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Abstract. Both de novo and acquired endocrine resistance 
constitute a major therapeutic problem for treatment of 
hormone-positive breast cancer. Multiple explanatory 
mechanisms have been proposed through the study of cellular 
models which focus principally on receptor tyrosine kinase 
mediated signalling pathways utilizing src, PI3K, MAPK 
and Smads. Many of the transducing molecules, particularly 
nuclear transcription factors such as Snail, Twist, Snail2, 
ZEB, FOXC2, TCF/LEF and Goosecoid are participants 
in proliferation as well as invasion and metastasis, involving a 
process of orchestrated cellular remodeling which is being 
likened to the process of epithelial to mesenchymal transition 
that takes place during embryonic development. We review 
the accumulating evidence that points towards the occurrence 
of this phenomenon as a consequence of the loss of endocrine 
control, with both processes being similarly characterized by 
depletion of cell adhesion proteins, E-cadherin, catenins 
and cytokeratins, increased association with the extracellular 
matrix through induction of metalloproteinases, fibronectin and 
collagen, and a switch to a mobile vimentin-based cytoskeletal 
structure with loss of apical basal polarity.
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Introduction

Endocrine therapy represents the most effective form of 
treatment for the majority of breast cancer patients whose 
tumours over-express the estrogen receptor (ER). In addition to 
ablative procedures (ovariectomy) and administration of anti-
endocrine agents to inhibit ovarian function, treatment is reliant 
predominantly upon anti-hormonal agents termed selective 
estrogen modulators (SERMs). Until recent introduction of 
agents such as toremifene and raloxifene, tamoxifen has 
been the mainstay of treatment (1) inducing objective response 
or disease stabilization in over half of previously untreated 
metastatic breast cancer patients with ER+ tumours (2). Further 
options include the use of pure anti-estrogens such as fulvestrant 
(Faslodex) which achieves its effects through receptor degra-
dation, and application of aromatase inhibitors that reduce 
extra-gonadal peripheral estrogen synthesis from the adrenals 
and adipose tissue, including the breast. Both types of agents 
improve relapse-free survival and reduce incidence of contra-
lateral breast cancers in women with early-stage cancer and 
increase overall survival in patients with advanced disease (3,4). 
Unfortunately, following initial response to SERMs and second 
line therapy with aromatase inhibitors, most patients subsequently 
develop resistance to both classes of drugs and become refractive 
to further attempts at endocrine manipulation. Added to the 
de novo resistance in patients whose tumours express levels of 
ER <10 fmol/mg protein, this presents a serious therapeutic 
problem, particularly in view of the increased aggressiveness 
of hormone insensitive breast cancers.

2. Estrogen receptor action

The classical mode of action of ER is related to the regulation 
of expression of genes with estrogen response elements (ERE) 
in their promoters through two distinct transcriptional activation 
domains; a hormone-independent activating function-1 (AF-1) 
located at the N-terminus of the receptor with its function 
regulated by phosphorylation, and the hormone-dependent 
AF-2, in the ligand-binding domain. In general, both domains 
have a synergistic effect in mediating positive gene regulation, 
although AF1 and AF2 can activate some gene promoters 
independently (5,6). Co-regulatory molecules modulate trans-
criptional activity of ER through interaction with the ER-ligand 
complex at the promoter; this activity is specifically enhanced 
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by binding to the AF-2 domain of co-activators such as nuclear-
receptor co-activator 1 (NCoA1 or src1), NCoA2 (TIF2) and 
NCoA3 (AIB1, TRAM1, RAC3 or ACTR) (7,8). Co-activators 
enhance ER-driven transcription by several mechanisms that 
rely on the formation of large complexes including recruitment 
of histone-acetyltransferase at the promoter site. Binding of 
co-activators is inhibited by tamoxifen, causing blockade of 
transcription by AF-2 (9) which would explain its ability to 
function as a dual antagonist/agonist. Tamoxifen blocks the 
transcription of AF-2 dependent genes, while acting as an 
agonist in AF-1-dependent genes (10,11). Interaction with 
co-repressor proteins such as nuclear-receptor co-repressor 1 
and 2, NCoR1 and NcoR2, repress ER-induced transcription 
by recruiting histone-deacetylase complexes (12-15). Microarray 
analysis of gene transcription showed that ~70% of estrogen-
responsive genes, that are either transcriptional repressors 
or anti-proliferative genes, were down-regulated following 
treatment of MCF-7 cells with estradiol while genes involved 
in the induction of cell proliferation were up-regulated (16).

ER can also exert its function via a non-classical genomic 
action that affects gene expression at alternative regulatory 
DNA sequences such as AP-1 and SP-1. This type of interaction 
involves co-operation with other transcription factors which 
include the fos-jun complex (17-19). In addition, membrane 
ER interacts with and/or activates several kinases including the 
insulin-like growth factor-1 receptor (IGF-1R), src, phospha-
tidylinositol 3-kinase (PI3K), mitogen-activated protein kinase 
(MAPK), epidermal growth factor receptor (EGFR) and 
erbB2 (20-26). Co-activators that can modify ER activity 
could also be phosphorylated by these cytoplasmic kinases 
(27-29) which is crucial for the activity of membrane functions 
of ER which probably have little significance in ER+ cells that 
express low levels of tyrosine kinase receptors such as 
members of the EGFR family (30). 

Many interactions between the genomic and non-genomic 
pathways occur within the cellular context including ER 
induction of transforming growth factor α (TGFα) and 
amphiregulin expression (31,32). Both bind and activate EGFR 
leading to activation of MAPK and akt signalling (33) that 
can also be activated via direct interaction with EGFR/erbB2 
heterodimers. In addition, specific G proteins are activated by 
ER binding to caveolin 1 at the cell membrane (34) which in 
turn leads to the activation of src that then activates matrix 
metalloproteinases which cleave transmembrane precursors 
of heparin binding-EGF (HB-EGF), an EGFR ligand (35). 
Estradiol-independent activation of ER through phosphorylation 
by several intracellular kinases has also been demonstrated 
(15,36). In response to several cytokines and growth factors 
such as ligands of EGFR or IGF-1R, pathways including 
MAPK/ERK, PI3K/akt, p90rsk and p38 MAPK are 
activated, leading to ER phosphorylation at key positions in 
the AF-1 (serines 118 and 167 and threonine 311) and other 
domains (27,29,37,38). 

3. Potential mechanisms of endocrine resistance

Better understanding of the pathways underlying intrinsic 
de novo and acquired resistance to endocrine therapy may 
point to novel strategies to overcome this problem and facilitate 
further improvements in breast cancer management.

In addition to possibilities common to the reaction of cells 
to xenobiotics, resistance might arise as a consequence of loss 
of expression or function of ERα, including auto-phosphorylation 
(39), modulation by activation of transmembrane tyrosine 
kinase receptors and interaction between downstream signal 
transduction pathways (40,41). Loss of ER expression is likely 
to be the most frequent mechanism for de novo resistance to 
tamoxifen but is insufficient to explain acquired resistance 
(42). A second ER (ERβ) that is interactive with ERα, but has 
different transcriptional activity, is generally considered to be 
an anti-proliferative factor (43-45) but its role in resistance still 
remains unclear and will not be discussed here. All reference 
in this review to ER should be assumed to mean ERα unless 
otherwise indicated. Fig. 1 lists some of the molecules that 
have been implicated in proliferation of resistant cell lines as 
well as those found to be over-expressed in ER- tumours. 
These are discussed below.

Co-activators and co-repressors. The src family of co- 
activators has a wide spectrum of effectors including nuclear 
receptors and transcription factors that include nuclear 
factor-κB (46) that has been implicated in endocrine resistance. 
Several members of this family, src-1/NCoA-1, src-2/
GRIP1/TIF2/NCoA-2 and AIB1/src-3/RAC3/ACTRp/CIP 
share a common domain structure and functions (8). The role 
of src-1 in the agonistic action of tamoxifen in the uterus is a 
clinically significant example of the specificities of srcs 
which occur only on non-consensus responsive sites (15). 

The other interesting member of the src family is AIB1, 
which is over-expressed in >50% of breast tumours, with gene 
amplification in ~5-10% (48-50). The mouse AIB1 homologue 
src-3 shows tissue-specific expression and is essential for 
normal mammary gland development. The diversity of the 
co-activator family members is also demonstrated by gene 
knockout studies that show a distinct physiological role of 
src-3/AIB1 that is different from that of src-1 (51). In cultured 
MCF-7 cells, AIB1 is also highly up-regulated and reported 
to be necessary for their growth (52). It enhances tamoxifen 
agonistic activity (53) and may have a potential role in endocrine 
resistance. Over-expression and increased phosphorylation 
of A1B1 leads to constitutive ER-mediated transcription, 
which confers resistance in vitro and in xenograft models 
(39,54) and is associated with reduced patient responsiveness 
to tamoxifen (55). It is still unclear how phosphorylation 
activates ER co-activators. Recent studies suggest that it can 
enhance their nuclear sub-localization and interaction with 
ER (56) and may directly increase their own acetyl-transferase 
activity or stimulate their ability to recruit other transcriptional 
co-activators or integrators to the receptor complex (28). 

Another co-activator, PELP1, confers tamoxifen resistance 
in its cytoplasmic localization (57). It functions as a scaffold 
protein that modulates ER activation of src and the Erk 
family kinases. It also promotes estrogen activation of PI3K31. 
Other co-activators found to be implicated in endocrine 
resistance are AP1 and SP1 (58-60). 

The src substrate BCAR1 (also known as CAS) is a focal 
adhesion adaptor protein that activates proliferative, survival 
and invasion pathways and can induce tamoxifen resistance 
when over-expressed in vitro (61). Indeed, BCAR1-over-
expressing breast cancers are less responsive to tamoxifen (62). 
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BCAR1 binds and activates src with consequent phospho
rylation of the src substrates EGFR and signal transducer 
and activator of transcription factor 5B, and effects on down-
stream signalling pathways (63). However, the ability of 
BCAR1 to confer anti-estrogen resistance may not require 
interaction with src. The putative guanine nucleotide-
exchange factor BCAR3, which synergizes with BCAR1 to 
activate src, causes tamoxifen resistance in vitro (64). BCAR3 
also activates rac and p21- activated kinase 1 which is impli
cated in tamoxifen resistance through ER phosphorylation (65).

The recruitment of co-repressors normally involves binding 
of antagonists such as tamoxifen to the ER (7,14). Although 
in vitro tamoxifen resistance is thought to be associated with 
reduced co-repressor levels, no clinical data currently support 
this hypothesis (30). Some studies (66,67) suggest that, at least 
in cultured cells, modulation of the agonist/antagonist activity 
of tamoxifen can be affected by the differential expression 
or activity of co-activators and co-repressors. Progesterone 
and glucocorticoid receptor-mediated transcription that are 
provoked by their own selective receptor modulators can also 
be modified by co-activator/co-repressor ratio (68). This ratio 
was also reported to confer hyper or hyposensitivity to their 
ligands (69) providing a possible explanation for some clinical 
tamoxifen resistance and the tissue-specific actions of SERMs 
(15). 

Tamoxifen metabolism. The metabolism of tamoxifen has 
also been implicated in intrinsic resistance to therapy. Plasma 
concentrations of tamoxifen metabolites can be affected by 
genetic polymorphisms in genes of tamoxifen-metabolizing 
enzymes. In tamoxifen-treated patients, a higher risk of disease 
relapse has been associated with women with selective cyto-
chrome p450 2D6 (CYP2D6) genotypes. Indeed, CYP2D6 
status may be used to identify patients who would benefit 

from tamoxifen therapy and those tamoxifen-treated patients 
who should not be co-administered potent CYP2D6 inhibitors 
(70). 

Kinase activated growth pathways. It is increasingly recognised 
that growth factor stimulated pathways play a central role in 
acquired and intrinsic resistance to endocrine agents (71,72). 
Hiscox et al (73) have shown that tamoxifen resistance in 
MCF-7 cells is associated with elevated expression and 
activation of components of the EGFR signalling pathway 
(EGFR, erbB2, TGFα, MAPK). The same authors noted that 
this change was accompanied by enhanced cell motility and 
matrix invasion. Cross-talk between the pathways adds to the 
already existing complexity of resistance. Some models have 
predicted that increased signalling through growth factor 
receptor pathways could promote the ER pathway, which 
would itself re-activate growth factor signalling leading to 
further transcriptional activation of estrogen-responsive genes 
and enhanced cross-talk. The effect of tamoxifen in inhibiting 
cell growth might itself be inhibited through the actions of 
increased growth factor signalling which would contribute to 
endocrine resistance. This mechanism has important clinical 
implications as many tyrosine kinase inhibitors used in 
erbB2-targeted therapy such as trastuzumab and the EGFR 
tyrosine kinase inhibitor, gefitinib, might be useful agents to 
prevent tamoxifen resistance (73). Erlotinib (Tarceva) and 
imatinib (Gleevec) that also preferentially target EGFR have 
been therapeutically effective in treating several malignancies 
including small cell lung and pancreatic cancers. ER interacting 
with several kinases, including that of IGF-1R and the p85 
regulatory subunit of PI3K via adaptor proteins, src and 
Shc, result in different cell survival and proliferative signals 
via the akt and MAPK pathways. 

EGFR/erbB2 activated pathways. Some studies suggest 
that ER expression and/or function could also be reduced by the 
activation of growth factor signalling. For example, MCF-7 
cells treated with EGF, IGF-I, TGFβ or phorbol myristate 
acetate had lowered ER mRNA and protein (74-77) and 
increased signalling through EGFR, PI3K/akt, PKA and 
PKC. 

The transcriptional activity of ER has been shown to be 
repressed by heregulin which can activate both EGFR and 
erbB2 through formation of heterodimers with either erbB-3 
or erbB-4 (78,79). Transfection of constitutively active erbB2, 
raf1 or MEK results in significant reduction in expression of 
ER mRNA and protein and estrogen-regulated genes, resulting 
in development of estrogen independence (80-83). Cumulatively, 
these data suggest that growth factor signalling contributes to 
transcriptional repression of ER expression in breast cancer 
cells, resulting in endocrine resistance. A 5-10-fold increase 
in mRNA and protein expression of erbB2 and EGFR has 
been noted in tamoxifen resistant MCF-7 cells (84). erbB2 is 
frequently over-expressed in 20-30% of breast cancers and is 
associated with a more aggressive phenotype (85). Furthermore, 
this increased expression also appears to activate EGFR/
erbB2 heterodimers and to cause increased phosphorylation 
of MAPK, akt and nuclear ER on serine residues 118 and 
167 (86-89). EGFR/erbB2 signalling was reported to be 
involved in cellular models with acquired tamoxifen resistance 
(72) and its inhibition by gefitinib or trastuzumab resulted in 

Figure 1. Groups of molecules whose activity is related to tamoxifen resistance 
or found to be over-expressed in ER- tumours. Note the considerable overlap 
with molecules reported to be involved in EMT.
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growth suppression of these cells (90). Furthermore, the 
addition of EGF-like peptides increased phosphorylation 
levels of ER and ER-induced transcription which was blocked 
by treatment with gefitinib. Increased synthesis of TGFα and 
amphiregulin that maintains the EGFR/erbB2 autocrine loop 
operating in tamoxifen-resistant cells was a result of this 
enhanced transcriptional activity of ER (87). Adapted 
resistance to fulvestrant in MCF-7 cells was also correlated 
with increased EGFR signalling (91). However, fulvestrant 
resistance to aromatase inhibitors can also be mediated by 
up-regulation of the erbB2/HER2 pathway (42). Patients 
presenting with acquired resistance to tamoxifen showed 
increased levels of erbB2 and increased activation of 
p38-MAPK (92) which was only observed in MCF-7 xenografts 
subjected to combined estrogen deprivation and tamoxifen, 
but not with estrogen deprivation alone. In addition, a phase-II 
clinical trial on tamoxifen-resistant advanced breast cancer 
patients treated with gefitinib showed beneficial effects of 
anti-EGFR agents (93). Increased levels of EGFR and MAPK 
activity was also associated with the acquired endocrine 
resistance of long-term tamoxifen treated MCF-7 cells (94). 

The X-linked tumour suppressor forkhead box P3 and the 
zinc finger transcription factor GATA4 can repress erbB2 
expression, even in a cell line with ~10-fold amplification of 
erbB2, and their expression is negatively correlated with 
erbB2 expression in breast cancer (95,96). In addition, 
ER-mediated repression of erbB2 was reported to be dependent 
on competition between the paired-domain transcription 
factor PAX2 and the ER co-activator NCOA3 for binding and 
regulation of erbB2 transcription and, in turn, tamoxifen 
responsiveness (97). However, increased PAX2 expression and 
consequent repression of erbB2 was associated with increased 
survival following tamoxifen treatment, and loss of PAX2 
expression in the presence of increased NCOA3 expression 
predicted a poor outcome (97), indicating that this mechanism 
is of direct clinical relevance. 

High levels of AIB1 can greatly reduce the antagonist 
effects of tamoxifen in tumours that over-express growth 
factor receptors such as erbB2. A1B1 is phosphorylated and 
activated by several signalling kinases, including p42/44 MAPK 
that can be activated by erbB2 itself hence forming a link 
between erbB2 and A1B1 in breast cancer progression (28). 
This suggests that relatively high levels of co-activators such 
as A1B1 can cause a lower response to tamoxifen therapy in 
tumours expressing them caused by the increased estrogen 
agonistic activity of the tamoxifen-bound ER (98). It was also 
reported that following treatment of the erbB2-over-
expressing MCF-7/HER2-18 cells with tamoxifen, co-activators 
such as AIB1 were recruited to the ER-tamoxifen complex 
more than co-repressors. In these cells, tamoxifen tends to act 
as an agonist in the presence of low levels of estrogen. EGFR/
erbB2 signalling is also activated promoting the activation 
of both MAPK and akt signal transduction pathways (26) 
which would phosphorylate and functionally activate both ER 
and AIB1. These phenomena can be blocked by treatment 
with gefitinib and often result in inhibition of cell growth, 
suggesting the possible involvement of EGFR/erbB2 
signalling in the growth-promoting activity of tamoxifen in 
these cells. Interestingly, gefitinib had little effect on estrogen-
induced growth which is consistent with clinical observations 

indicating that co-expressing erbB2 and AIB1 results in a 
poor outcome if associated with tamoxifen treatment (55). 
Furthermore, patients that express either erbB2 or EGFR 
are relatively resistant to tamoxifen but are sensitive to 
aromatase inhibitors (99,100). A shorter disease-free survival 
in patients presenting with high levels of A1B1 was observed 
after tamoxifen administration as an adjuvant treatment (55). 
On the other hand, untreated patients presenting with high 
levels of A1B1 had a better outcome (30). 

IGF-1R signalling is also involved in tamoxifen-resistant 
cells, with IGF-II induced increase of IGF-1R phosphorylation 
and subsequent EGFR activation (101,102). Tamoxifen treatment 
of MCF7 cells reduces both total and activated IGF-IR. A 
specific IGF-1R inhibitor, as well as an IGF-II neutralising 
antibody, can not only reduce ER phosphorylation and tumour 
proliferation but also affect EGFR signalling events; but EGF 
mediated actions are not blocked. Although unclear in breast 
cells, in some tumours IGF-1R can induce metalloproteinase-
dependent release of heparin-EGF and amphiregulin to 
transactivate EGFR. 

De-regulation of erbB2, EGFR and IGF-1R pathways 
could occur as a result of genetic or epigenetic modifications, 
such as amplification of erbB2, activating mutations in 
PIK3CA, which encodes a catalytic subunit of type I PI3Ks, 
and loss of heterozygosity or methylation of PTEN, a tumour 
suppressor that inhibits the PI3K pathway (63). In other cases, 
this de-regulation reflects aberrations in upstream regulators, 
such as the activation of akt in association with the loss of 
PTEN expression or over-expression of erbB2 (63,103) and 
activation of IGF-1R and erbB3 following the loss of PTEN 
(104). 

PI3K cell survival pathway. Non-genomic activity of ER 
may be influenced by the PI3K pathway that is activated by 
growth factor induced tyrosine kinase receptor phosphorylation. 
ER displays ligand-dependent binding to the p85a regulatory 
subunit of PI3K, resulting in the activation of akt which 
increases cellular proliferation and decreases apoptotic responses 
(105,106) and which is the target of several other receptor 
stimulated pathways through IGF-1R, EGFR and erbB2 (107). 
PI3K also causes ER phosphorylation at serine-167 by akt 
activation resulting in ligand-independent activation (29). In 
one study, it was shown that addition of the PI3K pathway 
inhibitor LY294002 enhanced the pro-apoptotic effects of 
tamoxifen, primarily in the cell line with the maximum endo
genous levels of akt activity (106). MCF-7 cells transfected 
with akt show a reduction in tamoxifen induced inhibition of 
cell growth (29), supporting the notion that high expression of 
akt is associated with tamoxifen resistance.

Stress-activated protein kinase/c-junNH2 terminal kinase 
pathway. ER can interact with the stress-activated protein 
kinase/c-junNH2 terminal kinase pathway either by binding 
with the AP-1 transcription complex, by dimerization of jun 
and fos family members that bind to AP-1 response elements 
on DNA (108), or by direct p38 MAPK activation. AP-1 
transcriptional activity is enhanced by increased abundance 
of any of its components or by the jun NH2-terminal kinases 
(JNKs) or stress-activated protein kinases that are induced by 
cellular insults such as oxidative stress (109). One study 
reported that increased AP-1 DNA binding is associated with 
the development of tamoxifen resistance in MCF-7 (110). This 
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was also reported in a study of 30 primary human breast 
tumours with acquired tamoxifen resistance, compared with 27 
untreated controls (58). The agonistic effects of tamoxifen at 
AP-1 sites can also be induced by tamoxifen induction of 
intracellular oxidative stress that leads to the activation of 
JNK and increased AP-1 activity (59,111). New and Han (112) 
showed that activation of the p38 MAPK pathway, that targets 
further protein kinases and transcription factors, occurred in 
response to various extracellular stimuli including cytokines, 
growth factors, chemical and physical stress. Other studies 
showed that 4-hydroxytamoxifen resistant cell lines displayed 
a non-active p38 signalling that was directly related to apoptosis 
inhibition (113,114). 

Keratinocyte growth factor pathways. It has been suggested 
that keratinocyte growth factors (KGFs) are important 
regulatory factors acting as estromedins for the stimulation of 
breast cancer cell growth. KGF also stimulates aromatase 
activity, promoting conversion of androgens to estrogens in 
primary cultured human breast cells. KGF might increase 
endocrine resistance via reduction in ER, PR and PTPγ as 
well. The functional analysis of KGF-13 suggests possible 
applications of short receptor-binding peptides derived from 
intact KGF as therapeutic agents (115).

Notch pathway. The Notch pathway is implicated in 
both cell fate in the normal human mammary gland (116) and 
regulation of cancer stem cells (CSCs) in both ductal carcinoma 
in situ (117) and invasive carcinoma of the breast (118,119). 
Luminal type breast cancers express low levels of Notch 
and erbB2 but high levels of ER compared to basal types, 
which show the opposite pattern (120). Estrogen signalling 
down-regulates the Notch pathway; estradiol-induced 
reduction of Notch 1 and 4 in both T47D and MCF7 cells 
which could be abrogated by either tamoxifen or fulvestrant 
(120). In a mouse xenotransplantation assay using BT474 
cells, tumours were treated with tamoxifen alone or in 
combination with a γ secretase inhibitor (121). Combination 
therapy was significantly superior to the use of tamoxifen 
alone and the authors concluded that tamoxifen antagonism of 
the estrogen stimulus leads to the re-activation of the Notch 
signalling pathway promoting proliferation and survival. 

Cell cycle regulators. Data from experimental model systems 
indicate that anti-estrogens are both cytostatic and cytotoxic. 
Neoadjuvant endocrine therapy leads to decreased cell 
proliferation (122), and in cell culture anti-estrogen treatment 
leads to a G1 specific cell cycle arrest and a consequent reduction 
in growth rate (123). The molecules involved in the anti-
estrogenic effects on cell cycle progression have central roles 
in the control of G1 phase progression downstream of other 
growth factors, as well as estrogen. Aberrant expression of 
several such estrogen and anti-estrogen targets confers resistance 
in vitro and is associated with reduced tamoxifen responsiveness 
in patients. Over-expression of myc, cyclin E1, D1 or its 
splice variant D1b, or the inactivation of the Rb tumour 
suppressor, an important substrate for cyclin-dependent 
kinases (CDKs) that are active in G1 phase, and the decreased 
expression of the CDK inhibitors p21 or p27, results in 
decreased anti-estrogen sensitivity in vitro (124-132). The 
over-expression of myc and consequent tamoxifen resistance 
is accompanied by transcriptional repression of CDKN1A 

(133), relieving the inhibitory effect of p21 on cyclin 
E1-CDK2 complexes. Cyclin D1 over-expression leads to an 
increased abundance of cyclin D1-CDK4 complexes which 
indirectly activate cyclin E1-CDK2 by sequestering p21 and 
p27 (126,134), and to the activation of cyclin E2-CDK2 by 
increased transcription of CCNE2 which encodes cyclin E2 
(135). In addition to its cell cycle regulatory role, cyclin D1 
interacts with several transcription factors, including ER and 
STAT3 (136). Moreover, tamoxifen induces cyclin D1 binding 
to ER at the expense of cyclin D1-STAT3 binding, activating 
both STAT3 and ER. This is an additional mechanism by 
which cyclin D1 over-expression can affect tumour response 
to tamoxifen (137). Therefore, myc and cyclin D1 over-
expression can potentially affect anti-estrogen sensitivity at 
several levels and this is associated with tamoxifen resistance 
in patients (138,139). There is also more limited evidence for a 
relationship between over-expression of cyclin E1, Rb inacti
vation and reduced expression of p27 and clinical response 
(130,138-140). Over-expression of myc, cyclin D1 and cyclin 
E1 in breast cancers is at least two to three times more 
common than amplification of the corresponding genes (138). 
Rb inactivation is also more common than its deletion or 
mutation (130) possibly due to activation of upstream mitogenic 
signalling pathways and de-regulation of transcriptional 
regulators including members of the E2f family. The gene 
encoding p27, CDKN1B, is rarely mutated or deleted in breast 
cancer, but its expression is frequently reduced by oncogenic 
activation of mitogenic signalling (for example by erbB2 
over-expression or src activation) with increased degradation 
(140). 

The microRNAs (miRNAs) miR-221 and miR-222 reduce 
p27 expression and confer resistance to tamoxifen, although 
the precise mechanism is unclear, as these miRNAs also 
reduce ER expression and are over-expressed in erbB2-over-
expressing breast cancer (141,142). There is conflicting data 
on the relationship between p21 expression and outcome in 
breast cancer (138). The role of p21 in tamoxifen response has 
not been studied extensively, although the erbB2 repressor 
forkhead box P3 is essential for p21 expression (143) and there 
is some evidence for p21 de-regulation in cancers with erbB2 
over-expression or akt activation (139). The latter results in 
the mis-localization of p21 to the cytoplasm, a phenomenon 
associated with poor response to tamoxifen (144). 

Targeting CDK10 also causes resistance to tamoxifen 
and other endocrine agents in vitro. Iorns et al (145) observed 
that CDK10 silencing increased ETS2-driven transcription 
of c-raf. This led to MAPK pathway activation and loss of 
tumour cell dependency on estrogen signalling suggesting 
that CDK10 could be an important determinant of endocrine 
resistance. Furthermore, patients with ER+ tumours that 
expressed low levels of CDK10 were associated with poor 
clinical response to tamoxifen. 

Apoptosis. Treatment with high concentrations of anti-estrogens, 
estrogen withdrawal or aromatase inhibitor treatment of cells 
transfected with aromatase leads to the activation of the cellular 
stress response and apoptosis in breast cancer cells (146,147). 
The mechanisms are not well defined, but several molecular 
consequences that promote apoptosis have been documented, 
including regulation of bcl-2 family members and increases 
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in the apoptotic second messenger ceramide. Cross-talk 
between the apoptotic effects of anti-estrogens and the tumour 
necrosis factor (TNF) pathway, as well as anti-estrogen effects 
on survival signalling through the PI3K-akt, NF-κB and 
interferon pathways is also likely to contribute to anti-estrogen-
mediated apoptosis (148). Other observations indicate that 
autophagy is a mechanism of cell survival in breast cancer 
cells that are resistant to apoptotic concentrations of tamoxifen 
(149). 

It has been difficult to establish the role of apoptosis in the 
clinical setting. Neoadjuvant studies have yielded conflicting 
data and have been limited by small patient numbers and 
the methodological difficulties of measuring apoptosis in vivo 
(150). As tumour growth reflects the balance between cell 
proliferation and cell death, disruption of this balance is expected 
to affect clinical response. There is accumulating evidence 
for the increased expression of anti-apoptotic molecules, for 
example bcl-2 and bclXL, and decreased expression of 
pro-apoptotic molecules such as BAK, BIK and caspase 9, in 
attenuated responses to tamoxifen (148). Although many of 
these responses are probably consequences of the activation of 
survival signalling through the PI3K-akt pathway, as a result 
of over-expression of receptor tyrosine kinases and increased 
‘non-genomic’ signalling from cytoplasmic ER, other pathways 
have been reported. For example, increased DNA-binding and 
transcriptional activity of NF-κB are features of tamoxifen-
resistant cells, and tamoxifen sensitivity can be restored by 
parthenolide, a specific NF-κB inhibitor (60,148). Tamoxifen 
insensitivity in vitro is also associated with the down-regulation 
of IRF1, an interferon-responsive putative tumour suppressor 
that binds NF-κB and is essential for apoptosis. Furthermore, 
over-expression of a splice variant of human X-box-binding 
protein 1, a transcription factor that controls the unfolded 
protein response, is also associated with tamoxifen resistance 
in  vitro and poor survival in patients with breast cancer 
treated with tamoxifen (151-153). Correlation of NF-κB, XBP1 
and IRF1 expression in patients with breast cancer (154) 
suggests that these molecules may function in a common 
pathway (155). Fig. 2 illustrates the involvement of some of 
the signalling pathways that have been described in the preceding 
sections. 

4. Epithelial to mesenchymal transition

At the leading edge of invasiveness and metastasis, solid 
tumours that are epithelial in origin, start to lose their charac-
teristic cell-cell adhesive structures, change their polarities 
and undergo extensive re-organization of their cytoskeletal 
systems. They switch expression from keratin-to-vimentin 
type intermediate filaments, become isolated, motile, and 
resistant to anoikis with enhanced survival. They gain resistance 
to cytotoxic drugs and acquire the ability to invade neighbouring 
tissue and penetrate into the vasculature to metastasize. 
This has been reported with non-small cell lung carcinomas, 
pancreatic, colorectal, and hepatocellular cancers (156). This 
type of behaviour is identified with cells undergoing epithelial-
to-mesenchymal transition (EMT) (157), a phenomenon that 
was originally defined as the cellular remodelling that occurs 
during heart morphogenesis and was first observed and recorded 
by Greenburg and Hay (158). It is seen as a series of changes 

from characteristic cobblestone-like epithelial morphology to 
a spindle, fibroblast-like shape with migratory protrusions. 
Carcinomas of epithelial origin may acquire a mesenchymal-
like state in order to facilitate their migration and invasion. This 
is illustrated in Fig. 3 showing that the morphological and 
behavioural changes are accompanied by a distinct change in 
the gene expression profile. When the migrating metastatic cells 
reach their secondary site of carcinogenesis, presumably in order 
to survive in the local milieu, the cancer cells revert to their 
epithelial state to form organized tumourigenic nodules, a reverse 
process referred to as epithelial to mesenchymal transition 
(MET). During EMT and MET, a bimodal communication 
exists between the host fibroblasts, extracellular matrix/basement 
membranes, and the immune cells.

Although evidence supporting the occurrence of EMT is 
slowly growing from in vitro data such as the pathway blockade 
by agents like NFκβ and SMADs (159,160), it seems to have 
gone largely unnoticed during routine histological examination 
of tissue biopsies. This has led to much scepticism among 
some pathologists about whether this process actually occurs 
in vivo (161-163) or is just an in vitro phenomenon resulting from 
manipulation of cells in an artificial environment. Nevertheless, 
the accumulating molecular evidence is presenting a strong 
argument for closer cytological as well as molecular examination 
of the process of metastasis. 

Genes that are activated in EMT during carcinoma progres-
sion and metastasis are also active in early embryogenesis, 
tissue morphogenesis, and wound healing, suggesting that 
EMT involves a re-activation of these developmental events 
during tumour progression. This process of de-differentiation 
is carried out through a series of transcriptional re-programming 
steps involving the participation of a number of transcription 
factors such as ZEB1/TCF8, Snail, ZEB2, Snail2, E12/E47, 
FOXC2, Goosecoid and Twist (164). This is followed by 
the activation of abnormal survival signals via receptors such 
as platelet derived growth factor receptor (PDGFR), fibroblast 
growth factor receptor (FGFR), cMET, transforming growth 
factor β receptor (TGFβR), IGF-IR, human growth factor 
receptor (HGFR) and EGFR and regulatory kinases such as 
PI3K, akt and mTOR. 

The evidence for EMT-associated tumour motility is 
supported by network signalling pathways mediated by 
fluctuating levels of TGFβ, EGF, PDGF, ERK/MAPK, 
β-catenin, Smads, ras, c-fos, integrins β4 and α5, and 
most importantly the dissolution of cell-cell junctions mediated 
by Snail, Snail2 and E2a transcription factors (165). 

The actual triggers of EMT in breast cancer are not yet 
known. MCF10A cells, an immortalised line derived from 
spontaneous transformation of normal epithelial cells obtained 
from reduction mamoplasty, have been seen to undergo EMT 
in response to multiple factors including a combined expression 
of H-ras and erbB2 in 3D marginal culture, undergoing 
monolayer wounding enhanced by EGF and IGF-IR over-
expression, introduction of constitutively active p65 subunit 
of NF-κB, chronic exposure to TNF-α and expression of Rb 
suppressor associated protein 46 (RbAp46/RbBP7) (166,167). 

Molecular profiling of ‘triple-negative’ (ER-, PR-, erbB2-) 
metaplastic breast tumours indicates an enrichment of stem 
cell-like and EMT markers (168). Data from c-myc initiated 
murine tumours indicate that whilst EMT may not be an 
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absolute necessity for tumour progression/metastasis, there is 
clear morphological evidence for involvement of EMT in the 
process (169). By following ‘genetically tagged’ stromal and 
mammary epithelial cells, these authors concluded that 
stromal fibroblasts associated with myc-induced tumours 
were of epithelial origin. Many of these cells had switched 
from cytokeratin and E-cadherin expression to vimentin and 
fibronectin. It is also reported that EMT markers are present 
in the tumour-host interface in colorectal cancers (170), but 
not in the bulk tumour providing strong evidence of EMT 
involvement in regulating invasiveness and tumour aggres
siveness. 

Cell adhesion molecules. A defining feature of EMT is the 
loss of the homotypic cell adhesion molecule E-cadherin and 
the occludins (171,172) which together with other proteins 
such as the claudins and tight junction proteins are an integral 
component of epithelial cell adherens junctions that form 
the cohesive architecture of normal epithelia. Indeed, the 
loss of E-cadherin function is believed to play a pivotal role in 
the transition of breast tumours from a benign to an invasive 
state. Reduction of E-cadherin expression correlates with poor 
differentiation, invasiveness, aggressive metastatic behaviour, 
and an unfavourable prognosis (173-175). The importance of 
E-cadherin in the maintenance of normal tissue architecture and 

Figure 2. Pathways postulated to be involved in growth of endocrine-resistant cells as discussed and referenced in the text. Cross-talk between membrane bound 
ER and receptor tyrosine kinases is thought to elicit downstream transcriptional complexes at target gene promoter sites including those with A1B1 and NCoA1 
which result in ligand independent ER and or tamoxifen agonist activity leading to increased cell cycle regulators and decrease in apoptotic mediators.

Figure 3. Epithelial to mesenchymal transition. Morphological changes initiated through a series of cell signalling events lead to loss of epithelial apical basal 
polarity, detachment from the tumour and a remodelling of the cellular architecture allowing individual cells to gain motility and adopt a molecular phenotype 
resembling that of mesenchymal cells. Examples of the most commonly reported genes found to be over-expressed in the two types of cells is shown above 
each structure. 



Al Saleh et al:  Endocrine resistance and epithelial to mesenchymal transition1204

epithelial cell behaviour is reflected in the distinct mechanisms 
that converge to compromise its expression and function in 
breast cancer (171). Although inactivating mutations and the 
subsequent loss of heterozygosity at the E-cadherin CDH1 
gene locus are important mechanisms for permanently silencing 
E-cadherin expression in many lobular breast cancers (175), 
EMT and metastatic progression are mostly associated with 
a reversible down-regulation of E-cadherin expression at 
the transcriptional level (176). This arises either through 
hypermethylation of the CDH1 promoter or transcriptional 
repression. Indeed, ductal breast cancers show heterogeneous 
loss of E-cadherin expression consistent with the notion that 
the tissue microenvironment at the invasive front may transiently 
down-regulate E-cadherin transcription (175). Consistent with 
the function of E-cadherin as a breast cancer invasion suppressor, 
experimental knockdown of E-cadherin is sufficient to confer 
metastatic ability (174). Conversely, exogenous E-cadherin 
inhibits the migration and extracellular matrix (ECM) invasion 
of metastatic breast cancer cells, although E-cadherin expression 
by itself is insufficient to completely reverse the mesenchymal 
phenotype (177-179). The consequences of E-cadherin loss for 
EMT are far reaching and reflect its dual roles in cell adhesion 
and signalling. First, E-cadherin loss causes the disassembly 
of inter-cellular adhesion complexes, thus loosening contacts 
between neighbouring epithelial cells and disrupting the 
overall tissue architecture. Second, the physical absence of 
E-cadherin serves to dissipate E-cadherin-mediated tethering 
of β-catenin to the cell membrane, thus permitting activation 
of wnt signalling (174). Furthermore, E-cadherin loss sets 
into motion multiple downstream transcriptional pathways 
leading to EMT and the induction of its own transcriptional 
repressors, Snail Twist and ZEB1 (EF1), in a feed-forward 
loop that sustains E-cadherin repression and potentiates EMT 
(174). 

Up-regulation of Snail, associated with reduced E-cadherin 
gene expression (180), is a consistent feature of high grade 
ductal carcinomas (181) and implicated in tumour recurrence 
(182). Twist expression has been observed in breast tumour 
metastases and correlated with nodal involvement (178,183). 
Snail2 likewise has been associated with disease aggres
siveness in metastatic breast carcinoma (184). Loss of 
E-cadherin was also reported to be associated with the loss of 
cytokeratins CK8, 18 and 19 (179). Down-regulation of 
E-cadherin during EMT is often associated with a process 
known as ‘cadherin switching’ (185) which involves the 
induction of non-epithelial cadherins (e.g., N-cadherin and/or 
cadherin-11) (171,179,186) typically found in mesenchymal 
cells. Snail, ZEB2/SIP1 and Snail2, can induce N-cadherin 
(and cadherin-11) expression during EMT, implicating it in the 
transcriptional re-programming of de-differentiating epithelial 
cells (179,187,188). N-cadherin is highly expressed in 
invasive and metastatic human breast cancer cell lines and 
tumours and correlates with aggressive clinical behaviour. 
However, N-cadherin ectopic expression also promotes 
motility, invasion and metastasis in E-cadherin-positive breast 
cancer cells (189) possibly in synergy with FGF2 (190) without 
impacting on their epithelial phenotype, suggesting that the 
malignant functions of N-cadherin are dominant over 
E-cadherin and pointing to EMT-independent routes to 
metastasis. Interestingly, the association of cadherin switching, 

in ER-targeting shRNA transfected MCF-7 cells, with 
increased motility reflected by membrane ruffling and F-actin 
rearrangement suggests that the loss of cellular adhesion 
molecules following acquisition of endocrine resistance is a 
major factor influencing the cells to move and invade into the 
surrounding tissues (191). The general role of cadherins has 
been extensively reviewed by Berx and van Roy (192). 

Besides E-cadherin loss, the integrity of adherens junctions 
may be compromised through down-regulation of the catenins, 
which are mainly localized within the normal epithelia as 
complexes contributing to inter-cellular adhesion by means of 
molecular bridges linking E-cadherin to the actin cytoskeleton. 
There is evidence for involvement of β-catenin-mediated gene 
transcription and establishment of EMT (193). EGFR modulation 
of β-catenin (tyrosine) phosphorylation was a feature of 
tamoxifen resistant breast cancer cells, accompanied by loss 
of association between β-catenin and E-cadherin, increased 
β-catenin and elevated transcription of its target genes implicated 
in tumour progression and EMT (194). Components of tight 
junctions and desmosomes such as claudins, occludins, 
desmogleins and desmocollins, as well as epithelial cell polarity 
genes, are co-ordinately down-regulated during different 
EMT programs, contributing to the disbanding of inter-cellular 
contacts and the loss of apicobasal polarity (188,195). 

Cytoskeletal proteins. Vimentin is a component of type III 
intermediate filaments and the archetypal mesenchymal 
marker most commonly used to categorize EMT (196) but it 
should be used in conjunction with other markers, as it has 
been noted that epithelial cell lines can also begin to express 
vimentin as part of the adaptation to in vitro culture conditions 
(197). Nevertheless, elevated vimentin expression correlates 
well with increased cell migration, invasion and EMT induction 
in several breast cancer cell lines (198,199). It is co-ordinately 
regulated together with other mesenchymal markers, such 
as the ECM molecule tenascin C (200,201), whose expression 
in human breast carcinomas correlates positively with over-
expression of erbB2 and down-regulation of ER. Although the 
mechanisms underlying E-cadherin down-regulation are fairly 
well documented, the molecular events triggering vimentin 
expression during EMT are less well delineated. That vimentin 
expression is a late event in EMT points to a temporal sequence 
of genetic events in which loss of epithelial features directly 
precedes and leads to up-regulation of mesenchymal genes 
(201). Direct activation of vimentin expression in human 
breast tumour cells (198) by β-catenin/T-cell factor/lymphocyte 
enhancer factor-1, is consistent with the activation of β-catenin 
as a downstream event ensuing from loss of E-cadherin. The 
indirect promotion of vimentin expression by ZEB2/SIP1 during 
EMT in a β-catenin-independent manner (202), suggests the 
existence of as yet unknown transactivators driving EMT 
associated vimentin expression. 

The appearance of another mesenchymal marker, FSP1/
S100A4, is considered an important early event in the pathway 
leading to EMT, and its altered expression levels correlate 
with breast cancer progression. As a mesenchymal/EMT marker 
in a murine model of breast cancer FSP1/S100A4 has provided 
valuable in vivo evidence implicating EMT in the onset of 
metastasis (171) facilitated through the activation of matrix 
metalloproteinases (MMPs) such as MMP9 or SPARC (179).
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Matrix metalloproteinases. A family of more than 28 members, 
matrix metalloproteinases are up-regulated in nearly every 
tumour type and are intimately involved in cancer progression 
through cleavage and release of bioactive molecules that inhibit 
apoptosis and stimulate invasion, as well as through degradation 
of extracellular matrix (ECM) components that promote 
tumour cell growth. Cells treated with MMP-3 showed increased 
expression of the activated splice variant Rac1b, stimulating 
elevation of the levels of cellular reactive oxygen species, which 
in turn were responsible for increased expression of Snail 
and induction of EMT (203). 

Lipocalin2 (Lcn2) is a member of a family of small extra-
cellular proteins that play important roles in cell regulation, 
proliferation, and differentiation and is an MMP-9 associated 
protein. Yang et al (204) observed that Lcn2 was over-
expressed in human breast cancer cells and found to up-regulate 
mesenchymal markers, including vimentin and fibronectin, 
down-regulate E-cadherin, and significantly increase cell 
motility and invasiveness in previously non-invasive MCF-7 
cells. They found that siRNA-mediated Lcn2 silencing in 
aggressive breast cancer cells inhibited cell migration and 
development of the mesenchymal phenotype. Reduced 
expression of ERα and increased expression of the key EMT 
transcription factor SNAIL2, were observed with Lcn2 
expression. Over-expression of ERα in Lcn-2 expressing cells 
reversed the EMT and reduced SNAIL2 expression, suggesting 
that ERα negatively regulates Lcn2-induced EMT. 

Transcription factors. Kruppel-like factor 8 (KLF8) was initially 
identified as a transcriptional repressor of kruppel-like C2H2 
zinc-finger transcription factor family proteins. It was reported 
as a potent inducer of EMT and epithelial cell invasion, and a 
novel repressor of E-cadherin in epithelial cells (205). Its 
up-regulation is associated with the loss of E-cadherin expression 
in breast carcinoma cells and their consequent invasiveness. 
Their data showed that KLF8 was up-regulated in 50% of 
E-cadherin-ve metastatic breast tumours, promoting cell 
motility, possibly by a mechanism secondary to its repression 
of E-cadherin. Alternatively, its effect may be due to direct 
regulation of other proteins that are critical to cell migration.

The ZEB family of zinc finger transcription factors have 
established functions in normal embryonic development. 
Recently, their association with EMT has led to investigations 
on their potential role in malignancy. ZEB1 up-regulation 
correlates closely with epithelial de-differentiation in both 
invasive ductal and undifferentiated lobular breast tumours. 
E-cadherin and other epithelial differentiation markers could 
be re-expressed by the induced down-regulation of δEF1/
ZEB1 (downstream of Snail expression) (206) in breast cancer 
cell lines (207-209). Intriguingly, ZEB1 is also highly expressed 
in tumour-associated stromal cells, and there is speculation as 
to whether these mesenchymal cells are derived from 
tumour cells undergoing ZEB1-directed EMT (195). ZEB1 
and ZEB2 bind to the E-box elements in the E-cadherin 
promoter causing transcriptional repression and EMT activation 
(197,198). 

Several interconnected signal transduction pathways and 
a number of extracellular signalling molecules have been 
implicated in the regulation of EMT-like processes during breast 
cancer progression (210,211). Thus, EMT can be induced in 

breast cancer cell lines in vitro by extraneously added cytokines 
[e.g., tumour necrosis factor-α (TNF-α)] and growth factors 
(e.g., TGF-β, PDGF, HGF and FGF) through their respective 
cell surface receptors, leading to the activation of intracellular 
effectors such as ras and other small GTPases, src, NF-κB, 
SMADs, β-catenin and integrins. EMT can also be induced 
by alterations in components of the ECM and in response to 
ECM remodelling by secreted MMPs (210,211). All these 
instances highlight the importance of the tumour microenviron-
ment in initiating EMT. 

Intracellularly, the pathways include the basic helix-loop-
helix transcription factor Twist, Snail1 and Snail2, the 
zinc-finger homeobox repressors ZEB1 and ZEB2/SIP1, 
Goosecoid, and FOXC2. The activities of these EMT 
inducing transcription factors mostly converge in the trans
criptional repression of E-cadherin, culminating in the 
suppression of the epithelial phenotype with concomitant 
upregulation of mesenchymal traits (210,211). 

Many studies have demonstrated the upregulation of 
EMT-inducing transcription factors during breast cancer 
progression and accorded their prognostic significance 
(172,178,210). High levels of Twist expression are associated 
with invasive lobular carcinomas (178), which originate from 
the epithelial cells of the milk-secreting lobular alveoli. EGF 
was reported to reduce E-cadherin expression and increase 
mesenchymal markers such as Twist. Forced expression of 
EGFR in deficient cells reactivates Twist expression but is 
suppressed by EGFR and Janus-activated kinase (JAK)/signal 
transducer and activator of transcription 3 (STAT3) inhibitors. 
Twist expression is not significantly inhibited by kinases 
and signal transducers that target PI3K and MEK/ERK. 
Furthermore, Twist promoter is significantly activated by 
constitutively active STAT3 but is suppressed by the JAK/
STAT3 inhibitor and dominant-negative STAT3. A 26-bp 
promoter region that contains putative STAT3 elements was 
also found to be required for the EGF-responsiveness of the 
Twist promoter. Chromatin immunoprecipitation assays 
showed that Twist promoter binding to the nuclear STAT3 
is induced by EGF. An immunohistochemical study of 130 
primary breast carcinomas showed parallel associations between 
non-nuclear EGFR and Twist and between phosphorylated 
STAT3 and Twist (212,213). 

Goosecoid is another EMT-inducing transcription factor 
whose expression is significantly associated with ductal type 
breast tumours (214). It is known to initiate cell migration 
from the vertebrate Spemann organiser and its ectopic expression 
in breast cancer cells can lead to invasion associated events; 
down-regulation of E-cadherin, α-catenin and γ-catenin proteins, 
concordant with the apparent loss of adherens junctions, 
up-regulation of N-cadherin and vimentin, scattered distribution 
in culture, spindle-like morphology and increased cellular 
motility (214,215). Twist and Goosecoid induce FOXC2, 
a transcription factor of the FOX family of forkhead helix-
turn-helix DNA binding proteins involved in EMT and organ 
development in many tissues (216). FOXC2 expression is 
associated with highly aggressive basal-like breast cancers (217) 
and interestingly, could induce mesenchymal gene transcription 
independently of E-cadherin repression. 

Over-expression of Snail correlates with advanced tumour 
grade, lymph node metastasis, and poor clinical outcome in 
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infiltrating ductal breast carcinomas (181). Significantly, in 
one of the first demonstrations of tumour related EMT in vivo, 
spontaneous up-regulation of Snail was associated with the 
recurrence of tumours with EMT characteristics in a reversible 
erbB2-induced mouse breast cancer model (182). Loss of ER 
reduces MTA3 mediated inhibition of Snail hence promoting 
EMT (191). However, like Snail, the expression of Snail2 
has been associated with poor clinical outcome in breast 
tumours (183). Indeed Snail2 has been implicated in the 
formation of tubular structures believed to represent a 
collective mode of migration at the invasive front of ductal 
breast carcinomas (218). 

The re-expression of embryonic transcription factors during 
breast cancer progression may arise as a result of accumulating 
genetic instabilities or through reciprocal interactions with the 
local tissue microenvironment. In support of the former, loss 
of Singleminded-2s in the mouse mammary gland induces 
Snail2-mediated EMT, indicating how gene inactivation 
may circumvent EMT dormancy in the adult mammary gland 
(219). In support of the latter, there is evidence for the 
heterogeneous expression and nuclear translocation of Snail 
(220) and Snail2 (221) following exposure to hypoxia at the 
invasive front, highlighting the importance of the microenviron
ment in providing extracellular signals for initiation of EMT 
at metastasis. 

Tumour progression and metastasis is promoted by the 
stabilization of the hypoxia-inducible factor-1α (HIF-1α) 
transcription complex caused by intra-tumoural hypoxia and 
ultimately causing treatment failure and mortality in several 
human cancers. Twist was shown to be associated with 
HIF-1α in inducing EMT and tumour metastasis by hypoxia 
or over-expression of HIF-1α (222). Twist expression was 
found to be regulated by HIF-1 binding to the hypoxia-
response element (HRE) in the Twist proximal promoter. 
Furthermore, Twist deficient mice showed similar phenotypes 
to HIF-1α null mice. However, EMT reversal was achieved by 
siRNA-mediated repression of Twist in HIF-1α-over-
expressing or hypoxic cells. Patients co-expressing HIF-1α, 
Twist and Snail in primary head and neck tumours had the 
worst prognosis, caused by increased tumour metastasis 
providing evidence of a key signalling pathway involving 
HIF-1α and Twist that promotes EMT and tumour metastasis 
in response to intra-tumoural hypoxia (222). 

Tyrosine kinase receptors. Axl is a member of the TAM 
(Tyro-Axl-Mer) receptor tyrosine kinases (RTK) that are 
known to have diverse effects on regulating cellular responses 
that include cell proliferation, cell survival, migration, autophagy, 
angiogenesis, natural killer cell differentiation and platelet 
aggregation (223). Axl shares the vitamin K-dependent 
ligand growth arrest-specific 6. On the basis of its expression 
in many embryonic tissues it is thought to be involved in 
mesenchymal and neural development, with a restricted 
expression in smooth muscle cells in adult tissues (224). Axl 
was reported to be associated with EMT and its activation is 
linked to many signal transduction pathways, including akt, 
MAPK, NF-κB, STAT, and others (225). Axl was originally 
identified as a transforming gene from a patient with chronic 
myelogenous leukemia, and since then it has been correlated 
with various high-grade cancers associated with poor prognosis 

(223). It was shown that the presence of Axl is important for 
the growth of breast carcinoma and glioma cell xenografts 
(226,227). It was also reported that the sole expression of 
Axl in breast cancer predicts poor overall patient survival. 
Furthermore, maintaining breast cancer invasiveness, growth 
in foreign microenviroments, and metastatic spread requires 
elevated Axl levels. All of these studies indicate that Axl is 
a unique EMT effector that is essential for breast cancer 
progression (186). Endocrine-resistant breast cancer cells 
show highly elevated expression of Axl (191). 

Tumour suppressor genes. The Rb protein is mutated or 
expressed at low levels in breast carcinomas suggesting that 
a relationship may exist between loss or reduction of Rb 
function and a less-differentiated state, increased proliferation, 
and high metastatic potential. siRNA mediated knockdown of 
Rb in MCF-7 cells (228) disrupted inter-cellular adhesion and 
induced a mesenchymal-like phenotype. In addition, Rb 
depletion resulted in reduced expression of E-cadherin. 

p21CIP1/WAF1 is a downstream effector of several tumour 
suppressors and also behaves as a cyclin-dependent kinase 
inhibitor of cell proliferation. It is also associated with EMT. 
Although its involvement in regulating features of tumour 
stem cells in vivo is unclear, deletion of p21CIP1, which 
enhanced the rate of tumourigenesis induced by mammary-
targeted H-ras or c-myc, enhanced immunohistochemical 
features of EMT. Silencing of p21CIP1 also enhanced features 
of EMT in transformed immortal human MEC lines. p21CIP1 
attenuated oncogene-induced BT-IC and mammosphere 
formation, suggesting a link between loss of p21CIP1 and 
acquisition of breast cancer EMT and stem cell properties 
in vivo (229). 

The homeobox genes. HOX genes, members of the homeobox 
gene family, are also believed to be associated with tumour 
progression. These are evolutionarily conserved genes encoding 
master transcription factors that play fundamental roles in 
regulating embryonic development and maintaining homeostasis 
through strictly regulated expression in various tissues and 
organs during adulthood. Several studies have described the 
association of HOX genes in the pathogenesis of multiple 
cancers; HOXA7 and HOXD13 in lung (230), HOXC4 and 
HOXC8 in prostate (231), HOXB7 in ovarian (232) and HOXA10 
in endometrial cancer (233). It was reported that 60% of breast 
cancers had no HOXA5 expression (234). Furthermore, HOXA5 
expression in MCF-7 cells caused p53-dependent apoptosis, 
whereas in HS578T cells expressing mutant p53, cell death 
was due to activation of the caspase pathway (235). HOXD10 
was also reported to be extensively reduced as malignancy 
increases in epithelial cells. Restoring the expression of HOXD10 
in MDA-MB-231 which is a highly invasive breast cancer cell 
line, could significantly reduce migration (236). In addition, 
increased MCF10A cell motility and invasion in vitro was 
associated with HOXB13 over-expression, while its ratio versus 
interleukin-17β receptor was predictive of tumour recurrence 
during adjuvant tamoxifen monotherapy (237). Microarray 
analysis of purified epithelial cells showed that HOXB7, 
which is involved in tissue remodeling of the normal mammary 
gland (238) was expressed in higher levels from normal 
epithelial cells to primary metastatic breast tumours to bone 
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metastatic lesions and is associated with development of 
breast cancer (239,240). HOXB7 was located to a novel 
amplicon at 17q21.3, by the use of cDNA-based comparative 
genomic hybridization. This amplification was associated 
with poor prognosis in a panel of 186 breast cancer cases 
(241). Furthermore, HOXB7 over-expression regulated the 
expression of several growth and angiogenic factors, including 
basic FGF, vascular endothelial growth factor (VEGF), inter
leukin 8, Ang1, Ang2, and MMP9 in SKBR3 breast cancer 
cells, leading to formation of vascularized tumours when grown 
as xenografts in nude mice (239,240). HOXB9 has a similar 
effect leading to increased cell motility and acquisition of 
mesenchymal phenotypes (242). Another homeoprotein, Six1, 
has been shown to stimulate mammary tumour progression 
and metastasis in mouse models, through induction of EMT 
(243,244). 

EMT and tumour microenvironment. Although the tissue 
microenvironment is initially hostile to the development of a 
tumour, as cancers evolve, they circumvent the cytotoxic 
signals emanating from the surrounding tissue and provoke an 
inflammatory response that recruits tumour-infiltrating 
immune cells to the host-tumour interface. The cross-talk and 
reciprocal interactions between the tumour, its surrounding 
stroma, and infiltrating immune cells in the form of secreted 
MMPs, ECM components, growth factors, and cytokines 
enable localized tissue remodelling to promote tumour cell 
motility, EMT and the initiation of metastasis. Consistent with 
this model, co-culture of breast tumour cells with macrophages 
greatly enhances their migration and invasion by inducing 
EMT through NF-κB-mediated Snail stabilization (245). 
Furthermore, interleukin-6 induces EMT and promotes the 
invasiveness of MCF-7 cells, with clear ramifications for 
breast cancer patients with elevated serum levels of this cyto
kine (246). 

Fig. 4 summarises various aspects that have been discussed 
above to illustrate how the diverse signalling pathways, some 

of which are implicated in endocrine resistance, lead to 
accumulation of several key mediators of the EMT.

5. EMT, CSCs and endocrine resistance

In their model of tamoxifen resistance, Hiscox et al (194,247) 
showed that β-catenin, regulated by an autocrine action of 
EGFR, could act as both a mediator of E-cadherin dysfunction 
and a regulator of gene expression and promote development 
and progression of EMT. Development of endocrine resistance 
was accompanied by a change in β-catenin phosphorylation, 
loss of function of adherens junctions and increased transcription 
of β-catenin target genes. Interestingly, increased EGFR 
expression has been demonstrated within the EMT micro-
environment, and its activation via autocrine production of 
EGFR ligands such as TGFα and amphiregulin has been 
reported to facilitate the EMT process (248).

Modulation of EGFR activity using gefitinib established it 
as a key player in the development of an aggressive, EMT-like 
phenotype in acquired tamoxifen-resistant breast cancer cells 
(71). 

It has been suggested that the acquisition of enhanced 
EGFR/erbB2 pathway signalling in ER+ breast cancer with 
tamoxifen resistance potentially results from selection of a 
more stem cell-like phenotype. Expression of EGFR is seen in 
stem cells of the normal mammary gland in mice and humans 
(249,250) whilst ER is predominantly expressed in the more 
differentiated luminal cells (251-253). The EGFR pathway 
was activated in CSCs of ductal carcinoma in situ (DCIS) of 
the breast. There is emerging evidence for a role of the erbB2 
pathway in the function of CSCs. Expression of erbB2 and 
presence of ALDH1+ CSCs was positively correlated in one 
series of 491 breast cancer patients (254). The CSC populations 
of four erbB2+ breast cancer cell lines have been demonstrated 
to express more erbB2 mRNA and protein compared with 
the non-CSC population, regulated at the level of transcription. 
Furthermore, trastuzumab reduced mammosphere-forming 

Figure 4. Signal transduction pathways implicated in EMT, showing some of the inter-relationships that are described and referenced in the text. Ligand 
stimulation of a variety of membrane receptors leads through intermediary molecules to activation of a set of nuclear transcription factors that regulate 
expression of epithelial/mesenchymal associated genes shown in Fig. 3. Note that many of these molecules are also involved in endocrine resistance. The 
so-called ‘Master EMT regulators’ are boxed.
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capability and tumourigenicity on serial xenotransplantation 
(255). In a clinical study in erbB2 over-expressing large 
primary breast cancers, lapatinib reduced the CD44+/CD24 
CSC fraction and mammosphere forming efficiency of the 
residual tumour, although not statistically significant (256). 
Notably treatment with chemotherapy alone increased the 
proportion of CSCs in the residual breast cancer (256,257). So 
it seems plausible that up-regulation of the EGFR/erbB2 
pathway in endocrine-resistant breast cancer could indirectly 
reflect an enrichment of a CSC phenotype (258). The γ secretase 
inhibitor DAPT or a Notch 4 neutralizing antibody signifi
cantly reduced mammosphere formation in primary human 
DCIS. 

Antagonism of the Notch pathway causes amelioration 
of the effect of trastuzumab that reduces mammosphere 
formation in erbB2 over-expressing cell lines (255). A 
2-6-fold increase in Notch 1 activity induced nuclear 
accumulation of Notch 1 intracellular domain, and increased 
expression of Notch down-stream targets including Hes 
and Hey 1 was seen in MCF-7, BT474 and SKBr3 cell lines 
after treatment with trastuzumab or lapatinib (259). Inhibition 
of the Notch pathway led to re-sensitisation to trastuzumab 
and the combination of Notch antagonism and trastuzumab 
inhibited growth in both trastuzumab sensitive and resistant 
cell lines (259). 

Borley et al (260) reported that the antiestrogens tamoxifen 
and fulvestrant can promote an invasive phenotype in 
E-cadherin deficient ER+ breast cancer cells through activation 
of src. However, estrogen deprivation mimicking the action 
of aromatase inhibitors did not promote invasiveness in the 
same cells. This means that acquired anti-estrogen resistance 
induced breast cancer cell invasion in the absence of E-cadherin 
but not necessarily EMT behaviour. An immunohistochemical 
profiling of src expression and signalling through EGFR 
showed simultaneous activation of Grb2/ras/MAPK 
pathway, phospholipid metabolism involving PLD, PLCγ, and 
P13K and activation of the cytosolic src family kinases, 
ultimately promoting EMT-like events. Src kinase was shown 
to modulate EMT-like characteristics in acquired endocrine 
resistance. src activation assayed in breast cancer biopsies 
showed a correlation with presence of distant metastasis, and 
shortened survival with tamoxifen therapy in ER+ patients. 
Significantly, targeted inhibition of src kinase activity in 
tamoxifen-resistant breast cancer cells is accompanied by an 
efficient reduction in their invasive and migratory behaviour 
and even causing its reversion (MET) (247). In vitro studies 
suggest a role for c-Met signalling as a promoter of tumour 
progression and metastasis in vivo. HGF/scatter factor mediated 
activation of c-Met RTK induced ‘cell scattering’, a process 
fundamental to EMT. Analysis of ER- Faslodex-resistant 
MCF-7 cells showed significantly elevated levels of the HGF/
scatter factor receptor gene, c-Met. In addition, high levels of 
c-Met in breast tumours correlated with a significantly 
reduced survival rate (261).

Mani et al (262) demonstrated for the first time that in 
addition to endowing cells with migratory and invasive 
potential, passage through EMT confers properties of breast 
CSCs. In breast tumours, the CD44+/CD24-/low antigenic 
phenotype defines a subpopulation of breast cancer cells 
enriched with cells with stem cell-like qualities, namely the 

ability to self-renew and reconstitute differentiated tumours 
(263). Thus, immortalized human mammary epithelial cells 
exposed to a range of different EMT-inducing stimuli (ectopic 
expression of Snail or Twist or TGF-β treatment), acquire 
the ability to self-renew and express the CD44+/CD24-/low 
antigenic phenotype. Conversely, CSC isolated from human 
breast cancer tissues express high levels of mRNAs encoding 
mesenchymal markers (262). Similarly, Morel et al (264) have 
shown that aberrant activation of the ras/MAPK pathway 
generates a population of CD44+/CD24-/low cells displaying 
combined EMT and stem cell attributes. Moreover, hypoxia-
induced Snail2 expression is associated with the acquisition 
of a basal-like breast cancer phenotype and high levels of the 
stem cell regulatory genes CD133 and BMI1 (221). More 
recently, in vivo EMT induction by infiltrating CD8 T-cells 
has been shown to generate mesenchymal tumour cells with 
CSC properties (265), highlighting once again the paradoxical 
role of inflammation in exacerbating breast cancer progression. 
Furthermore, genome-wide transcriptional profiling has shown 
that metaplastic breast cancers and claudin-low tumours 
frequently exhibit EMT and stem cell-like features, likely 
contributing to their poor outcomes (168). 

Collectively, these findings demonstrate that induction of 
EMT in differentiated breast epithelial tumour cells is sufficient 
to generate a sub-population of cancer cells with stem cell 
characteristics and the propensity to metastasize. Thus, EMT 
is not only important for cells to escape from the immediate 
vicinity of the tumour, but may also sustain primary tumour 
growth as well as promote the initiation and establishment of 
secondary tumours. The molecular pathways linking stem 
cell-like characteristics with EMT remain largely undefined. 
In a recently described mouse model of breast cancer metastasis 
to the lung, inhibition of wnt signalling through LRP6 was 
found to reduce stem cell-like properties and cause EMT 
reversal, restoration of the epithelial phenotype, and suppression 
of Snail2 and Twist expression (266). Several components 
of the wnt signalling pathway have thus been implicated in 
mediating breast cancer metastasis from the orthotopic site to 
the lungs, suggesting that pharmacologic agents targeting the 
wnt pathway may be useful in controlling EMT-mediated 
breast cancer recurrence and metastasis (171). 

Recent work by Weinberg's group (262) has linked the 
mesenchymal cell phenotype to stem cells in normal tissue 
and to CSCs. Immortalised human mammary epithelial 
cells (HMECs) induced to undergo EMT exhibited stem cell 
markers and had increased capacity to form mammospheres 
enriched in stem cells. Similarly stem cells isolated from 
normal and cancerous human and mouse mammary glands 
demonstrated markers of mesenchymal phenotype normally 
apparent in EMT. This included up-regulation of Snail and 
Snail2 and also the TGFβ signalling pathway which has 
been previously implicated in stem cell function (253). 

Interestingly, recent analysis of a panel of breast cancer 
cell lines of luminal, intermediate and basal phenotypes has 
shown a significantly increased fraction of CSCs (defined by 
CD44+/CD24lo/ESA+ expression) in basal type breast 
cancers compared to hormone-sensitive luminal cancers 
(291). Furthermore, a positive correlation was shown between 
CSC number and cell line tumourigenicity in in vivo models 
(267). 
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As ER negatively regulates the expression of the key 
transcription factors regulating EMT such as Snail and 
Snail2 (268,269) a functionally redundant ER in endocrine-
resistant breast cancer might therefore promote a more 
mesenchymal stem-cell-like phenotype. In an MCF-7 model, 
tamoxifen resistant cells showed enhanced mammosphere 
forming capacity compared to tamoxifen sensitive cells, 
suggesting an increased CSC fraction (121). 

Interestingly, EMT was implicated in the progression to 
distant metastatic disease and therapeutic resistance. It was 
shown that following adriamycin treatment of MCF-7 cells, 
Twist 1 expression is induced and only cells undergoing 
adriamycin-induced EMT display enhanced invasion and 
multidrug resistance. Twist 1 depletion by RNA interference 
blocked mesenchymal transformation, partially reversed multi
drug resistance, and abolished invasion induced by adriamycin 
(270). Furthermore, Twist1 RNA interference may show 
efficacy in adriamycin-based chemotherapies for breast cancer 
(271). Resistance to erbB2 targeted therapy is a clinical 
problem that may undermine the success of erbB2 targeted 
therapies such as trastuzumab and lapatinib. The erbB2 
pathway may play an important role in the maintenance of 
breast CSCs, induction of which, during EMT, may be the basis 
of resistance in erbB2 targeted therapy (272). More generally, 
breast cancer cells may acquire resistance to conventional and 
targeted therapies upon conversion to a mesenchymal-like 
phenotype. A recent screen using transformed human breast 
cells that were experimentally transformed into mesenchymal 
cells showed that these cells which exhibit CSC properties, 
are more resistant to conventional chemotherapeutic drugs 
such as paclitaxel or doxorubicin (273). 

Our group has established an endocrine-resistant cell line 
(termed pII) by transfection of MCF-7 cells with an shRNA 
targeting the ER (274,275). These cells have constitutively 
down-regulated ER, exhibit a higher proliferative rate, increased 
aggressive behaviour reflected by accelerated motility and 
ability to penetrate into simulated extracellular matrix compo-
nents, co-incident with a change from an epithelial morphology 
to a more mesenchymal one (191,276). Rearrangement in these 
cells of the α-actin cytoskeleton reflects increased appearance 
of lamellipodia and microspikes, features known to drive cellular 
motility (277). The morphological changes are accompanied 
by loss of E-cadherin and catenin and other epithelial markers 
such as keratins 18 and 19 and the gain of expression of 
mesenchymal markers such as N-cadherin, tenascin C and 
fibronectin, PLAU, VEGF, CD68 and vimentin, characteristics 
shared with the MDAMB231 ER- cell line and hallmark 
features of cells undergoing EMT (171). Genome-wide micro
array analysis confirmed a shift towards higher expression of 
genes involved in cell motility and interaction with the ECM 
as well as those characterising basal-like metaplastic and 
claudin-low tumour types reported to increase cell survival, 
stem cell-like properties, migratory and invasive capacity, thus 
promoting metastasis. Transcriptional repressors of E-cadherin 
that include ZEB1, ZEB2/SIP1 and Snail2 (174) were also 
elevated. Another significant group that is elevated in these 
cells are included in the ‘24 gene signature’ of genes proposed 
as predictive of invasiveness (278): integrin, TIMP-2 and 
TIMP-3, MT1-MMP, PAI-1, Osteonectin/SPARC, thrombo
spondin-1, collagen (VI) α1 and collagen (I) α2. A further 

interesting feature is the ability of various tyrosine kinase 
inhibitors to block proliferation, motility and invasion in these 
cells (191) reflecting an important role of peptide growth 
factor receptors, particularly EGFR. So far, all the experimental 
data are consistent with the view that in these cells that have 
acquired endocrine independence, there is an associated 
change that closely mimicks EMT. 

6. Reversal of EMT

The process of EMT associated with tumour progression and 
invasion presents a dramatic phenotypic change in which well 
differentiated epithelial cells possessing extensive junctional 
networks and a distinct pattern of gene expression, apparently 
re-organise and acquire molecular and morphological 
characteristics of cells of a completely different embryonic 
lineage with its own unique features. As detailed in the preceding 
sections, this is a seemingly complex multidimensional process 
involving an extraordinarily large number of contributory 
molecules of diverse function from structural components to 
receptors to signalling molecules and transcription factors. 
Which of these are simply in vitro phenomena and which 
have physiological significance remains to be confirmed. 
However that may be, it is clear that EMT presents a challenge 
to existing notions of cell lineage and differentiation. Reversal 
of this transition would have not only obvious therapeutic 
implications but also shed light on cellular mechanisms 
controlling cell specificity and function. In this respect, it is 
interesting that whereas tumour cells can undergo EMT in 
response to the inductive signals produced by an inflammatory 
tumour microenvironment, their exposure to the non-inflam-
matory microenvironment of a distant metastatic site may 
trigger at least partial EMT reversal and MET, a necessary 
process for tumour re-population. Metastatic lesions usually 
exhibit typical epithelial characteristics even when derived 
from poorly differentiated primary tumours (211). 

TGF-β signalling pathway. As a key mediator of fibrosis and a 
facilitator of metastasis, the TGF-β signalling pathway may 
be a good target for EMT reversal (172,279). TGF-β induces 
EMT by both Smad-dependent and independent signalling 
events (164,265,280,281). Smad4 is frequently mutated in 
pancreatic and colorectal cancers and in a subset of juvenile 
polyposis syndrome patients who have inherited mutated 
alleles of Smad4 (282). 

In advanced disease, TGF-β can stimulate invasion and 
metastasis of tumour that has become TGF-β insensitive. 
Invasion and metastasis of tumour cells can be inhibited by 
ectopic expression of dominant negative TGF-β receptors (283). 
Colon cancer patients with inactivating mutations in TGF-β 
type II receptor have a lower metastatic potential and increased 
survival (284,285). TGF-β1 ligand activates a heteromeric 
receptor of two transmembrane serine/threonine kinases, type I 
and II receptors (TβRI and TβRII) (TβRII transphosphorylates 
TβRI, activating its kinase function) to exert its signalling 
effects. Activated TβRI phosphorylates the intracellular 
proteins Smad 2 and 3 which then associate with Smad 4, 
translocating to the nucleus where the complex interacts with 
other transcriptional co-activators and co-repressors to regulate 
expression of numerous genes (174). This type of signalling 
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that depends on Smad up-regulates the expression of many 
transcription factors such as Snail, Snail2, Twist, and 
members of the ZFH family, ZEB1 and ZEB2 (178,179,188). 
Many other signalling proteins have also been implicated in 
the induction of EMT by TGF-β1. These include ras/MAPK 
(286), integrin β-1 (181), integrin-linked kinase (214), p38 
mitogen-activated protein kinase (p38 MAPK) (217), RhoA 
kinase (ROCK) (182), PI3K (183), Jagged1/Notch (218), 
SARA (219), NF-κB (220), Par 6 (175,221) and Erk (245). 
The inhibition of TβRI kinase and ROCK resulted in full 
reversal of the metastatic phenotype and gene expression 
patterns associated with EMT. This is caused by the mesen
chymal gene expression blockade caused by TβRI kinase 
which is mediated by down-regulating ZEB1 and ZEB2, while 
the epithelial structure is maintained by the ROCK inhibitor 
(281). 

Another mechanism of EMT reversal involves expression 
of GATA3, a transcription factor regulating T lymphocyte 
differentiation and maturation. It is absent from metastatic 
lesions but expressed in early stage well differentiated breast 
cancers. A cuboidal-like epithelial phenotype and reduced cell 
invasive activity associated with increased E-cadherin expression 
and decreased N-cadherin, vimentin, and MMP-9 was mediated 
by ectopic expression of GATA3 in MDA-MB-231 cells that 
grew as non-metastatic smaller primary tumours. Control 
cells grew as larger metastatic tumours in xenografted mice. 
E-cadherin expression was induced by the binding of GATA-
like motifs located in the E-cadherin promoter. MCF-7 cell 
fibroblastic transformation and increased invasion and metastasis 
resulted from siRNA induced GATA3 knockdown. Several 
studies on human breast cancers showed that GATA3 expression 
was correlated with elevated E-cadherin levels, ER expression, 
and longer disease-free survival indicating that GATA3 may 
drive invasive breast cancer cells to undergo EMT reversal 
which would ultimately lead to the suppression of cancer 
metastasis and invasion (213). 

uPA. Urokinase-type plasminogen activator (uPA) and 
plasminogen activator inhibitor type I (PAI-1) system also 
have an important role in tumour invasion and metastasis 
(287-289) interacting with the matrix metalloproteinases 
system. Both molecules are well established as prognostic 
indicators of equal or greater utility than ER (290) and are 
also useful predictors of distant metastases in a subset of early, 
node-negative breast cancer patients (291). Hypoxia can promote 
EMT by inducing uPAR-dependent cell-signalling in cancer 
cells. MDA-MB 468 cells cultured in 1% O2 exhibited increased 
uPAR expression, disruption of inter-cellular junctions, 
increased vimentin expression and loss of E-cadherin, indicating 
EMT (292). This effect could be reversed by shifting the cells 
to 21% O2. EMT could also be reversed by silencing expression 
of endogenously-produced uPA, or by targeting uPAR-activated 
cell-signalling factors such as PI3K, src family kinases and 
extracellular signal-regulated kinase. MDA-MB 231 cells 
express high levels of uPA and uPAR and have a characteristic 
mesenchymal morphology under normoxic conditions (21% 
O2). Silencing of uPA in these cells leads to decreased expression 
of vimentin and Snail, and induces a morphology characteristic 
of epithelial cells. Thus uPAR-initiated cell-signaling represents a 
potential target for EMT reversal in cancer cells. EMT reversal 

has also been observed during re-programmed gene expression 
in the mouse embryo induced by mutations in the TCF8 gene 
which leads to developmental defects caused by a reduction in 
progenitor cell proliferation and cell migration (202,281). 

7. Concluding remarks

There is considerable accumulated evidence which shows that 
the acquisition of resistance of breast cancers to endocrine 
therapies is accompanied by the gain of aggressive characteristics 
both in vivo and in vitro. EMT-like processes accompany 
acquisition of endocrine resistance by promoting a migratory 
phenotype that shows evidence of a switch from a network of 
cytokeratin intermediate filaments to one based upon vimentin. 
Underlying these events are complex signalling cascades which 
may be activated by numerous cytokines/growth factors. So, 
the ability of anti-growth factors and kinase inhibitors to 
antagonise such events may ultimately be of significance in 
the treatment of cancer patients as a means to prevent or 
reduce tumour dissemination. The link between development 
of endocrine resistance and EMT offers new therapeutic targets 
and new insights into the mechanisms underlying both processes 
in breast cancer progression. It remains to be seen whether 
the pleithora of phenotypic changes are indeed reversible, as 
suggested by the apparent re-differentitation back into epithelial 
character of blood-borne metastasizing cells that re-enter 
distant tissues to form secondary neoplastic deposits. Our 
current studies are addressing the issue of whether the EMT 
that we observe to be a direct consequence of loss of ER 
function in cultured cells, can be reversed simply by permitting 
the re-expression of ER. The nuclear transcription factors that 
trigger the loss of E-cadherin and other epithelial components 
could be key molecular targets whose blockade could prevent 
EMT induction and possibly block endocrine resistance. 
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