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Abstract. We investigated whether altering caveolin-2 (cav-2) 
expression affects the proliferation of cancer cells. Cav-2 
was not detected in HepG2, SH-SY5Y and LN-CaP cells, 
and the loss of cav-2 expression was not restored by 5-aza-2'-
deoxycytidine treatment. In contrast, C6, HeLa, A549, MCF7 
and PC3M cells expressed cav-2. Effects of re-expression 
of exogenous cav-2 in HepG2, SH-SY5Y and LN-CaP cells, 
and siRNA-mediated down-regulation of endogenous cav-2 
in C6, HeLa, A549, MCF7 and PC3M cells on cancer prolif-
eration were examined by MTT assay, colony formation 
assay and flow cytometric analysis. Cav-2 transfection in 
HepG2 hepatocellular carcinoma cells and knockdown in C6 
glioma cells caused reduction in cell proliferation and growth 
with retarded entry into the S phase. Cav-2 re-expression 
in SH-SY5Y neuroblastoma cells and depletion in HeLa 
epithelial cervical cancer and A549 lung adenocarcinoma 
cells promoted cancer cell proliferation. Luciferase reporter 
assay showed that transcriptional activation of Elk-1 and 
STAT3 was significantly decreased in cav-2-transfected 
HepG2 hepatocellular carcinoma and down-regulated C6 
glioma cells. Our data suggest that cav-2 acts as a modulator 
of cancer progression.

Introduction

Caveolins, caveolae coat proteins, have specific functional 
roles which can vary in different cell types. There are three 
members within the caveolin protein family: cav-1, cav-2, 
and cav-3. Cav-1 and -2 are co-expressed in most cell types, 
whereas cav-3 is primarily expressed in vascular smooth, 

cardiac and skeletal muscles (1,2). Caveolins have been found 
to be involved in diverse cellular processes ranging from cell 
migration, cell cycle and cell polarity to regulation of cell 
transformation and signal transduction (3-5). Cav-1 has been 
reported to inhibit cell cycle progression and cell migration 
by preventing EGFR-dependent MAP kinase cascade (6,7). 
In contrast, we recently demonstrated that cav-2 activates 
cellular mitogenesis by promoting insulin-induced ERK 
activation and nuclear targeting (8-10).

Cav-1 regulates multiple cancer-associated cellular 
processes, such as cell proliferation, growth, migration and 
invasion (4,11). The cav-1 gene is localized to locus D7S522 of 
human chromosome 7q31.1, which is often deleted in human 
cancers including ovarian adenocarcinomas (12), prostate and 
breast cancers (13), uterine leiomyomas (14), myeloid neoplasms 
(15), oral cancer (16), stomach adenocarcinoma (17) and renal 
carcinomas (18). Moreover, cav-1 P132L mutant, that disrupts 
the cav-1 scaffolding domain, exists in 16% of human breast 
cancers and acts as a dominant-negative for growth suppression 
(19). Thus, cav-1 is believed to act as a tumor-suppressor gene. 
However, cav-1 expression is often maintained or up-regulated 
in T-cell leukemia, esophagus squamous cell carcinoma, pros-
tate cancer, thyroid papillary carcinoma, bladder cancers and 
multiple myeloma (20-25). Thus, although many studies have 
shown cav-1 as a potential prognostic marker for prediction 
of cancer, the prognostic significance of cav-1 varies between 
different types of human cancers.

The cav-2 gene is co-localized with cav-1 to the locus 
D7S522 of human chromosome 7q31.1 (26), and tissue distri-
bution of cav-2 is very similar to cav-1 (2). Although it has 
been reported that cav-2 levels are not changed by oncogenic 
transformation (2,27), cav-2 expression is up-regulated in 
esophageal and urothelial carcinomas (21,28). Furthermore, 
cav-2 expression has been detected in various lung cancers and 
associated with shorter survival in stage I adenocarcinomas 
(29). Despite the fact that cav-2 is expressed in various types 
of cancers, the functional role of cav-2 is less well-defined in 
tumor growth and metastasis.  

In the present study, modulation of cancer cell proliferation 
was investigated by alteration of cav-2 expression in various 
cancer cells using MTT assay, colony formation assay and flow 
cytometric analysis. Exogenous cav-2 expression in HepG2 
hepatocellular carcinoma cells and endogenous cav-2 depletion 
in C6 glioma cells induced inhibition of cancer growth and 
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proliferation with prevention of transcriptional activation of 
Elk-1 and STAT3. Our results showed that cav-2 plays a role as a 
potential regulator of cancer cell proliferation.

Materials and methods

Cell lines and culture. HepG2 (human hepatocellular carci-
noma), HeLa (human epithelial cervical cancer), A549 (human 
lung adenocarcinoma) and C6 (rat glioma) cells were grown in 
Dulbecco's modified Eagle's medium (DMEM) (Gibco/BRL) 
containing 5 mM D-glucose supplemented with 10% (v/v) 
fetal bovine serum (FBS) (Sigma-Aldrich, St. Louis, MO, 
USA) and 1% penicillin/streptomycin (Gibco/BRL) in a 5% 
CO2 incubator at 37˚C. PC3M (human prostate carcinoma), 
MCF7 (human breast cancer) and LN-CaP (human prostate 
carcinoma) cells were cultured in RPMI-1640 medium (Gibco/
BRL) containing 10 mM D-glucose supplemented with 10% 
(v/v) FBS and 1% penicillin/streptomycin in a 5% CO2 incu-
bator at 37˚C. SH-SY5Y (human neuroblastoma) cells were 
grown in a 1:1 mixture of DMEM and Ham's F12-medium 
(Gibco/BRL) containing 17 mM D-glucose supplemented 
with 10% (v/v) FBS and 1% penicillin/streptomycin in a 5% 
CO2 incubator at 37˚C.

Plasmids and transfection. A full-length cav-2 cDNA 
(NM_131914) was subcloned into the pcDNA3 vector 
(Invitrogen Corp.) as described previously (9,10). The cDNA 
constructs were introduced into HepG2, SH-SY5Y and 
LN-CaP cells in culture medium, which was replaced with 
50 µl of 2.5 M CaCl2 and 2X HEPES-buffered saline and 
incubated for 24 h at 37˚C. The transfection medium was 
replaced with fresh culture medium, and incubation was 
carried out for another 24 h at 37˚C as previously described 
(8).

Reverse transcription (RT)-PCR analysis. Total RNA was 
extracted with TRIzol reagent (SolGent, Co. Ltd.) according 
to the manufacturer's instructions. cDNA was generated using 
a reverse transcription kit (Accupower RT PreMix kit; Bioneer 
Corp.). The cDNA was used as the template for subsequent 
PCR amplification. PCR primers were as follows: human 
cav-2, 5'-ACTCTTACGCAGCGGCAGG-3' and 5'-AGTAAC 
TGCTGAGGTTGGTGTAGACC-3'; rat cav-2, 5'-ATGGGG 
CTGGAGACTGAGAAG-3' and 5'-TCAGTCATGGCTCAG 
TTGCATG-3'; glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH), 5'-ACCACCATGGAGAAGGCTGG-3' and 5'-CTC 
AGTGTAGCCCAGGATGCC-3'. PCR was performed using 
AccuPower PCR PreMix kit. The PCR fragments were sepa-
rated by running on 1% agarose gels. 

Protein isolation and immunoblot analysis. For the protein 
isolation, cells were washed twice with ice-cold phosphate-
buffered saline (PBS) and lysed with RIPA buffer [50 mM 
HEPES, 150 mM NaCl, 100 mM Tris-HCl (pH 8.0), 0.25% 
deoxycholic acid, 0.1% SDS, 5 mM EDTA, 10 mM NaF, 
5 mM 1,4-dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, 
1 mM sodium orthovanadate, 20 µM leupeptin and 100 µM 
aprotinin]. The whole cell lysates (WCLs) were put on ice 
for 30 min and centrifuged at 12,000 rpm for 20 min at 4˚C. 
Aliquots from the clear supernatant were obtained for protein 

quantification as determined by the Bradford assay (BioRad 
Laboratories). Equal amounts of samples (50 µg) were sepa-
rated on 15% (w/v) SDS-polyacrylamide gels and transferred 
to polyvinylidene difluoride membrane (Millipore, Bedford, 
MA). Membranes were blocked overnight at 4˚C with 5% (v/v) 
nonfat dry milk in TBS, 0.1% (v/v) Tween-20, and incubated 
for 2 h at room temperature (RT) in the primary antibody. The 
primary antibodies used were as follows: cav-2 (BD 610685; 
1:500) and cav-1 (BD 610407; 1:500) antibodies from BD 
Transduction Laboratories; F-actin (sc-1616; 1:200) antibody 
from Santa Cruz Biotechnology. The membranes were 
washed with TBS, 0.1% (v/v) Tween-20 and incubated for 
1 h at RT in horseradish peroxidase-conjugated anti-mouse 
(A4416, Sigma-Aldrich; 1:5000) or anti-goat (sc-2020, Santa 
Cruz Biotechnology; 1:5000) antibodies in 5% (v/v) nonfat 
dry milk in TBS, 0.1% (v/v) Tween-20. The immunoblots 
were developed using the ECL detection reagent (RPN2106, 
Amersham Biosciences) as described previously (30). 

Treatment with 5-aza-2'-deoxycytidine. HepG2, C6 and 
LN-CaP cells were incubated in culture medium in the 
presence or absence of 4 µM 5-Aza-CdR (Sigma-Aldrich) 
for 6 days. Total RNA and proteins were extracted from the 
cells and subjected to RT-PCR and immunoblot analysis as 
described above.

Transfection of cav-2 small interfering (si)RNA. A549, C6, 
PC3M, MCF7 and HeLa cells were transfected for 48 h with 
either a SMARTpool of cav-2-specific siRNA or non-targeting 
siRNA (scramble control; Dharmacon, Lafayette, CO, USA) 
using DharmaFECT transfection reagents (Dharmacon) as 
described previously (9,31,32). The construct targeting cav-2 
was comprised of the following 3' (sense) and 5' (antisense) 
primer pairs: 3'-GUAAAGACCUGCCUAAUGGUU and 
5'-PCCAUUAGGCAGGUCUUUACUU, the non-targeting 
siRNA was 5'-GGAAAGACUGUUCCAAAAA-3'. 

MTT assay. Cells (2 x104) were plated in 96-well plates and 
transfected with the pcDNA3 vector or pcDNA3-cav-2 for 
18 h, or with scramble or cav-2 siRNA for 48 h. After 2 days 
of incubation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-
tetrazolium bromide (MTT) (M5655, Sigma-Aldrich) stock 
solution was added to each well at a final concentration of 
0.5 mg/ml and incubated at 37˚C for 4 h, followed by lysis 
with 100 µl of dimethyl sulfoxide (DMSO) (BioShop, CA) to 
solubilize the final product of MTT metabolism, the formazan 
precipitate. After a 30-min incubation at 37˚C, the optical 
density at 540 nm was determined using a microplate reader 
(Model 550, BioRad Laboratories).

Colony formation in soft agar. The in vitro growth charac-
teristics were tested by colony formation assay. After 48 h 
of transfection with the pcDNA3 vector, pcDNA3-cav-2, 
scramble or cav-2 siRNA, cells were prepared by trypsiniza-
tion and homogenization. Cells were suspended in the culture 
medium at 2x105 cells/ml. The cells were plated onto each 
well of a 24-well plate at a density of 2x103 cells/well in 
culture medium containing 0.35% agarose (BioWhittaker 
Molecular Applications, Rockland, MD, USA) on a base layer 
of 0.5% agar (MP Biomedicals, France). The medium was 
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refreshed every 3 days. After 2 weeks of incubation at 37˚C, 
foci were stained with 0.02% crystal violet solution (212525, 
BD Biosciences, USA) for 1 h. The number of colonies was 
photographed using a dissecting microscope (Olympus, 
SZX12) and the number of large colonies (>0.042 mm in 
diameter) counted in each plate was scored using Image-
ProPlus 6.1 (Media Cybernetics). The cells were tested in 
triplicate in three independent assays.

Analysis of the cell cycle by flow cytometry. Cells (5x104) were 
plated in a 24-well plate and transfected with pcDNA3 vector 
or pcDNA3-cav-2 for 18 h, or with scramble or cav-2 siRNA 
for 48 h. After 48 h of incubation, the cells were fixed with 
ice-cold ethanol and stained with 50 µg/ml propidium iodide 
(Sigma-Aldrich, USA), followed by analytic flow cytometry 
using FACS Calibur (BD Biosciences, USA). The numbers of 
cells in G0/G1, S and G2/M phases were quantified with FCS 
Express software (De Novo Software). At least 2x104 cells in 
each sample were analyzed to obtain a measurable signal. 

Luciferase reporter assay. Elk-1 and STAT3 translucent 
reporter vectors (Elk-1-Luc and STAT3-Luc) to monitor the 
transcription factor binding activity of Elk-1 and STAT3 
were purchased from Panomics (Redwood City, CA). HepG2 
cells were transiently transfected using the Lipofectamine 
LTX reagent (Invitrogen Corp.) with 0.5 µg of plasmid 
DNA (Elk-1-Luc or STAT3-Luc) along with the pcDNA3 
vector or pcDNA3-cav-2. C6 cells were transfected using 
the DharmaFECT transfection reagents with scramble or 
cav-2 siRNA for 24 h and then transiently transfected using 
the Lipofectamine LTX reagent with 0.5 µg of plasmid DNA 
(Elk-1-Luc or STAT3-Luc) in each well of a 24-well plate. The 
Renilla reporter construct pRL-TK (Promega Corp., Madison, 
WI, USA) was used to normalize the transfection efficiency. 
The cells were incubated for 48 h in culture medium and 
washed twice with ice-cold PBS, and lysed in 100 µl/well 
of passive lysis buffer (Promega Corp.). Luciferase activity 
was measured using a dual-luciferase reporter assay system 
(Promega Corp.). 

Statistical analysis. Statistical significance of differences in 
MTT assay, colony formation assay, cell cycle analysis and 
luciferase reporter assay was analyzed using the Student's 
t-test. Results represent data from three experiments for each 
group, and a P-value of <0.05 was considered statistically 
significant.

Results

Cav-2 expression in various cancer cells. We first evaluated 
mRNA levels and protein expression of endogenous cav-2 in 
A549, C6, SH-SY5Y, HepG2, LN-CaP, PC3M, MCF7 and 
HeLa cells. Both cav-2 mRNA and protein were detected in 
A549, C6, PC3M, MCF7 and HeLa cells, but not in SH-SY5Y, 
HepG2 and LN-CaP cells (Fig. 1A). Previous studies reported 
promoter methylation of cav-1 in human cancers including 
breast, prostate, ovarian and lung (33-36). To verify whether 
cav-2 is epigenetically inactivated by methylation of the 
promoter region in SH-SY5Y, HepG2 and LN-CaP cells 
expressing no cav-2, the cells were treated with 5-aza-

2'-deoxycytidine (5-Aza-CdR), a drug that inhibits DNA 
methylation. As shown in Fig. 1B, cav-2 mRNA and protein 
were still not detected in the cells upon 5-Aza-CdR treatment. 
Endogenous cav-1 expression was observed in A549, C6, 
HepG2, PC3M, MCF7 and HeLa cells but not in SH-SY5Y 
and LN-CaP cells (Fig. 1A) as previously reported (37-42).

Effect of exogenous cav-2 expression on proliferation of 
cav-2-nonexpressing cancer cells. To assess the functional 
role of cav-2 in cav-2-nonexpressing HepG2, SH-SY5Y and 
LN-CaP cells (Fig. 1), we examined the effect of exogenous 
addition of cav-2 on cancer cell proliferation. Expression of 
exogenous cav-2 in the cells transfected with pcDNA3-cav-2 
was confirmed by immunoblot analysis (Fig. 2A), and the 
cells were subjected to MTT assay (Fig. 2B). When HepG2 
hepatocellular carcinoma cells were transfected with cav-2, 
cell proliferation was decreased by 22.7%, whereas cav-2-
transfected SH-SY5Y neuroblastoma cells showed a 22.0% 
increase as compared to the vector control. Re-expression 
of cav-2 did not affect proliferation of LN-CaP prostate 

Figure 1. Cav-2 expression analysis in A549, C6, SH-SY5Y, HepG2, LN-CaP, 
PC3M, MCF7 and HeLa cells. (A) Cav-2 mRNA levels were analyzed by 
RT-PCR (hCav-2, human cav-2; rCav-2, rat cav-2) as described in Materials 
and methods. WCLs were separated by SDS-PAGE, and the protein levels 
of cav-2 and cav-1 were assessed by immunoblot analysis with anti-cav-2 
and anti-cav-1 antibodies. Shown is a representative experiment that was 
repeated three times. (B) SH-SY5Y, HepG2 and LN-CaP cells were treated 
with or without 4 µM 5-Aza-CdR for 6 days. Total RNA was extracted, 
and the amount of cav-2 mRNAs was analyzed by RT-PCR. WCLs were 
subjected to immunoblot analysis with the anti-cav-2 antibody. Shown is a 
representative experiment that was repeated three times. GAPDH and actin 
expression levels were used as controls for equal mRNA and protein loading 
in A and B.
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carcinoma cells (Fig. 2B). We further investigated the effect 
of cav-2 on the in vitro growth of the cells by colony forma-
tion assay (Fig. 2C). Similar to the results of the MTT assay, 
exogenous cav-2 led to a 25.0% reduction and a 58.4% eleva-
tion in the growth of HepG2 and SH-SY5Y cells, respectively, 
as compared to the vector control. The growth of LN-CaP 
prostate carcinoma cells was again not influenced by cav-2 
transfection (Fig. 2C). Regulation of the cell cycle by cav-2 
re-expression was further investigated using flow cytometric 
analysis (Fig. 2D). In cav-2-transfected HepG2 hepatocellular 
carcinoma cells, the number of cell in the G0/G1 phase was 
increased from 61.2±2.1 to 65.8±1.9% (P=0.047), while the 
number of cells in the S phase was decreased from 22.5±1.1 to 
18.6±0.9% (P=0.009) as compared to the cav-2-untransfected 
cells (Fig. 2D-a). In contrast, the number of cells in the G0/
G1 phase was reduced from 67.4±1.3 to 58.7±0.6% (P<0.001) 
while the number of cells in the S and G2/M phase was 
elevated from 16.0±0.5 to 17.2±0.4% (P=0.039) and from 

16.6±0.8 to 24.1±0.6% (P<0.001), respectively, by cav-2 
transfection in SH-SY5Y neuroblastoma cells (Fig. 2D-b). G0/
G1 to S phase transition was not changed in cav-2-transfected 
LN-CaP prostate carcinoma cells. Thus, these results demon-
strate that forced cav-2 expression inhibits the proliferation, 
cell cycle and growth of HepG2 hepatocellular carcinoma 
cells indicating that cav-2 acts as a negative regulator of the 
progression of cancer.  

Effect of the down-regulation of cav-2 on proliferation of 
cav-2-expressing cancer cells. To verify whether endogenous 
cav-2 regulates cancer progression, we abrogated its expres-
sion in C6, HeLa, A549, MCF7 and PC3M cells using 
cav-2 siRNA. As shown in Fig. 3A, cav-2 siRNA duplexes 
effectively depleted cav-2 protein by >80.4-84.4% of levels 
observed in the scramble control siRNA-transfected cells. 
In C6 glioma cells, cav-2 down-regulation caused a 14.0 and 
22.7% reduction in cell proliferation and colony formation, 

Figure 2. Mitogenic effects of exogenous cav-2 transfection in HepG2, SH-SY5Y and LN-CaP cells. (A) HepG2, SH-SY5Y and LN-CaP cells were trans-
fected with the pcDNA3 vector or pcDNA3-cav-2 for 48 h. WCLs were subjected to immunoblot analysis with anti-cav-2, anti-cav-1 and anti-actin antibodies. 
Shown is a representative experiment that was repeated three times. (B) HepG2, SH-SY5Y and LN-CaP cells were seeded in a 96-well plate and transfected 
with the pcDNA3 vector or pcDNA3-cav-2 for 18 h. After 2 days of incubation, the cells were treated with 0.5 mg/ml MTT for 4 h and then dissolved in 100 µl 
of DMSO for 30 min. Absorbance was measured at 540 nm by a microplate reader as described in Materials and methods. The results represent the mean ± 
SE of three independent experiments. (C) HepG2, SH-SY5Y and LN-CaP cells were transfected with the pcDNA3 vector or pcDNA3-cav-2 for 48 h, and the 
cells were reseeded on the top layer in a 0.35% agarose medium on a base layer of 0.5% agar medium. After 2 weeks, colonies were stained with 0.02% crystal 
violet solution for 1 h and photographed using a dissecting microscope,and the number of large colonies (>0.042 mm in diameter) counted was scored using 
Image-ProPlus 6.1 as described in Materials and methods. The results represent the mean ± SE of three independent experiments. (D) HepG2, SH-SY5Y 
and LN-CaP cells were transfected with the pcDNA3 vector or pcDNA3-cav-2 for 48 h. The cells were harvested with trypsin, fixed in ethanol, stained with 
propidium iodide, and analyzed by flow cytometry as described in Materials and methods. Representative cell cycle profiles from one representative out of 
a total of three experiments are shown for the pcDNA3 vector- and pcDNA3-cav-2-transfected cells. The representative cell cycle profiles of the pcDNA3 
vector- and pcDNA3-cav-2-transfected cells are indicated in black and red, respectively. The results represent the mean ± SE of three independent experi-
ments. a, HepG2 hepatocellular carcinoma cells; b, SH-SY5Y neuroblastoma cells; c, LN-CaP prostate carcinoma cells.
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respectively, as compared to the scramble control (Fig. 3B 
and C). In contrast, HeLa epithelial cervical cancer and A549 
lung adenocarcinoma cells showed a 79.5 and 44.2% increase 
in cell proliferation with a 126.6 and 69.5% elevation in 
colony formation, respectively, upon cav-2 siRNA transfec-
tion. In MCF7 breast cancer and PC3M prostate carcinoma 
cells, depletion of cav-2 did not affect cell proliferation and 
colony formation (Fig. 3B and C). To determine whether the 
modulation of cancer proliferation and growth by cav-2 down-
regulation is reflected in the cancer cell cycle distribution, 
we performed flow cytometric analysis of the cav-2-depleted 

cancer cells (Fig. 3D). Cav-2 siRNA-transfected C6 glioma 
cells displayed an increase in number in the G0/G1 phase 
from 67.8±1.1 to 70.5±0.9% (P=0.027) and a decreases in cell 
number in the S and G2/M phase from 13.3±0.3 to 11.8±0.6% 
(P=0.012) as compared to the scramble control (Fig. 3D-a). 
Upon cav-2 depletion, the number of cells in the G0/G1 phase 
was decreased from 66.0±0.8 to 57.3±1.6% (P=0.001) in the 
HeLa epithelial cervical cancer cells and from 73.7±0.7 to 
67.6±1.1% (P=0.001) in the A549 lung adenocarcinoma cells, 
respectively, and the number of cells in the S and G2/M phase 
was increased as compared to the scramble control (Fig. 3D-b 

Figure 3. Mitogenic effects of cav-2 down-regulation in C6, HeLa, A549, MCF7 and PC3M cells. C6, HeLa, A549, MCF7 and PC3M cells were transfected 
with scramble or cav-2 siRNA for 48 h. (A) WCLs were subjected to immunoblot analysis with anti-cav-2, anti-cav-1 and anti-actin antibodies. Shown is a 
representative experiment that was repeated three times. (B) After 2 days of incubation, cells were treated with 0.5 mg/ml MTT for 4 h and then dissolved in 
100 µl of DMSO for 30 min. Absorbance was measured at 540 nm by a microplate reader as described in Materials and methods. The results represent the 
mean ± SE of three independent experiments. (C) Cells were seeded on the top layer in a 0.35% agarose medium on a base layer of 0.5% agar medium. After 
2 weeks, colonies were stained with 0.02% crystal violet solution for 1 h and photographed using a dissecting microscope and the number of large colonies 
(>0.042 mm in diameter) counted were scored using Image-ProPlus 6.1 as described in Materials and methods. The results represent the mean ± SE of three 
independent experiments. (D) Cells were harvested with trypsin, fixed in ethanol, stained with propidium iodide, and analyzed by flow cytometry as described 
in Materials and methods. Representative cell cycle profiles from one representative out of a total of three experiments are shown for scramble control and 
cav-2 siRNA-transfected cells. The representative cell cycle profiles of the scramble control and cav-2 siRNA-transfected cells are indicated in black and red, 
respectively. The results represent the mean ± SE of three independent experiments. a, C6 glioma cells; b, HeLa epithelial cervical cancer cells; c, A549 lung 
adenocarcinoma cells; d, MCF7 breast cancer cells; e, PC3M prostate carcinoma cells.
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and -c). As observed in Fig. 3B and C with no significant 
changes in proliferation and colony formation of MCF7 and 
PC3M cells, their cell cycle progression was also unaffected 
by cav-2 siRNA (Fig. 3D-d and -e). These data suggest that 
cav-2 siRNA serves as a modulator for the inhibition of 
proliferation, cell cycle and growth of C6 glioma cells. 

Regulation of transcriptional activity by cav-2 in HepG2 
hepatocellular carcinoma and C6 glioma cells. We previ-
ously showed that cav-2 regulates transcriptional activation 
of STAT3 by promoting mitogenic ERK signaling (9,31). As 
demonstrated in Figs. 2 and 3, cancer cell proliferation was 
reduced by re-expression of cav-2 in HepG2 hepatocellular 
carcinoma cells and by down-regulation of cav-2 in C6 glioma 
cells. To investigate whether the alteration of cav-2 expression 
inhibits transcriptional activation of Elk-1 and STAT3, which 
are ERK-regulated transcription factors (43,44), we performed 
a reporter gene assay using a luciferase reporter construct 
containing the Elk-1 or STAT3-binding site (Fig. 4). When 
HepG2 hepatocellular carcinoma cells were re-expressed 
with exogenous cav-2, transcriptional activation of Elk-1 and 
STAT3 was decreased by 2.4- and 1.3-fold, respectively as 

compared to the untransfected cells (Fig. 4A). In C6 glioma 
cells, down-regulation of cav-2 by cav-2 siRNA led to a 1.2- 
and 2.8-fold decrease in transcriptional activation of Elk-1 
and STAT3, respectively, as compared to the scramble control 
(Fig. 4B). The data together with the results from Figs. 2 and 3 
demonstrate that exogenous introduction of cav-2 and siRNA-
mediated knockdown of cav-2 can be applied to delay cancer 
progression by retarding cancer cell proliferation and growth 
by reducing mitogenic transcriptional activation in HepG2 
hepatocellular carcinoma and C6 glioma cells, respectively.

Discussion

Previous studies have reported that cav-1 regulates multiple 
cancer-related processes including cell growth, migration, 
metastasis and angiogenesis (4,11,45). Although cav-2 is 
widely present in tumor cells (2), the regulatory function of 
cav-2 in tumor progression has not been investigated. In the 
present study, we explored the effects of the alteration of cav-2 
status in various types of cancer cells. We first examined cav-2 
mRNA levels and protein expression in HepG2, SH-SY5Y, 
LN-CaP, C6, HeLa, A549, MCF7 and PC3M cells (Fig. 1). 
Cav-2 mRNA and protein expression was absent in HepG2, 
SH-SY5Y and LN-CaP cells, whereas it was present in C6, 
HeLa, A549, MCF7 and PC3M cells. Cav-2 was co-expressed 
with cav-1 in C6, HeLa and A549 cells.

Our results showed that cav-2 deficiency, produced by 
siRNA-mediated silencing, caused attenuation of cancer cell 
proliferation in C6 glioma cells and promotion in human HeLa 
epithelial cervical cancer and A549 lung adenocarcinoma 
cells with no change in cav-1 expression (Fig. 3A). When cav-2 
was re-expressed in human HepG2 hepatocellular carcinoma 
cells which expressed cav-1 alone (Fig. 1), the cancer cell 
growth and proliferation were significantly reduced without 
a change in cav-1 expression (Fig. 2). In a recent study, we 
demonstrated that cav-2 regulates cellular mitogenesis of 
insulin signaling irrespectively of cav-1 expression (10). Thus, 
our present data support the regulatory role of cav-2 in cancer 
progression independently of cav-1.

Cav-1 expression is down-regulated or mutated in many 
types of human cancers, which suggests that cav-1 acts as a 
tumor suppressor (46). Of interest, we found that cav-2 was 
not detected while cav-1 was expressed in HepG2 hepato-
cellular carcinoma cells suggesting that cav-2 instead of cav-1 
plays a role as a tumor suppressor in hepatocellular carcinoma 
(Fig. 1A). Down-regulation of cav-1 gene expression has 
been correlated with promoter methylation in human breast, 
ovarian, prostate and lung cancers (33-36). Accordingly, as the 
loss of cav-2 expression in HepG2 hepatocellular carcinoma 
cells by promoter methylation was examined using 5-Aza-
CdR treatment, cav-2 expression was not restored indicating 
the absence of the cav-2 gene in the hepatocellular carcinoma 
cells (Fig. 1B). The present data demonstrated that exogenous 
addition of cav-2 markedly decreased cancer cell growth and 
proliferation of HepG2 hepatocellular carcinoma (Fig. 2). 
These results suggest that exogenous cav-2 can be used as an 
anticancer agent against human hepatocellular carcinoma. 

ERK activation induces phosphorylation of Elk-1 (1) 
and STAT3 (44). In previous studies, we demonstrated 
cav-2-dependent promotion of ERK-mediated transcriptional 

Figure 4. Effects of cav-2 re-expression in HepG2 hepatocellular carcinoma 
cells and cav-2 depletion in C6 glioma cells on transcriptional activation 
of Elk-1 and STAT3. (A) HepG2 hepatocellular carcinoma cells were 
transfected with plasmid DNA (Elk-1-Luc or STAT3-Luc) along with 
the pcDNA3 vector or pcDNA3-cav-2 with the pRL-TK vector for 48 h. 
Luciferase activity was measured with a dual luciferase assay system, and 
data are presented as the mean ± SE of three independent experiments 
performed. (B) C6 glioma cells were transfected with scramble or cav-2 
siRNA for 24 h. The cells were transfected with plasmid DNA (Elk-1-Luc 
or STAT3-Luc) along with pRL-TK vectors for 48 h. Luciferase activity was 
measured with a dual luciferase assay system, and data are presented as the 
mean ± SE of three independent experiments performed. 
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activation of STAT3 (9,31). In the present study, we investi-
gated whether ERK-mediated transcriptional activation of 
Elk-1 and STAT3 is affected by re-expression of exogenous 
cav-2 in HepG2 hepatocellular carcinoma cells and down-
regulation of cav-2 by siRNA in C6 glioma cells, which led 
to retardation of cancer cell growth and proliferation (Figs. 2 
and 3). Changes in cav-2 status in the hepatocellular carci-
noma and glioma cells induced a significant reduction in the 
transcriptional activation of Elk-1 and STAT3 (Fig. 4). 

STAT3 is constitutively activated in many types of human 
cancers (47). Therefore, the cav-2 gene could be an appealing 
therapeutic target for inhibition of oncogenic STAT3 signaling. 
The regulatory role of cav-2 in human cancer progression 
warrants investigation in animal models by employing cav-2 
gene transfer delivered by either direct injection into hepatocel-
lular carcinomas or via hepatic artery and cav-2 antisense gene 
therapy for gliomas using viral or non-viral vectors. Further 
investigation of the therapeutic gene modulation of cav-2 may 
facilitate clinical application of cav-2-targeted cancer therapy. 
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