797 _s_at, 224209_s_at, 206349 _at,
204131_s_at and 241938_at increased it to 97.8%. Finally,
the addition of gene 204501 _at increased the classification
performance to 100% for anaplastic astrocytoma and
meningioma. We also tested the impact of combining selected
NMR features (isolated or combined) with gene values.
Using all 15 NMR features and selected genes (obtained
from the MRMR genes selection method) increased the
classification performance from 95.6% to 97.8% for the high
grade typing (11 genes and 15 NMR features), from 95.6% to
100% for schwannoma subtyping (1 gene 209169_at and 15
NMR features) and from 95.6% to 97.8% for metastasis
subtyping (12 genes and 15 NMR features).

Studies demonstrating the potential of HRMAS combined with
gene expression profiles offer better accuracy than each
methodology alone in predicting survival. We performed
multiple stepwise logistic regression analysis to evaluate how
gene expression values, HRMAS MRS data, and their
combination predict survival. We chose the 15 best genes
according to their MRMR algorithm rank (Table II) and
15 metabolite values (Ala, Asp, Cho, Etn, GABA, Gln, Glu,
GPC, Lac, Lip, Myo, NAA, PC, PE, PUFA, Tau), (see
above) corresponding to 49 available binary clinical outcomes
(33 survived vs. 16 deceased). Our preliminary results have
proven that the combination of genomic and HRMAS MRS
data improves the ability to predict clinical outcome. More
specifically, gene data alone achieved high sensitivity,
predicting 15 out of 16 deceased cases (sensitivity 94%),
high specificity, predicting 32 out of 33 cases (specificity
97%), and high accuracy (96%). HRMAS MRS data had
inferior sensitivity (11/16, 69%), specificity (28/32, 85%), and
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accuracy (80%). Combining genomics and HRMAS MRS data
logistic regression achieved a perfect classification (100% for
all indices) of survived and diseased cases. Although we
believe that these promising results are affected by sample
size, they clearly demonstrate that the combination of gene
expression and MRS data predict a clinically meaningful
parameter, such as survival, better than either technique alone.

Discussion

Our objective in this study was to use a novel approach that
combines biomarkers detected with magnetic resonance
spectroscopy (MRS) and molecular genomics to improve the
characterization and prognostication of biospecimens in
molecular medicine. We aimed to develop a useful clinical
tool that uses tissue fingerprinting to aid clinicians not only
in making diagnostic and treatment course decisions, but also
in understanding the biology of brain malignancy subtypes in
humans, an important step for novel drug development. The
method is based on the development of a classification
strategy analysis algorithm that combines biomarker profiles
generated using high-resolution ex vivo MRS and whole-
genome expression analyses of microscale brain tumor
samples as well as features from the clinical patient database
(i.e., survival). We optimized and applied ex vivo HRMAS
'"H MRS and transcriptome profiling to intact tumor biopsies
that are <2 mg. We then combined these data sets to develop
a classification strategy analysis algorithm to produce tissue
fingerprints that accurately type these biopsies and demon-
strated the potential of HRMAS and its combination with
gene expression profiles to offer better accuracy than each
methodology alone in predicting survival.

Herein, we demonstrated for the first time that a combined
approach of using metabolite and gene expression profiles
allows for more accurate discernment of tumor categories and
better prediction of patient survival than either method alone.
Previous data have shown that metabolites derived from brain
proton MRS predict clinically meaningful parameters such as
treatment response and survival of children with CNS tumors
(10,56,57). Gene expression has been reported to predict
outcome and survival with greater accuracy than histology
(18,19). Prior studies have demonstrated that ex vivo MRS
can be used to classify brain tumors with high sensitivity,
specificity, and accuracy using only 16 metabolites, which is
the highest number of metabolites detected with in vivo 2D
approaches (22). Importantly, the agreement between ex vivo
and in vivo MRS data suggests that in vivo 2D MRS provides
a means of typing inoperable tumors in the absence of biopsies
or gene expression data. It was thus important to train our
algorithm (which can handle missing data) with multiple kinds
of information, including both MRS and gene expression data,
to increase its discriminatory capability that will also allow
its application in vivo and specifically in cases of inoperable
tumors. Although the ability to produce tissue MRS data non-
invasively using 2D in vivo MRS would provide a considerable
advantage, it is beyond the scope of the current investigation.
In vivo MRS is clinically feasible and we have used it previously
to investigate whether ex vivo and in vivo MRS data agree (17).
We found that such agreement exists and thus obviates the use
of in vivo MRS to guide ex vivo biopsy collection for
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Table II. Continued.

Disease

Biological process term

Gene title

Gene symbol

Probe set ID

Atherosclerosis (148,149)

Response to stress, inflammatory response,

cell cycle arrest, negative regulation of
cell proliferation, actin filament bundle

allograft inflammatory factor 1

AIF1

213095 _x_at

INTERNATIONAL JOURNAL OF ONCOLOGY 38: 1113-1127, 2011 1123

formation, macrophage activation, role in

cell growth, proliferation and cell cycle

progression

HERC1

218306_s_at

Prader-Willi/Angelman's (150)

Hect [homologous to the E6-AP Protein modification process transport

(UBE3A) carboxyl terminus] domain

and RCC1 (CHC1)-like domain (RLD) 1

achieving the goals of this study. In the current study, all
biopsies were collected from patients undergoing surgery.
Given that these in vivo tests are considered to be ‘additional’
and not ‘standard’ tests for patients in pain prior to their
operation, it would have been ethically ill-advised to persuade
parents to agree to additional tests unless such studies were
medically indicated. However, if such data are available in the
future, they will be provided for inclusion in our analysis, by
the assisting oncologist in the clinical data collection.

We believe that in vivo 2D MRS will be useful for typing
inoperable tumors in the absence of biopsies or gene expression
data for two reasons. Firstly, ex vivo MRS can be used to
classify brain tumors with high sensitivity, specificity, and
accuracy using only 16 metabolites (22), which is the highest
number of metabolites detected with in vivo 2D approaches.
Secondly, there is agreement between the ex vivo and in vivo
MRS data obtained. Accordingly, it will be critical that we
train our algorithm (which is able to handle missing data) with
both MRS and gene expression data as well as with other
available data to increase its discriminatory capability.

We found that certain genes were useful to subtype brain
tumors (Table I) and certain other genes were useful for
survival classification (Table II). These genes have been
reported for other cancers or diseases (see references within
Tables) but are novel to brain tumors. The ability of two genes
only to discriminate between two types of brain tumors (either
high grade or low grade) and metastasis was excellent (Fig. 4).
It is interesting that gene 1552797_s_at is relevant to a stem
cell marker for malignant brain tumors, cd133 (53). This
suggests that our work using adult brain tumor biopsies has
demonstrated that with appropriate quality control, we are
able to produce meaningful data and introduce a novel
classification scheme that complements and substantiates the
current hypothesis of cancer stem cells (53) as a means of
determining brain tumor classification and treatment.

Furthermore, our work validates and extends previous
work on classification strategy analysis algorithms for both
in vivo and in vitro spectra from MRS (34-40). One of the
principal difficulties in such analyses is the large number of
metabolites that may contribute to the spectra, each with
relative intensities that can greatly vary, even in samples of
the same type (34). Nonetheless, even early studies reported
that the spectra of body fluids obtained with MRS are
systematically different between tumor patients and healthy
individuals. In many cases, successful differentiation using
both linear and nonlinear methods can be made based on
single resonance peaks or ratios of resonance ranges (35). More
recent work on brain tumors has shown that classification
according to histological type and grade is possible using
similar approaches, particularly linear discriminant analysis
(LDA) after feature extraction with independent components
analysis (ICA) in a Bayesian framework (41) or correlation
analysis and stepwise LDA (36) or using belief networks (42)
or using Support Vector Machines (SVMs) (22).

Also, our approach in fusing genomics and MRS to
improve the typing and prognosis of human brain tumors
agrees with the notion that fusion of different sources of
information can improve system performance and facilitate
detection, recognition, identification, tracking, change
detection, and decision-making in defense, robotics, and
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medicine (58,59). Some studies have previously described
that classifiers have attempted to combine data from different
sources (60-63). We believe that an efficient fusion scheme
using complementary information can improve confidence.
Finally, results garnered from this study may lead to the
development of new clinical tools to better assess operable
cancers via tissue fingerprinting and to facilitate the distinction
of tumor types that cannot be readily distinguished histo-
pathologically (64) or with routine neuroimaging (65). This
will enable neurooncologists, neuropathologists, neurosurgeons
and neurologists to make informed decisions related to tumor
type, grade, and treatment options. The results may also
facilitate the clinical application of lower resolution in vivo
MRS to inoperable cancers using metabolic biomarkers to
monitor anticancer therapies, in order to improve patient
survival and quality of life. More importantly, they will
further elucidate the biology of brain malignancy subtypes in
brain tumor patients, an important step for novel drug
development. Thus, these results greatly increase the overall
potential for success of future studies that combine clinical
MRI, MRS and MR imaging of gene expression in vivo to
produce improved combined images, which could then be
used to readily discriminate between metastasis and high-grade
gliomas, a distinction not made adequately at present (60).

Acknowledgements

The study was supported in part by discretional funds to
A. Aria Tzika. The authors thank the Departments of Surgery
and Radiology at Massachusetts General Hospital, as well as
Neurosurgery and Pathology at Brigham and Women's Hospital
Boston for supporting this study. We thank John Passanese,
first year medical student at Harvard Medical for
assistance with references cited in Tables. We also thank
Drs Ann Power Smith and Kathryn Edmondson of Write
Science Right for editorial assistance.

References

1. Legler JM, Ries LA, Smith MA, et al: Cancer surveillance
series [corrected]: brain and other central nervous system cancers:
recent trends in incidence and mortality. J Natl Cancer Inst 91:
1382-1390, 1999.

2. Segal G: Re: Brain and other central nervous system cancers:
recent trends in incidence and mortality. J Natl Cancer Inst 92:
77-78,2000.

3. Tzika AA, Vajapeyam S and Barnes PD: Multivoxel proton MR
spectroscopy and hemodynamic MR imaging of childhood brain
tumors: preliminary observations. AINR Am J Neuroradiol 18:
203-218, 1997.

4.Cheng L, Anthony D, Comite A, Black P, Tzika A and
Gonzalez R: Quantification of microheterogeneity in glioblastoma
multiforme with ex vivo high-resolution magic-angle spinning
(HRMAS) proton magetic resonance spectroscopy. Neuro
Oncol 2: 87-95,2000.

5. Tzika A, Khong P, Astrakas L and Zarifi M: Functional MRI of
childhood brain neoplasms. J Hong Kong College Radiol 3:
S$54-S59, 2000.

6. Tzika A, Zurakowski D, Poussaint T, et al: Proton magnetic
resonance spectroscopic imaging of the child's brain: the response
of tumors to treatment. Neuroradiology 43: 169-177, 2001.

7. Tzika AA, Zarifi MK, Goumnerova L, et al: Neuroimaging in
pediatric brain tumors: Gd-DTPA-enhanced, hemodynamic, and
diffusion MR imaging compared with MR spectroscopic imaging.
AJNR Am J Neuroradiol 23: 322-333, 2002.

8. Tzika AA, Astrakas LG, Zarifi MK, et al: Multiparametric MR
assessment of pediatric brain tumors. Neuroradiology 45: 1-10,
2003.

ASTRAKAS et al: MRS AND GENOMICS FOR BRAIN TUMOR CLASSIFICATION

9. Astrakas LG, Zurakowski D, Tzika AA, et al: Noninvasive
magnetic resonance spectroscopic imaging biomarkers to predict
the clinical grade of pediatric brain tumors. Clin Cancer Res 10:
8220-8228, 2004.

10. Tzika AA, Astrakas LG, Zarifi MK, et al: Spectroscopic and
perfusion magnetic resonance imaging predictors of progression
in pediatric brain tumors. Cancer 100: 1246-1256,2004.

11. Astrakas LG, Goljer I, Yasuhara S, et al: Proton NMR spectro-
scopy shows lipids accumulate in skeletal muscle in response to
burn trauma-induced apoptosis. FASEB J 19: 1431-1440, 2005.

12. Padfield KE, Astrakas LG, Zhang Q, et al: Burn injury causes
mitochondrial dysfunction in skeletal muscle. Proc Natl Acad
Sci USA 102: 5368-5373, 2005.

13. Calvano SE, Xiao W, Richards DR, et al: A network-based
analysis of systemic inflammation in humans. Nature 437:
1032-1037,2005.

14. Wang Y, Makedon FS, Ford JC and Pearlman J: HykGene: a
hybrid approach for selecting marker genes for phenotype
classification using microarray gene expression data.
Bioinformatics 21: 1530-1537, 2005.

15. Tzika AA, Astrakas L, Cao HH, er al: Combination of high-
resolution magic angle spinning proton magnetic resonance
spectroscopy and microscale genomics to type brain tumor
biopsies. Int ] Mol Med 20: 199-208, 2007.

16. Tzika AA: Proton magnetic resonance spectroscopic imaging as
a cancer biomarker for pediatric brain tumors (Review). Int J
Oncol 32: 517-526, 2008.

17. Tzika AA, Cheng LL, Goumnerova L, et al: Biochemical
characterization of pediatric brain tumors by using in vivo and
ex vivo magnetic resonance spectroscopy. J Neurosurg 96:
1023-1031, 2002.

18. Pomeroy SL, Tamayo P, Gaasenbeek M, et al: Prediction of
central nervous system embryonal tumour outcome based on
gene expression. Nature 415: 436-442, 2002.

19. Nutt CL, Mani DR, Betensky RA, et al: Gene expression-based
classification of malignant gliomas correlates better with survival
than histological classification. Cancer Res 63: 1602-1607, 2003.

20. Andronesi OC, Mintzopoulos D, Struppe J, Black P and
Tzika AA: Enhanced sensitivity for multidimensional high-
resolution magic-angle-spining H1-MR-spectroscopy. In:
International Society for Magnetic Resonanse in Medicine,
p776,2008.

21. Andronesi OC, Mintzopoulos D, Struppe J, Black PM and
Tzika AA: Solid-state NMR adiabatic TOBSY sequences provide
enhanced sensitivity for multidimensional high-resolution magic-
angle-spinning 1H MR spectroscopy. ] Magn Reson 193: 251-258,
2008.

22. Andronesi OC, Blekas KD, Mintzopoulos D, Astrakas L,
Black PM and Tzika AA: Molecular classification of brain tumor
biopsies using solid-state magic angle spinning proton magnetic
resonance spectroscopy and robust classifiers. Int J Oncol 33:
1017-1025,2008.

23. Eisen MB, Spellman PT, Brown PO and Botstein D: Cluster
analysis and display of genome-wide expression patterns. Proc
Natl Acad Sci USA 95: 14863-14868, 1998.

24. Yeang C, Ramaswamy S, Tamayo P, et al: Molecular classification
of multiple tumor types. Bioinformatics 17: S316-S322,2001.

25. Ramaswamy S, Tamayo P, Rifkin R, et al: Multiclass cancer
diagnosis using tumor gene expression signatures. Proc Natl
Acad Sci USA 98: 15149-15154,2001.

26. Klein U, Tu Y, Stolovitzky A, er al: Gene expression profiling
of B cell chronic lymphocytic leukemia reveals a homogeneous
phenotype related to memory B cells. J Exp Med 194: 1625-1638,
2001.

27. Macgregor P and Squire J: Application of microarrays to the
analysis of gene expression in cancer. Clin Chem 48: 1170-1177,
2002.

28. Sherlock G: Analysis of large-scale gene expression data. Curr
Opin Immunol 12: 201-205, 2000.

29. Hoffmann R, Seidl T and Dugas M: Profound effect of
normalization on detection of differentially expressed genes in
oligonucleotide microarray data analysis. Genome Biol 3: R33,
2002.

30. Holter N, Mitra M, Maritan A, Cieplak M, Banavar J and
Federoff N: Fundamental patterns underlying gene expression
profiles: simplicity from complexity. Proc Natl Acad Sci USA
97: 8409-8414, 2000.

31. Raychaudhuri S, Stuart J and Altman R: Principal components
analysis to summarize microarray experiments: application to
sporulation time series. Pac Symp Biocomput pp455-466, 2000.



32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.
51.

52.

53.

54.
55.
56.

INTERNATIONAL JOURNAL OF ONCOLOGY 38: 1113-1127, 2011

Brown M, Grundy W, Lin D, et al: Knowledge-based analysis
of microarray gene expression data by using support vector
machines. Proc Natl Acad Sci USA 97: 262-267, 2000.

Mendez M, Hodar C, Vulpe C, Gonzalez M and Cambiazo V:
Discriminant analysis to evaluate clustering of gene expression
data. FEBS Lett 522: 24-28, 2002.

Lisboa P, Kirby S, Vellido A, Lee Y and El-Deredy W:
Assessment of statistical and neural networks methods in NMR
spectral classification and metabolite selection. NMR Biomed
11: 225-234,1998.

Hagberg G: From magnetic resonance spectroscopy to
classification of tumors: A review of pattern recognition methods.
NMR Biomed 11: 148-156, 1998.

Tate AR, Majos C, Moreno A, Howe FA, Griffiths JR and Arus C:
Automated classification of short echo time in in vivo 1H brain
tumor spectra: a multicenter study. Magn Reson Med 49: 29-36,
2003.

Devos A, Lukas L, Suykens JA, et al: Classification of brain
tumours using short echo time 1H MR spectra. ] Magn Reson
170: 164-175,2004.

Lukas L, Devos A, Suykens JA, et al: Brain tumor classification
based on long echo proton MRS signals. Artif Intell Med 31:
73-89,2004.

Tate AR, Underwood J, Acosta DM, et al: Development of a
decision support system for diagnosis and grading of brain
tumours using in vivo magnetic resonance single voxel spectra.
NMR Biomed 19: 411-434,2006.

Opstad KS, Ladroue C, Bell BA, Griffiths JR and Howe FA:
Linear discriminant analysis of brain tumour (1)H MR spectra: a
comparison of classification using whole spectra versus metabolite
quantification. NMR Biomed 20: 763-770, 2007.

Huang Y, Lisboa PJG and El-Deredy W: Tumour grading from
magnetic resonance spectroscopy: A comparison of feature
extraction with variable selection. Stat Med 22: 147-164,2003.
Reynolds GM, Peet AC and Arvanitis TN: Generating prior
probabilities for classifiers of brain tumours using belief networks.
BMC Med Inform Decis Mak 7: 27, 2007.

Simon R: Diagnostic and prognostic prediction using gene
expression profiles in high-dimensional microarray data. Br J
Cancer 89: 1599-1604, 2003.

Ancona N, Maglietta R, Piepoli A, et al: On the statistical
assessment of classifiers using DNA microarray data. BMC
Bioinformatics 7: 387, 2006.

Statnikov A, Wang L and Aliferis CF: A comprehensive
comparison of random forests and support vector machines for
microarray-based cancer classification. BMC Bioinformatics 9:
319, 2008.

Simon R, Lam A, Li MC, Ngan M, Menenzes S and Zhao Y:
Analysis of gene expression data using BRB-array tools. Cancer
Inform 3: 11-17,2007.

Gilchrist MA, Salter LA and Wagner A: A statistical framework
for combining and interpreting proteomic datasets. Bioinformatics
20: 689-700, 2004.

Lanckriet GR, De Bie T, Cristianini N, Jordan MI and Noble WS:
A statistical framework for genomic data fusion. Bioinformatics
20: 2626-2635, 2004.

Andronesi OC, Mintzopoulos D, Struppe J, Black PM and
Tzika AA: Solid-state NMR adiabatic TOBSY sequences
provide enhanced sensitivity for multidimensional high-resolution
magic-angle-spinning (1)H MR spectroscopy. J] Magn Reson
193: 251-258,2008.

Saeys Y, Inza I and Larranaga P: A review of feature selection
techniques in bioinformatics. Bioinformatics 23: 2507-2517, 2007.
Ding C and Peng H: Minimum redundancy feature selection
from microarray gene expression data. J Bioinform Comput
Biol 3: 185-205, 2005.

Hsu CW and Lin CJ: A comparison of methods for multiclass
support vector machines. IEEE Trans Neural Netw 13: 415-425,
2002.

Sakariassen PO, Immervoll H and Chekenya M: Cancer stem
cells as mediators of treatment resistance in brain tumors: status
and controversies. Neoplasia 9: 882-892, 2007.

Vapnik V: Statistical Learning Theory. Haykin S (ed).
Wiley-Interscience, New York, 1998.

Guyon I and Elisseeff A: An introduction to variable and future
selection. J Mach Learn Res 3: 1157-1182, 2003.

Astrakas L, Zurakowski D, Marcus KJ, et al: Proton MRSI
biomarkers predict survival in children with CNS tumors. In:
International Society for Magnetic Resonance in Medicine,
Miami, p145, 2005.

57

58.
59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

717.

78.

79.

1125

. Marcus KJ, Astrakas LG, Zurakowski D, et al: Predicting survival
of children with CNS tumors using proton magnetic resonance
spectroscopic imaging biomarkers. Int J Oncol 30: 651-657, 2007.
Hall DL and Linas J: Handbook of Multisensor Data Fusion.
CRC Press, 2001.

Roemer MJ, Kacprzynski GJ and Orsagh RF: Assessment of
data and knowledge fusion strategies for prognostics and health
management. In: Aerospace Conference 2001 IEEE. Big Sky,
MT, pp2979-2988, 2001.

De Edelenyi FS, Rubin C, Esteve F, et al: A new approach for
analyzing proton magnetic resonance spectroscopic images of
brain tumors: nosologic images. Nat Med 6: 1287-1289, 2000.
Simonetti AW, Melssen WJ, Szabo de Edelenyi F, van Asten JJ,
Heerschap A and Buydens LM: Combination of feature-reduced
MR spectroscopic and MR imaging data for improved brain
tumor classification. NMR Biomed 18: 34-43, 2005.

Galanaud D, Nicoli F, Chinot O, er al: Noninvasive diagnostic
assessment of brain tumors using combined in vivo MR imaging
and spectroscopy. Magn Reson Med 55: 1236-1245, 2006.

Luts J, Heerschap A, Suykens JA and Van Huffel S: A
combined MRI and MRSI based multiclass system for brain
tumour recognition using LS-SVMs with class probabilities and
feature selection. Artif Intell Med 40: 87-102, 2007.

Lakhani SR and Ashworth A: Microarray and histopathological
analysis of tumours: the future and the past? Nat Rev Cancer 1:
151-157,2001.

Julia-Sape M, Acosta D, Majos C, et al: Comparison between
neuroimaging classifications and histopathological diagnoses
using an international multicenter brain tumor magnetic
resonance imaging database. J Neurosurg 105: 6-14, 2006.
Rohan S, Tu JJ, Kao J, et al: Gene expression profiling separates
chromophobe renal cell carcinoma from oncocytoma and identifies
vesicular transport and cell junction proteins as differentially
expressed genes. Clin Cancer Res 12: 6937-6945, 2006.

Chen 1Y, Lypowy J, Pain J, et al: Histone H2A .z is essential for
cardiac myocyte hypertrophy but opposed by silent information
regulator 2alpha. J Biol Chem 281: 19369-19377, 2006.
Heinzelmann-Schwarz VA, Gardiner-Garden M, Henshall SM,
et al: Overexpression of the cell adhesion molecules DDRI,
Claudin 3, and Ep-CAM in metaplastic ovarian epithelium and
ovarian cancer. Clin Cancer Res 10: 4427-4436, 2004.

Spizzo G, Gastl G, Wolf D, et al: Correlation of COX-2 and Ep-
CAM overexpression in human invasive breast cancer and its
impact on survival. Br J Cancer 88: 574-578, 2003.

Kimura H, Kato H, Faried A, er al: Prognostic significance of
EpCAM expression in human esophageal cancer. Int J Oncol
30: 171-179, 2007.

Huang B, Ahn YT, McPherson L, Clayberger C and Krensky AM:
Interaction of PRP4 with Kruppel-like factor 13 regulates CCL5
transcription. J Immunol 178: 7081-7087, 2007.

Jing Y, Liu C and Wang L: A novel TACSTD2 mutation
identified in two Chinese brothers with gelatinous drop-like
corneal dystrophy. Mol Vis 15: 1580-1588, 2009.

Alberti S, Miotti S, Stella M, et al: Biochemical characterization
of Trop-2, a cell surface molecule expressed by human
carcinomas: formal proof that the monoclonal antibodies T16
and MOV-16 recognize Trop-2. Hybridoma 11: 539-545, 1992.
Corradini I, Verderio C, Sala M, Wilson MC and Matteoli M:
SNAP-25 in neuropsychiatric disorders. Ann NY Acad Sci
1152: 93-99, 2009.

Rotondo F, Kovacs K, Scheithauer BW, er al: Immunohisto-
chemical expression of SNAP-25 protein in adenomas of the
human pituitary. Appl Immunohistochem Mol Morphol 16:
477-481,2008.

Guimaraes DP, Oliveira IM, de Moraes E, et al: Interferon-
inducible guanylate binding protein (GBP)-2: a novel p53-
regulated tumor marker in esophageal squamous cell carcinomas.
Int J Cancer 124: 272-279, 2009.

Thibout H, Martinerie C, Creminon C, et al: Characterization of
human NOV in biological fluids: an enzyme immunoassay for
the quantification of human NOV in sera from patients with
diseases of the adrenal gland and of the nervous system. J Clin
Endocrinol Metab 88: 327-336, 2003.

Vallacchi V, Daniotti M, Ratti F, et al: CCN3/nephroblastoma
overexpressed matricellular protein regulates integrin expression,
adhesion, and dissemination in melanoma. Cancer Res 68:
715-723,2008.

Niu Z, Ito M, Awakura Y, et al: The expression of NOV and WT1
in renal cell carcinoma: a quantitative reverse transcriptase-
polymerase chain reaction analysis. J Urol 174: 1460-1462, 2005.



1126

80.Ho PW, Chu AC, Kwok KH, Kung MH, Ramsden DB and
Ho SL: Knockdown of uncoupling protein-5 in neuronal SH-
SYSY cells: Effects on MPP+-induced mitochondrial membrane
depolarization, ATP deficiency, and oxidative cytotoxicity. J
Neurosci Res 84: 1358-1366, 2006.
81.Nakase T, Yoshida Y and Nagata K: Amplified expression of
uncoupling proteins in human brain ischemic lesions.
Neuropathology 27: 442-447,2007.
82.Yasuno K, Ando S, Misumi S, er al: Synergistic association of
mitochondrial uncoupling protein (UCP) genes with
schizophrenia. Am J Med Genet B Neuropsychiatr Genet 144:
B250-B253, 2007.
83.0tt MG, Schmidt M, Schwarzwaelder K, et al: Correction of
X-linked chronic granulomatous disease by gene therapy,
augmented by insertional activation of MDS1-EVI1, PRDM16
or SETBPI. Nat Med 12: 401-409, 2006.
84.Kim TH, Jo SW, Lee YS, ef al: Forkhead box O-class 1 and
forkhead box G1 as prognostic markers for bladder cancer. J
Korean Med Sci 24: 468-473, 2009.
85.Ariani F, Hayek G, Rondinella D, et al: FOXG1 is responsible
for the congenital variant of Rett syndrome. Am J Hum Genet
83: 89-93,2008.
86.Adesina AM, Nguyen Y, Mehta V, er al: FOXGI1 dysregulation
is a frequent event in medulloblastoma. J Neurooncol 85:
111-122,2007.
87.Fleury C, Neverova M, Collins S, et al: Uncoupling protein-2:
a novel gene linked to obesity and hyperinsulinemia. Nat Genet
15:269-272, 1997.
88.0'Rahilly S: Uncoupling protein 2: Adiposity angel and
diabetes devil? Nat Med 7: 770-772,2001.
89.Fernandez-Ranvier GG, Weng J, Yeh RF, et al: Identification
of biomarkers of adrenocortical carcinoma using genomewide
gene expression profiling. Arch Surg 143: 841-846, 2008.
90.Zafrakas M, Tarlatzis BC, Streichert T, et al: Genome-wide
microarray gene expression, array-CGH analysis, and telomerase
activity in advanced ovarian endometriosis: a high degree of
differentiation rather than malignant potential. Int J Mol Med
21: 335-344,2008.
.Segditsas S, Sieber O, Deheragoda M, et al: Putative direct and
indirect Wnt targets identified through consistent gene expression
changes in APC-mutant intestinal adenomas from humans and
mice. Hum Mol Genet 17: 3864-3875, 2008.
92.Yao-Borengasser A, Rasouli N, Varma V, er al: Lipin expression
is attenuated in adipose tissue of insulin-resistant human
subjects and increases with peroxisome proliferator-activated
receptor gamma activation. Diabetes 55: 2811-2818, 2006.

93.Mlinar B, Pfeifer M, Vrtacnik-Bokal E, Jensterle M and Marc J:
Decreased lipin 1 beta expression in visceral adipose tissue is
associated with insulin resistance in polycystic ovary
syndrome. Eur J Endocrinol 159: 833-839, 2008.

94.Reue K: The role of lipin 1 in adipogenesis and lipid
metabolism. Novartis Foundation Symposium 286: 58-203,
2007.

95.Berwanger B, Hartmann O, Bergmann E, et al: Loss of a FYN-
regulated differentiation and growth arrest pathway in
advanced stage neuroblastoma. Cancer Cell 2: 377-386, 2002.

96.Ho GJ, Hashimoto M, Adame A, er al: Altered pS9Fyn kinase
expression accompanies disease progression in Alzheimer's
disease: implications for its functional role. Neurobiol Aging
26: 625-635,2005.

97.Charpin C, Secq V, Giusiano S, et al: A signature predictive of
disease outcome in breast carcinomas, identified by quantitative
immunocytochemical assays. Int J Cancer 124: 2124-2134,
20009.

98.Posadas EM, Al-Ahmadie H, Robinson VL, ef al: FYN is
overexpressed in human prostate cancer. BJU Int 103: 171-177,
2009.

99.Esen M, Grassme H, Riethmuller J, Riehle A, Fassbender K
and Gulbins E: Invasion of human epithelial cells by
Pseudomonas aeruginosa involves src-like tyrosine kinases
p60Src and p59Fyn. Infect Immun 69: 281-287,2001.

100.Takayama T, Mogi Y, Kogawa K, et al: A role for the fyn
oncogene in metastasis of methylcholanthrene-induced
fibrosarcoma A cells. Int J Cancer 54: 875-879, 1993.

101.Huang J, Asawa T, Takato T and Sakai R: Cooperative roles of
Fyn and cortactin in cell migration of metastatic murine
melanoma. J Biol Chem 278: 48367-48376, 2003.

102.Hattori K, Uchino S, Isosaka T, et al: Fyn is required for
haloperidol-induced catalepsy in mice. J Biol Chem 281:
7129-7135, 2006.

9

—_

ASTRAKAS et al: MRS AND GENOMICS FOR BRAIN TUMOR CLASSIFICATION

103.Kojima N, Ishibashi H, Obata K and Kandel ER: Higher
seizure susceptibility and enhanced tyrosine phosphorylation of
N-methyl-D-aspartate receptor subunit 2B in fyn transgenic
mice. Learn Mem 5: 429-445, 1998.

104.Stromberg S, Agnarsdottir M, Magnusson K, et al: Selective
expression of Syntaxin-7 protein in benign melanocytes and
malignant melanoma. J Proteome Res 8: 1639-1646, 2009.

105.Hever A, Roth RB, Hevezi PA, et al: Molecular characterization
of human adenomyosis. Mol Hum Reprod 12: 737-748, 2006.

106.Ho SB, Niehans GA, Lyftogt C, et al: Heterogeneity of mucin
gene expression in normal and neoplastic tissues. Cancer Res
53: 641-651, 1993.

107.Shibahara H, Tamada S, Higashi M, er al: MUC4 is a novel
prognostic factor of intrahepatic cholangiocarcinoma-mass
forming type. Hepatology 39: 220-229, 2004.

108.Muramatsu S, Handa A, Kajigaya S and Brown KE:
Transcription-positive cofactor 4 enhances rescue of adeno-
associated virus genome from an infectious clone. J Gen Virol
79: 2157-2161, 1998.

109.Pan ZQ, Ge H, Amin AA and Hurwitz J: Transcription-positive
cofactor 4 forms complexes with HSSB (RPA) on single-stranded
DNA and influences HSSB-dependent enzymatic synthesis of
simian virus 40 DNA. J Biol Chem 271: 22111-22116, 1996.

110.Saaf AM, Halbleib JM, Chen X, et al: Parallels between global

transcriptional programs of polarizing Caco-2 intestinal
epithelial cells in vitro and gene expression programs in normal

colon and colon cancer. Mol Biol Cell 18: 4245-4260, 2007.

.Kalkan A, Bulut V, Erel O, Avci S and Bingol NK: Adenosine

deaminase and guanosine deaminase activities in sera of patients

with viral hepatitis. Mem Inst Oswaldo Cruz 94: 383-386,

1999.

112 Firestein BL, Brenman JE, Aoki C, Sanchez-Perez AM,
El-Husseini AE and Bredt DS: Cypin: a cytosolic regulator of
PSD-95 postsynaptic targeting. Neuron 24: 659-672, 1999.

113.Nishikawa Y, Fukumoto K and Watanabe F: Guanine
deaminase in serum as an indicator of survival probability in
severe shock patients. Clin Chim Acta 131: 67-73, 1983.

114.Ellis G and Goldberg DM: Serum guanase activities after
myocardial infarction. Clin Chim Acta 63: 205-210, 1975.

115.Ito S, Takaoka T, Kishi S, Nakaya Y, Hiasa Y and Mori H:
Clinical and experimental studies of the determination of serum
guanase activity in acute myocardial infarction. Jpn Circ J 45:
525-531, 1981.

116.Jiang W, Cazacu S, Xiang C, et al: FK506 binding protein
mediates glioma cell growth and sensitivity to rapamycin
treatment by regulating NF-kappaB signaling pathway.
Neoplasia 10: 235-243,2008.

117.Binder EB, Bradley RG, Liu W, et al: Association of FKBPS
polymorphisms and childhood abuse with risk of posttraumatic
stress disorder symptoms in adults. JAMA 299: 1291-1305,
2008.

118.Yehuda R, Cai G, Golier JA, et al: Gene expression patterns
associated with posttraumatic stress disorder following exposure
to the World Trade Center attacks. Biol Psychiatry 66: 708-711,
2009.

119.Juric D, Lacayo NJ, Ramsey MC, et al: Differential gene
expression patterns and interaction networks in BCR-ABL-
positive and -negative adult acute lymphoblastic leukemias. J
Clin Oncol 25: 1341-1349,2007.

120.Wan D, Gong Y, Qin W, et al: Large-scale cDNA transfection
screening for genes related to cancer development and
progression. Proc Natl Acad Sci USA 101: 15724-15729, 2004.

121.Banerjee A, Stevenaert F, Pande K, et al: Modulation of paired
immunoglobulin-like type 2 receptor signaling alters the host
response to Staphylococcus aureus-induced pneumonia. Infect
Immun 78: 1353-1363, 2010.

122.Thomas R, Matthias T and Witte T: Leukocyte immunoglobulin-
like receptors as new players in autoimmunity. Clin Rev Allergy
Immunol 38: 159-162, 2009.

123.Bronstein JM, Tiwari-Woodruff S, Buznikov AG and
Stevens DB: Involvement of OSP/claudin-11 in oligodendrocyte
membrane interactions: role in biology and disease. J Neurosci
Res 59: 706-711, 2000.

124.Agarwal R, Mori Y, Cheng Y, et al: Silencing of claudin-11 is
associated with increased invasiveness of gastric cancer cells.
PLoS One 4: 8002, 2009.

125.Netzer C, Rieger L, Brero A, ef al: SALL1, the gene mutated in
Townes-Brocks syndrome, encodes a transcriptional repressor
which interacts with TRF1/PIN2 and localizes to pericentromeric
heterochromatin. Hum Mol Genet 10: 3017-3024, 2001.

11

s



INTERNATIONAL JOURNAL OF ONCOLOGY 38: 1113-1127, 2011

126.Sadikovic B, Yoshimoto M, Chilton-MacNeill S, Thorner P,
Squire JA and Zielenska M: Identification of interactive
networks of gene expression associated with osteosarcoma
oncogenesis by integrated molecular profiling. Hum Mol Genet
18: 1962-1975, 2009.

127.Lien HC, Hsiao YH, Lin YS, et al: Molecular signatures of
metaplastic carcinoma of the breast by large-scale tran-
scriptional profiling: identification of genes potentially related to
epithelial-mesenchymal transition. Oncogene 26: 7859-7871,
2007.

128.Lindholm E and Jazin E: A possible link between dopamine
action and myelin dysfunction in schizophrenia. Schizophr Res
96: 271-272,2007.

129.Li ZZ, Kondo T, Murata T, et al: Expression of Hgk encoding
a KH RNA binding protein is altered in human glioma. Jpn J
Cancer Res 93: 167-177,2002.

130. Geurts JM, Schoenmakers EF, Roijer E, Astrom AK, Stenman G
and van de Ven WJ: Identification of NFIB as recurrent trans-
location partner gene of HMGIC in pleomorphic adenomas.
Oncogene 16: 865-872, 1998.

131.Pierron A, Fernandez C, Saada E, et al: HMGA2-NFIB fusion in
a pediatric intramuscular lipoma: a novel case of NFIB alteration
in a large deep-seated adipocytic tumor. Cancer Genet Cytogenet
195: 66-70, 2009.

132.Bian M, Yu M, Yang S, et al: Expression of Cbl-interacting
protein of 85 kDa in MPTP mouse model of Parkinson's disease
and 1-methyl-4-phenyl-pyridinium ion-treated dopaminergic
SH-SYSY cells. Acta Biochim Biophys Sin 40: 505-512,
2008.

133.Lito P, Mets BD, Kleff S, O'Reilly S, Maher VM and
McCormick JJ: Evidence that sprouty 2 is necessary for sarcoma
formation by H-Ras oncogene-transformed human fibroblasts.
J Biol Chem 283: 2002-2009, 2008.

134. Hamm A, Veeck J, Bektas N, et al: Frequent expression loss of
Inter-alpha-trypsin inhibitor heavy chain (ITIH) genes in
multiple human solid tumors: a systematic expression analysis.
BMC Cancer 8: 25, 2008.

135.Ricciardelli C, Mayne K, Sykes PJ, et al: Elevated levels of
versican but not decorin predict disease progression in early-
stage prostate cancer. Clin Cancer Res 4: 963-971, 1998.

136.Theocharis AD: Versican in health and disease. Connect Tissue
Res 49: 230-234, 2008.

137.Meredith SP, Richards AJ, Flanagan DW, Scott JD, Poulson AV
and Snead MP: Clinical characterisation and molecular analysis
of Wagner syndrome. Br J Ophthalmol 91: 655-659, 2007.

138.Naschberger E, Croner RS, Merkel S, et al: Angiostatic immune
reaction in colorectal carcinoma: Impact on survival and
perspectives for antiangiogenic therapy. Int J Cancer 123:
2120-2129, 2008.

1127

139.Riesewijk AM, Blagitko N, Schinzel AA, et al: Evidence
against a major role of PEG1/MEST in Silver-Russell
syndrome. Eur J Hum Genet 6: 114-120, 1998.

140.Lee EJ, Kong G, Lee SH, et al: Profiling of differentially
expressed genes in human uterine leiomyomas. Int J Gynecol
Cancer 15: 146-154,2005.

141.Sjoblom T, Jones S, Wood LD, et al: The consensus coding
sequences of human breast and colorectal cancers. Science 314:
268-274, 2006.

142.Foulon V, Asselberghs S, Geens W, Mannaerts GP, Casteels M
and Van Veldhoven PP: Further studies on the substrate
spectrum of phytanoyl-CoA hydroxylase: implications for
Refsum disease? J Lipid Res 44: 2349-2355,2003.

143.Gad S, Teboul D, Lievre A, et al: Is the gene encoding Chibby
implicated as a tumour suppressor in colorectal cancer? BMC
Cancer 4: 31, 2004.

144.Schuierer MM, Graf E, Takemaru K, Dietmaier W and
Bosserhoff AK: Reduced expression of beta-catenin inhibitor
Chibby in colon carcinoma cell lines. World J Gastroenterol
12: 1529-1535, 2006.

145.Nibbe RK, Markowitz S, Myeroff L, Ewing R and Chance MR:
Discovery and scoring of protein interaction subnetworks
discriminative of late stage human colon cancer. Mol Cell
Proteomics 8: 827-845,2009.

146.Mas VR, Archer KJ, Yanek K, et al: Gene expression patterns
in deceased donor kidneys developing delayed graft function
after kidney transplantation. Transplantation 85: 626-635,
2008.

147.Christensen GL, Ivanov IP, Atkins JF, Campbell B and
Carrell DT: Identification of polymorphisms in the Hrb, GOPC,
and Csnk2a2 genes in two men with globozoospermia. J Androl
27: 11-15,2006.

148. Autieri MV, Carbone C and Mu A: Expression of allograft
inflammatory factor-1 is a marker of activated human vascular
smooth muscle cells and arterial injury. Arterioscler Thromb
Vasc Biol 20: 1737-1744, 2000.

149.Tian Y, Kelemen SE and Autieri MV: Inhibition of AIF-1
expression by constitutive siRNA expression reduces macro-
phage migration, proliferation, and signal transduction initiated
by atherogenic stimuli. Am J Physiol Cell Physiol 290:
C1083-C1091, 2006.

150.Ji Y, Walkowicz MJ, Buiting K, et al: The ancestral gene for
transcribed, low-copy repeats in the Prader-Willi/Angelman
region encodes a large protein implicated in protein trafficking,
which is deficient in mice with neuromuscular and spermiogenic
abnormalities. Hum Mol Genet 8: 533-542, 1999.



