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Abstract. Soft tissue sarcomas (STS) are a heterogeneous 
group of malignant tumours representing 1% of all malig-
nancies in adults. Therapy for STS should be individualised 
and multimodal, but complete surgical resection with clear 
margins remains the mainstay of therapy. Disseminated 
soft tissue sarcoma still represents a therapeutic dilemma. 
Commonly used chemotherapeutic agents such as doxoru-
bicin and ifosfamide have proven to be effective in fewer 
than 30% in these cases. Therefore, we tested the apop-
totic and anti‑proliferative in vitro effects of TNF-related 
apoptosis-inducing ligand (TRAIL) and taurolidine 
(TRD) on rhabdomyosarcoma (A-204), leiomyosarcoma 
(SK-LMS-1) and epithelioid cell sarcoma (VA-ES-BJ) cell 
lines. Viability, apoptosis and necrosis were quantified by 
FACS analysis (propidium iodide/Annexin  V staining). 
Gene expression was analysed by DNA microarrays and the 
results validated for selected genes by rtPCR. Protein level 
changes were documented by western blot analysis. Cell 
proliferation was analysed by BrdU ELISA assay. The single 
substances TRAIL and TRD significantly induced apoptotic 
cell death and decreased proliferation in rhabdomyosarcoma 
and epithelioid cell sarcoma cells. The combined use of 
TRAIL and TRD resulted in a synergistic apoptotic effect 

in all three cell lines, especially in rhabdomyosarcoma cells 
leaving 18% viable cells after 48 h of incubation (p<0.05). 
Analysis of the differentially regulated genes revealed that 
TRD and TRAIL influence apoptotic pathways, including 
the TNF-receptor associated and the mitochondrial pathway. 
Microarray analysis revealed remarkable expression changes 
in a variety of genes, which are involved in different apop-
totic pathways and cross talk to other pathways at multiple 
levels. This in vitro study demonstrates that TRAIL and TRD 
synergise in inducing apoptosis and inhibiting proliferation 
in different human STS cell lines. Effects on gene expres-
sion differ relevantly in the sarcoma entities. These results 
provide experimental support for in vivo trials assessing the 
effect of TRAIL and TRD in STS and sustain the approach 
of individualized therapy.

Introduction

Soft tissue sarcomas (STS) are a heterogeneous group of 
malignant neoplasms. They represent 15% of all malignancies 
in children and 1% in adults (1). The therapy of choice involves 
surgical resection with a wide margin of healthy tissue, usually 
followed by radiation treatment in order to decrease local recur-
rence (2,3). Unfortunately, about 50% of all patients develop 
distant metastases and are ineligible for surgical treatment (4,5). 
In cases of advanced metastatic disease the median survival time 
from the time of diagnosis with and without chemotherapy treat-
ment is less than 12 months (6,7). Few agents such as doxorubicin, 
ifosfamide and dacarbazine have proven to be effective in the 
therapy of soft tissue sarcomas (2). However, the results of these 
treatments are poor and often exhibit no significant improve-
ments in overall survival (8). Doxorubicin, which has been the 
most frequently used chemotherapeutic agent in the treatment of 
soft tissue sarcomas, demonstrates response rates of 20 to 30% 
in disseminated disease (9,10). The combination of doxorubicin 
with ifosfamide is more effective, exhibiting slightly higher 
response rates than doxorubicin alone, but is associated with 
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severe short- and long-term toxicities, including bone marrow 
suppression (11,12). To date, most large trials have not distin-
guished between histological subtypes of soft tissue sarcomas. 
One example of such an early trial is the EORTC 62771 trial 
which was conducted in 1994 and involved 317 patients with 
several histological types of sarcomas (malignant fibrous histio-
cytoma, synovial sarcoma, liposarcoma and leiomyosarcoma) 
(13). Local recurrence was reduced in the chemotherapy arm, but 
there was no significant benefit in overall survival. The Sarcoma 
Meta-Analysis Collaboration in 1997 published a quantitative 
meta-analysis of 1,568 patients with localized resectable soft 
tissue sarcomas and reported that doxorubicin‑based adjuvant 
chemotherapy significantly improved the time to local and 
distant recurrence and overall recurrence‑free survival. However, 
there was no significant overall survival benefit at 10 years (14). 
Unfortunately, most of the large meta-analyses did not differen-
tiate between histological subtypes because of the overall rarity 
of soft tissue sarcomas. However, differentiation is an important 
prognostic factor because the soft tissue sarcoma subtypes are 
differentially sensitive to several agents (2). In recent phase II 
trials, paclitaxel has proven to be effective in the treatment of 
angiosarcomas, whereas trabectedin has demonstrated prom-
ising activity in leiomyosarcomas and liposarcomas (2,15,16).

Within the scope of this trial, we investigated the effects 
of TRAIL and taurolidine on three different STS cell lines. 
Two common subtypes of soft tissue sarcomas, rhabdomyosar-
coma (A-204) in children and leiomyosarcoma (SK-LMS-1) in 
adults (1), and epithelioid cell sarcoma (VA-ES-BJ), which is 
a rare subtype affecting mostly young patients and has a poor 
long-term prognosis (17), were examined.

TRAIL and taurolidine are promising combination partners 
that exhibit synergistic apoptotic effects on a wide range of malig-
nant cells in vitro, including carcinoma cells of the oesophagus, 
pancreas, colon and liver (18-20) as well as fibrosarcoma (21).

Since the discovery of TRAIL, a member of the 
TNF-superfamily, its apoptosis-inducing effects were docu-
mented in several types of malignant cells (22-25). TRAIL binds 
to its receptors DR4 and DR5 (death receptor 4 and 5) resulting 
in receptor oligomerization and recruitment of FAS-associated 
protein with death domain (FADD) and caspase 8, forming 
a functional death-inducing signalling complex  (DISC). 
Subsequently, DISC leads to the activation of the extrinsic 
pathway of apoptosis via caspase 8 (26-28). However, associa-
tions between TRAIL and the intrinsic mitochondrial pathway 
have been also described (20). In this pathway, formation of the 
apoptosome is a key regulatory point following the release of 
mitochondrial cytochrome c and thus leading to apoptosis (29).

Taurolidine (TRD) is an antiseptic agent derived from the 
amino acid taurine. It has been used to treat peritonitis and cath-
eter-related infections (18). Recently, TRD was used effectively 
to treat malignant diseases (30-33). In a variety of malignant cell 
lines including carcinomas of the gastrointestinal tract as well 
as glioblastoma, fibrosarcoma, prostate and melanoma cancer 
cell lines, TRD caused the inhibition of proliferation (31,34-
36), the inhibition of angiogenesis (30) and the induction of 
cell death (20,30-32,37-39). The precise mechanism of action 
is still not clear, but translational inhibition (35) and several 
pathways of programmed cell death (38) have been implicated. 
Some groups suggest that the extrinsic pathway (19,20,31,39,40) 
is involved, whereas others report involvement of the intrinsic 

pathway (37,41). Furthermore, first clinical use of TRD was asso-
ciated with remarkable low toxicity which could be a decided 
advantage over established chemotherapeutic agents (30,42). 
TRD was well tolerated after intravenous application in patients 
with advanced melanoma or glioblastoma (43,44).

Recent in vitro studies have revealed that the combination 
of TRAIL and TRD resulted in sustained cell death, which was 
superior to single application of TRAIL or TRD. This is despite 
the use of lower concentrations of both substances in the combi-
nation trials (19,20,40). Experimental findings have demonstrated 
that combined treatment with taurolidine reduces the potential 
toxic side-effects of TRAIL, not only by reducing the required 
optimal dose of TRAIL but also by modulating TRAIL's effector 
pathways without affecting its antitumour efficacy (20). Inspired 
by these results, we examined the effects of TRAIL and TRD on 
rhabdomyosarcoma (A-204), leiomyosarcoma (SK-LMS-1) and 
epithelioid cell sarcoma (VA-ES-BJ) cells.

Materials and methods

Cell lines and cell culture. Three different cell lines were used 
for this study. The human rhabdomyosarcoma cell line A-204 
was purchased from DSMZ (Braunschweig, Germany, DSMZ 
no. ACC 250) and cultivated in McCoy's 5A with glutamine and 
10% fetal bovine serum (FBS). Human leiomyosarcoma cells, 
SK-LMS-1, were purchased from ATCC (Manassas, USA) 
and maintained in MEM with Earle's Salts supplemented with 
10% FBS, 1% non-essential amino acids, 1 mM sodium pyru-
vate and 2 mM L-glutamine. The human epithelioid sarcoma 
cell line VA-ES-BJ also was purchased from DSMZ (DSMZ no. 
ACC 328) and was cultured in Dulbecco's MEM with sodium 
pyruvate, supplemented with 20% FBS, 1% non‑essential amino 
acids and 2 mM L-glutamine. All culture media were supple-
mented with 100 U/ml penicillin and 100 µg/ml streptomycin. 
The cells were grown to a sub‑confluent monolayer and main-
tained at 37˚C and 5% CO2 in a humidified atmosphere.

Reagents. TRD (Taurolin® 2%, Boehringer Ingelheim, 
Ingelheim, Germany) containing 5%  Povidon was used 
as supplied by the manufacturer. A 5%  Povidon solution 
(K16 Povidon, generously provided by Geistlich Pharma AG, 
Wolhusen, Switzerland) was applied in equal volume and served 
as a control for the TRD group. Recombinant human TRAIL/
Apo2L (Bender MedSystems GmbH, Vienna, Austria) was 
dissolved in distilled water according to the manufacturer's 
instructions. Distilled water served as a control for TRAIL and 
was applied in equal volume.

Dose-finding study and application of reagents. To determine 
the most effective single concentrations and the time dependency 
of the effects, cells were incubated with various concentrations 
of TRAIL (50, 100, 250 and 500 ng/ml), TRD (50, 100, 250 
and 500 µmol/l) and the respective controls (distilled water or 
Povidon) for 2, 6, 12, 24 and 48 h. All experiments were repeated 
with three consecutive cell passages. All cell lines showed 
highest apoptotic response to 250 ng/ml TRAIL and 250 µmol/l 
TRD as single substances. These most effective single concen-
trations of TRD and TRAIL were then used as single substances 
and in combination to identify a possibly synergistic effect. We 
chose 2, 6, 12, 24 and 48‑h time points.



INTERNATIONAL JOURNAL OF ONCOLOGY  42:  945-956,  2013 947

Flow cytometry analysis. After the defined incubation time, the 
supernatant with floating cells was collected and the adherent 
cells were harvested by trypsinisation. These cells were centri-
fuged and subsequently resolved with Binding Buffer (Bender 
MedSystems GmbH) to an absolute cell count of 1x105. Next, 
the cells were incubated with Annexin V-FITC (BD Biosciences, 
Heidelberg, Germany) and propidium iodide (PI, Bender 
MedSystems GmbH) following the manufacturer's instruc-
tions. Cells were analysed using a FACS flow cytometer (BD 
FACSCalibur, BD Biosciences). Cells (20,000) were counted 
for each measurement. Dot plots and histograms were analysed 
by CellQuest Pro Software (BD Biosciences). Annexin V binds 
phosphatidylserine on the outer membranes of cells, and phos-
phatidylserine becomes exposed on the surfaces of apoptotic 
cells. Thus, the Annexin V-positive cells were considered apop-
totic. PI is an intercalating agent that cannot permeate through 
the cell membranes of viable or early apoptotic cells. Therefore, 
PI stains only the DNA of necrotic or very late apoptotic cells. In 
this study, Annexin V- and PI-positive cells were termed necrotic. 
Annexin V- and PI-negative cells were counted as viable.

Cell morphology. Morphology of cultured cells was observed 
and documented using a phase contrast microscope (Zeiss 
Axiovert 25, Carl Zeiss, Göttingen, Germany).

TUNEL assay. To stain apoptotic cells, we used terminal deoxy-
nucleotidyl transferase-mediated dUTP nick end-labelling 
consistent with the manufacturer's protocol (In Situ Cell Death 
Detection Kit, Fluorescein, Roche Applied Science, Mannheim, 
Germany). Cells were incubated with the appropriate reagents 
(TRD/TRAIL) for 12 h.

Proliferation assay. To evaluate the proliferation of the cells, 
we used a colorimetric cell proliferation BrdU-ELISA (Roche 
Applied Science) according to the manufacturer's instructions. 
An ELISA-Reader (Sunrise™, Tecan Trading AG, Männedorf, 
Switzerland) was used to detect the amount of newly synthe-
sised DNA. We plated 10,000 cells per well in a 96-well plate. 
The incubation time was 6 h.

Statistical analysis. SPSS Version 17.0 for Windows was 
used for statistical analysis. The results of FACS analysis for 
percentages of viable, apoptotic and necrotic cells are given 
as the means ± SEM of three independent experiments with 
consecutive passages. In this study, comparisons between 
experimental groups were performed using one-way analysis of 
variance (one-way ANOVA) and a post hoc test (Tukey's) over 
all time points and at singular time points. P‑values ≤0.05 were 
considered statistically significant and indicated in the figures as 
follows: ***p≤0.001, **p≤0.005 and *p≤0.05.

Oligonucleotide microarray analysis. To identify the changes 
in gene expression levels caused by the treatment with TRAIL 
and TRD, total‑RNA was purified from the cells after incuba-
tion with the appropriate agent for 6 h using a RNeasy kit from 
Qiagen (Hilden, Germany) as specified by the manufacturer. 
RNA integrity was assessed using an Agilent 2100 Bioanalyzer 
(Agilent Technologies, Santa Clara, CA, USA). For microarray 
analyses, we applied the methods previously described by 
Daigeler et al (40). We used the Affymetrix GeneChip platform, 

employing a standard protocol for sample preparation and 
microarray hybridisation. A one-way ANOVA model followed 
by Tukey's HSD (Honestly Significant Difference)‑test was used 
to verify the hypothesis that there were no differences in expres-
sion between the drug-treated group and the control group. The 
multiplicity correction was performed using Benjamini and 
Hochberg procedure to control the false discovery rate (FDR) at 
0.05%. In a pair-wise comparison of the differentially expressed 
genes between the control and the drug-treated cells identified 
by the ANOVA analyses, a subset of genes was identified that 
displayed a conjoint regulation in the treated cells. Genes were 
placed in this latter group if they exhibited a mean ≥2-fold 
increase or decrease compared to the control cells. This subset 
of genes was subjected to the GeneTrail (45) software to identify 
any over‑representation of genes associated with the regulatory 
pathways that are represented in the Kyoto Encyclopaedia of 
Genes and Genomes (KEGG) and TRANSPATH databases. 
Microarray data are deposited in the GEO public database 
(accession nο. GSE36572). These methods fulfilled the MIAME 
criteria (http://www.mged.org/miame).

Real-time PCR for microarray data validation. Microarray 
data validation was performed for selected candidate genes 
(BAG5, EGFR, FADD, FYN, GADD45A, HSPA1B/HSP70, 
NEU1, PPM1D, PPP1R15A/GADD34, PPP1R3D, SIAH1, 
WEE1). RNA isolation was performed from cells harvested 
after 6 h of treatment. Total‑RNA (2 µg) was reverse tran-
scribed using the High Capacity cDNA Archive kit (Applied 
Biosystems, Carslbad, CΑ, USA). Real-time PCR was 
performed with a 7900 HT SDS system (Applied Biosystems) 
in a 20 µl reaction volume containing 1X Master Mix, 1 µl 
assay and cDNA equivalent to 2 ng total‑RNA. All reagents 
and real-time PCR assays (BAG5 Hs00191644_m1, EGFR 
Hs01076092_m1, FADD Hs00538709_m1, FYN Hs00941604_
m1, GADD45A Hs00169255_m1, HSPA1B Hs01040501_sH, 
NEU1 Hs00166421_m1, PPM1D Hs01013293_m1, PPP1R15A 
Hs00169585_m1, PPP1R3D Hs00901540_s1, SIAH1 
Hs00361785_m1, WEE1 Hs01119388_m1) were purchased 
from Applied Biosystems. Reactions were performed in dupli-
cate and analysed by the ∆∆Ct method. Human GAPD was used 
for normalisation.

Western blot analysis. Western blot analyses were performed 
to validate the effects of alterations in gene expression on 
protein levels using an SDS-PAGE gel and the following 
antibodies (except BAG5, which was purchased from Abcam 
PLC, Cambridge, UK); all other antibodies were purchased 
from Santa Cruz Biotechnology Inc. (Heidelberg, Germany): 
BAG5 (mouse, ab56738), EGFR (rabbit, 1005), FADD (rabbit, 
H-181), GADD34/PPP1R15A (rabbit, S-20), GADD45α (rabbit, 
H-165), HSP70 (mouse, C92F3A-5) and Wee1 (rabbit, C-20). 
Western blot analyses were not performed for PPPM1D, FYN 
and PPP1R3D because functional antibodies were not available. 
Total protein was purified from the cells after incubation with 
the appropriate substances for 8 h. Floating cells were collected 
together with the supernatant; adherent cells were harvested 
using a cell scraper and added to the solution. Cells were 
gathered by centrifugation. After removal of the supernatant, 
pellets were incubated with 100 µl Cell Culture Lysis Reagent 
(Promega Corporation, Mannheim, Germany) each for 1 h on 
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ice. The cell remnants were then separated by centrifugation, 
and the supernatant containing the purified protein was frozen 
at -80˚C until further use.

Results

The combination of TRAIL and TRD amplifies apoptotic 
effects in A-204 human rhabdomyosarcoma and VA-ES-BJ 
human epithelioid sarcoma cells. Single application of TRD 
induced significantly apoptotic and necrotic cell death in A-204 
human rhabdomyosarcoma cells. Viable cells were decreased 
to 22.0% after 48 h of incubation compared to 91.9% in the 
control and 90.6% in the TRAIL group (p<0.001) (Fig. 1). 
Addition of TRAIL promoted the apoptotic influence of TRD 
in rhabdomyosarcoma cells. The combined treatment of TRD 
and TRAIL resulted in a marked increase in cells undergoing 

apoptosis over all time points (p≤0.001). After 6 h of incubation 
first apoptotic effects were seen. The combination with TRAIL 
and TRD exhibited highest apoptosis rates after 48 h with 66.1% 
apoptotic cells (3.0% in control group, p≤0.001). Thus, combi-
nation treatment was most effective in reducing cell viability 
with 17.9% remaining viable cells after 48 h (vs. 91.9% in the 
control group, p<0.001) (Fig. 1A).

The viability of the VA-ES-BJ human epithelioid sarcoma 
cells was moderately but significantly reduced by single treat-
ment with TRD (Fig. 2). A total of 81.8% of the cells was 
detected as viable after 48 h treatment with TRD (vs. 97.5% 
in the control group, p=0.015). Single application of TRAIL 
had no significant effect on cell viability. The combined treat-
ment with TRAIL and TRD led to a significant increased 
apoptotic cell death after 12 h. The population of viable cells 

Figure 1. Effects of TRAIL, TRD and combination of both reagents on rhab-
domyosarcoma (A-204) cells. A-204 cells were incubated for 2-48 h with 
TRAIL, TRD and combination of both reagents. The percentages of (A) viable, 
(B) apoptotic and (C) necrotic cells were determined using fluorescence acti-
vated cell sorting (FACS) analysis for Αnnexin V-FITC and propidium iodide. 
The values indicate the means ± SD of three independent experiments and 
consecutive passages. Significantly different at ***p≤0.001, **p≤0.005, *p<0.05; 
one-way ANOVA.

Figure 2. Effects of TRAIL, TRD and combination of both reagents on human 
epithelioid sarcoma (VA-ES-BJ) cells. VA-ES-BJ cells were incubated for 
2-48 h with TRAIL, TRD and combination of both reagents. The percent-
ages of (A) viable, (B) apoptotic and (C) necrotic cells were determined using 
fluorescence activated cell sorting (FACS) analysis for Annexin V-FITC and 
propidium iodide. The values indicate the means ± SD of three independent 
experiments and consecutive passages. Significantly different at ***p≤0.001, 
**p≤0.005, *p<0.05; one-way ANOVA.

  A

  B

  C

  A

  B

  C
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was reduced to 30.7% after 48 h of incubation whereas 97.5% 
were left viable in the control group (p<0.001). Apoptosis also 
peaked at this time point, reaching a maximum of 46.1% in the 
combination group compared to only 1.5% in the control group 
(p<0.001) (Fig. 2A).

Neither single application nor combination treatment with 
TRAIL and TRD affected viability of SK-LMS-1 leiomyosar-
coma cells significantly. The effects when treating SK-LMS-1 
leiomyosarcoma cells with TRD and TRAIL were only 
moderate (Fig. 3). The combined application of TRAIL and 
TRD led to a slight decrease of viable cells to 67,5% after 12 h 
(vs. 86.5% in the control group, p=0.088). Single application 
of TRD had a similar effect on SK-LMS-1 cells (69.4% viable 

cells after 12 h). Neither single application nor combination 
treatment with TRAIL and TRD had a significant influence 
on apoptosis.

TRD significantly inhibited proliferation of A-204 human 
rhabdomyosarcoma, VA-ES-BJ human epithelioid sarcoma 
and SK-LMS-1 leiomyosarcoma cells. TRD was able to 
inhibit cell proliferation in all examined cell lines (p<0.001) 
as indicated by the BrdU-Assay (Fig.  4). In SK-LMS-1 
cells, combination with TRAIL resulted in a stronger effect 
compared to incubation with TRD alone (p<0.001). For the 
other cell lines, combination therapy did not increase the inhi-
bition of proliferation. Administration of TRAIL as a single 

Figure 3. Effects of TRAIL, TRD and combination of both reagents on leio-
myosarcoma (SK-LMS-1) cells. SK-LMS-1 cells were incubated for 2-48 h 
with TRAIL, TRD and combination of both reagents. The percentages of (A) 
viable, (B) apoptotic and (C) necrotic cells were determined using fluorescence 
activated cell sorting (FACS) analysis for Annexin V-FITC and propidium 
iodide. The values indicate the means ± SD of three independent experiments 
and consecutive passages. Significantly different at ***p≤0.001, **p≤0.005, 
*p<0.05; one-way ANOVA.

  A

  B

  C

Figure 4. Bromodeoxyuridine (BrdU) proliferation assay. The effects of 
the indicated compounds on proliferation in (A) A-204, (B) SK-LMS-1 and 
(C) VA-ES-BJ cells were measured by BrdU cell proliferation assay. The assay 
was performed following 6 h of incubation with sodium pyruvate (control), 
250 µmol/l TRD, 250 ng/ml TRAIL or with a combination of TRD and 
TRAIL. Data are presented as the mean ± SD of 8 measurements. ANOVA 
was used to demonstrate statistical significance between the different catego-
ries with a Tukey's multiple comparison post hoc test. Significantly different at 
***p≤0.001, **p≤0.005, *p< 0.05; ns, p>0.05). The indicators of significance refer 
to the difference between the treatment groups and the control series.

  A

  B

  C
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agent reduced proliferation significantly only in A-204 cells. 
Strikingly, proliferation was increased in VA-ES-BJ cells after 
single application of TRAIL.

The addition of TRD induced morphological changes and cell 
detachment. As demonstrated in Fig. 5, addition of TRD resulted 
in morphological changes in all cell lines. TRD led to shrinkage 
of cells and dissolution of confluent cells groups. Longer incuba-
tion with TRD resulted in marked cell detachment.

Figure 5. Morphological changes after treatment. Representative microscopic 
photographs showing morphological changes in (A) A-204, (B) SK-LMS-1 and 
(C) VA-ES-BJ cells induced by TRD, TRAIL and combination of both after 12 
and 24 h, respectively.

Figure 6. Hierarchical clustering: overall gene expression pattern of reliably 
measured probesets (24797). Horizontal rows represent individual probe 
sets/genes; vertical columns represent individual samples. Kontrolle, control; 
Tauro, TRD; Trail, TRAIL; T+T, combination treatment. Color scale: black,  
mean (indicates unchanged expression), brightest green, 0,25 x mean (indicates 
expression level below mean), brightest red, 4 x mean (indicates higher expres-
sion level than mean). The dendogram at the top of the matrix indicates the 
degree of similarity between examined groups; the dendogram at the left side 
indicates the degree of similarity among the selected genes according to their 
expression patterns.

  A

  B

  C
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Microarray analysis revealed differential gene expression 
patterns in all examined cell lines after the treatment with 
TRAIL and TRD. With respect to the overall gene expression 
patterns, there were differences between the individual cell 
lines (Fig. 6). In our gene expression study, we focused on apop-
tosis-related genes. For all three cell lines, we tested 621 probe 
sets as previously described by Daigeler et al  (20,40), which 
corresponded to 349 genes. TRAIL caused only a few differ-
ences in the expression of the analysed genes compared to the 
control, whereas TRD alone and in combination with TRAIL 
led to expression changes in a wide range of apoptosis-related 
genes. The number of altered genes with at least a ≥2-fold 
change is shown in Table I.

Additional evaluations with real-time PCR for selected 
candidate genes yielded consistent results regarding changes 
in expression of several genes. A consistent increase of expres-
sion in all three cell lines was observed after TRAIL and TRD 
treatment for GADD45A (growth arrest and DNA damage A), 

PPP1R15A (protein phosphatase 1, regulatory subunit 15A) 
and HSPA1B (heat shock 70  kDa protein  1B) (Table  II). 
Further, microarray analysis revealed a downregulation of 
Wee1 (protein kinase wee1), FADD (Fas-associated protein 
with death domain), Fyn (proto-oncogene tyrosine-protein 
kinase Fyn) and PPM1D (protein phosphatase 1D) in several 
treatment groups.

Western blot analyses demonstrated consistent results for 
gene expression and protein levels for GADD45A, HSPA1B, 
PPP1R15A and WEE1. For GADD45A, the results of the 
western blot analyses corresponded to the gene expression 
changes in A-204 and VA-ES-BJ cells. Specifically, combi-
nation treatment with TRD and TRAIL caused increased 
protein expression compared to control and treatment with 
TRAIL (Fig. 7A). HSPA1B was upregulated in TRD-treated 
SK-LMS-1 and VA-ES-BJ cells corresponding to the results of 
the microarray and PCR analyses (Fig. 7B). Analogous to the 

Table I. Number of altered genes with at least a ≥2-fold change in gene expression.

	 TRD vs. control	 TRAIL vs. control	 TT vs. control	 TT vs. TRD	 TT vs. TRAIL

A-204	 128	 10	 113	 19	 125
SK-LMS-1	 116	 22	 122	   2	 118
VA-ES-BJ	 102	 35	 117	   7	   97
All three cell lines	   56	   3	   53	   1	   49

TT, TRAIL and TRD.

Figure 7. Selected western blot analysis results for candidate proteins. Protein isolation was performed after an incubation time of 8 h with the respective substances. 
Antibodies used: GADD34/PPP1R15A (rabbit, S-20), GADD45α (rabbit, H-165), HSP70 (mouse, C92F3A-5) and Wee1 (rabbit, C-20). C, control; TRD, 250 µmol/l 
taurolidine; TRAIL, 250 ng/ml TRAIL; TT, 250 µmol/l TRD and 250 ng/ml TRAIL.

  A

  B

  C

  D
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gene expression levels, protein expression of PPP1R15A was 
enhanced by treatment with the different agents in all cell lines, 
in which combination treatment led to the highest protein levels 
(Fig. 7C). In all treated cell lines, Wee1 was downregulated in 
the microarray analyses and in the protein analyses after treat-
ment with TRD (Fig. 7D).

Discussion

Since the discovery of TRAIL as a cell death-inducing member 
of the TNF-superfamily, its effects on apoptosis have been 
demonstrated for several malignancies, including soft tissue 
sarcomas (46,47). In order to overcome TRAIL-resistance or 
enhance its apoptotic activity there is an increasing interest 
to find suitable combination partners for TRAIL (48-50). 
Recent trails unveiled the anti-neoplastic qualities of TRD 
(31,36,38,51). In this study, we chose to combine TRAIL 
with TRD to treat three different soft tissue sarcoma cell 
lines. In our study the combination of TRAIL and TRD 
induced apoptotic cell death in A-204 rhabdomyosarcoma 
and VA-ES-BJ epithelioid sarcoma cells but not in SK-LMS-1 
leiomyosarcoma cells. For both treated cell lines, the apoptotic 
index could be increased significantly by addition of TRAIL 
compared to treatment with TRD alone, suggesting that TRD 
and TRAIL work synergistically in rhabdomyosarcoma and 
epithelioid sarcoma cell lines beyond the mere additive effect. 
Earlier trials also revealed synergistic effects of TRAIL and 
the chemotherapeutic agent melphalan in the rhabdomyosar-
coma cell line Te-671 (52). Likewise, the combined application 
of TRAIL and doxorubicin was shown to be more effective 
than single treatment of TRAIL in several rhabdomyosarcoma 
cell lines (53). To our knowledge, there are no trials evaluating 
TRAIL in epithelioid sarcomas. Merely paclitaxel and 5-FU 
are known to induce apoptosis in different epithelioid sarcoma 
cell lines (54).

TRD inhibited proliferation in all tested sarcoma cell lines. 
Strikingly, the anti‑proliferative effect of TRD was enhanced 
significantly in SK-LMS-1 leiomyosarcoma cells by addition 
of TRAIL. Meanwhile, recent studies revealed TRD-induced 
proliferation inhibition in a wide range of malignant cell lines, 

including HT1080 human fibrosarcoma cells (30,34,35,40). 
Remarkably, proliferation inhibition was accompanied by a 
disruption of cell adherence and cytoskeleton which play a 
crucial role in tumour growth, metastasis and development. 
However, the exact mechanism of TRD-induced proliferation 
inhibition is still unknown and the appealing hypothesis that 
TRD inhibits cell proliferation by disruption of cell adhesion 
and cytoskeleton requires further experimental support.

RNA-microarray technology showed high correlations 
between apoptotic efficacy and upregulation of GADD45A 
(growth arrest and DNA damage-inducible protein  45), 
PPP1R15A (protein phosphatase 1 regulatory subunit 15A, 
synonym: GADD34) and HSPA1B (heat shock 70  kDa 
protein 1B).

GADD45A and PPP1R15A were upregulated with at least 
a ≥2-fold change in all three cell lines after single treatment 
with TRD and combined treatment with TRD and TRAIL 
compared to untreated control. Gene alteration could be 
confirmed by quantitative real-time PCR and western blot 
analysis.

GADD45 proteins co-operate in the activation of S and 
G2-M checkpoints following the exposure of cells to UV irra-
diation and other genotoxic stresses, thereby inducing growth 
arrest and apoptosis (55). The mechanisms by which GADD45 
proteins function in negative growth control is not fully under-
stood, although upregulation of these proteins was reported to 
be associated with increased apoptosis and p53-independent 
cell cycle arrest in a variety of soft tissue sarcomas (56). In 
a recent immunohistochemical study, high expression of 
GADD45 was associated with reduced invasiveness of chon-
drosarcomas, suggesting its potential diagnostic value in the 
histological grading of malignant chondrogenic tumours (57). 
However, the increased expression of GADD45B in our 
experiments suggests a potential involvement of GADD45B in 
TRD-mediated cell death in soft tissue sarcoma cells and has 
to be addressed in further studies.

Stressful growth conditions and exposure to DNA 
damaging agents lead to an upregulation of PPP1R15A in 
a wide range of human cell lines (58,59). High expression 
of PPP1R15A is known to promote apoptotic cell death in 
a p53-independent manner (59-61). A recent in vitro study 
detected enhanced gene expression of PPP1R15A during 
TRD-induced cell death in different malignant cell lines 
including human fibrosarcoma cells (62). Thus, PPP1R15A 
should be considered as a potential target of TRD in cancer 
cells.

Combination treatment with TRAIL and TRD enhanced 
HSPA1B protein level in SK-LMS-1 leiomyosarcoma and 
VA-ES-BJ epithelioid cell sarcoma cells. HSPA1B protein 
belongs to the heat shock protein family with a molecular 
weight of 70 kDa which acts as an important regulator of cell 
growth and survival in a wide range of cancer cells (63-65). 
These proteins are known to affect the intrinsic pathway by 
the inhibition of mitochondrial cytochrome c release and 
also by preventing apoptosome assembly (29). Upregulation 
of heat-shock proteins in different malignant cell lines was 
associated with an enhanced resistance towards hypoxia-
induced apoptosis (66). More particularly, heat-shock 70 kDa 
proteins protected nucleus integrity in non-small cell lung 
carcinoma cells which were subjected to heat shock (67). In 

Table II. Summary of the microarray and rtPCR data of the 
selected candidate genes.

	 Signal log ratio control vs. TT
Gene symbol/
cell line	 GADD45A	 PPP1R15A	 HSPA1B

Microarray data
  A-204	 1.77	 2.03	 0.68
  SK-LMS-1	 1.77	 1.96	 2.13
  VA-ES-BJ	 1.19	 2.17	 1.04
rtPCR data
  A-204	 2.05	 1.81	 0.82
  SK-LMS-1	 1.74	 1.36	 1.69
  VA-ES-BJ	 1.89	 2.24	 1.57

TT, TRD plus TRAIL.
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patients with urothelial carcinoma high levels of HSPA1B 
protein were associated with early tumour progression and 
invasion (68). Furthermore, recent in vitro studies suggested 
that heat-shock 70 kDa proteins might be responsible for 
chemoresistance in different malignant cell lines, and 
increased levels were found in 5-fluorouracil-resistant colon 
carcinoma cells suggesting its involvement in colon cancer 
chemoresistance  (69), whereas inhibition of heat shock 
70 kDa protein helped to overcome resistance to etoposide 
and 5-fluorouracil in oral squamous carcinoma cells (70). 
Moreover, TNF- and TRAIL-induced apoptosis could be 
suppressed by heat-shock 70 kDa in many different cell types 
(71). We could not be sure which of the manifold effects 
of heat‑shock proteins are relevant in sarcoma cell death. 
Their upregulation might only be a response to TRAIL- and 
TRD-induced cell stress. However, heat-shock proteins are 
essential to the survival of many cell types and might be one 
of the tools in chemoresistance in leiomyosarcoma or epithe-
lioid cell sarcoma cells.

Microarray analysis revealed a decrease of FADD with 
a ≥2-fold change in all three cell lines after combination 
treatment. FADD participates in death signalling in the 
extrinsic apoptotic pathway and can be recruited by several 
death receptors, including TRAIL-receptor. Subsequently 
this interaction leads to recruitment of caspase 8 and initia-
tion of apoptosis. The role of FADD in TRAIL signalling 
is controversial (73). Some studies showed that the absence 
of FADD leads to partial TRAIL-resistance and concluded 
that FADD is necessary for TRAIL-induced apoptosis by the 
death receptors DR4 and DR5 (74,75). Other groups showed 
that the induction of apoptosis by TRAIL is independent of 
FADD in different cell lines (73,76,77). Additionally, FADD 
was described as a negative regulator of the transcription 
factor NF-κB (nuclear factor κ-light chain-enhancer of 
activated B-cells), which promotes cell survival and tumour 
invasiveness of fibrosarcoma cells (78,79). In our study, we 
observed consistent downregulation of FADD mRNA in all 
cell lines and protein levels in the SK-LMS-1 cells. Repetitive 
western blot analyses in A-204 and VA-ES-BJ did not show 
significant changes in protein expression. Therefore, a mean-
ingful interpretion whether the downregulation of FADD 
plays a role in activation of apoptosis in the tested soft tissue 
sarcoma cells is not possible based on our data.

Expression of the PPM1D gene was downregulated with 
a ≥2-fold change in all three sarcoma cell lines. PPM1D, also 
known as Wip1, is a member of the nuclear type 2C protein 
phosphatase family and is known to be a negative regulator 
of cell stress response pathways (80). Previous studies have 
shown that PPM1D expression and phosphatase activity are 
required for the survival and progression of breast and ovarian 
carcinoma cells (81-83). Loss of PPM1D gene function 
sensitises mouse embryonic fibroblasts to stress- and DNA 
damage‑induced apoptosis (84). PPM1D overexpression has 
been observed in neuroblastomas, medulloblastomas, pancre-
atic adenocarcinomas and gastric carcinomas (85-89). Since 
there has been evidence that PPM1D acts as an oncogene, 
efforts were made to find selective inhibitors of PPM1D. As 
expected, tumour cell lines that overexpress PPM1D have 
shown to be more sensitive to PPM1D inhibition and consecu-
tive apoptosis than cell lines with normal levels (90). These 

findings point to PPM1D as a regulator in tumour cell 
survival.

The cell cycle gene Wee1 was downregulated in all 3 cell 
lines after single treatment with TRD as well as combined 
treatment with TRD and TRAIL. Though PCR measurements 
were not performed to confirm gene expression, microarray 
analyses and western blot analyses results were consistent 
for all cell lines. The Wee1 protein kinase functions as key 
regulator of the G2/M-checkpoint and stabilizes the genome 
in the S phase (91). Overexpression of Wee1 has previously 
been reported in osteosarcoma, glioblastoma, breast cancer 
and malignant melanomas (92-95). Recent studies identi-
fied Wee1 as a potential molecular target in cancer cells 
and the selective small molecule Wee1-inhibitor MK-1775 
demonstrated promising results in cancer cells with enhanced 
levels of Wee1 (96-98). However, MK-1775 has recently been 
included in a phase I clinical trial in patients with advanced 
solid tumours (95,99). In a present study, MK-1775 caused 
significantly apoptotic cell death in various sarcoma cell lines 
and patient‑derived tumour explants ex vivo suggesting that 
Wee1 may represent a new potential target in the treatment of 
sarcomas (100).

Combined treatment with TRD and TRAIL led to an 
upregulation of the Fyn gene primarily in A-204 and VA-ES-BJ 
cells. Fyn belongs to the Src family of kinases and is involved in 
a variety of signalling pathways. It is particularly upregulated 
in prostate cancer cells and may have a pivotal role in cancer 
progression and metastasis (101). Furthermore, high levels of 
Fyn activity were correlated with a higher metastatic ability of 
human pancreatic carcinoma and murine fibrosarcoma cells 
(102,103). However, these findings would indicate an enhanced 
cancer activity with subsequent disease aggravation induced 
by TRAIL and TRD and require further investigations.

Taken together, all results described above arose from 
in vitro tests. To make more concrete conclusions, further 
in vivo studies are necessary to specify programmed cell death 
following TRD and TRAIL treatment in soft tissue sarcomas 
and the results should be validated with primary cultures. 
Finally, gene expression and cell viability differed remark-
ably in all three analysed sarcoma entities after exposure to 
TRD and TRAIL pointing out the pivotal cellular differences 
among the soft tissue sarcoma subtypes. Unfortunately, most 
of the large clinical trials did not differentiate between histo-
logical subtypes because of the overall rarity of soft tissue 
sarcomas resulting in generalized pharmaceutical references 
and therapy. However, our findings sustain the approach of 
individualized therapy and investigation. Future trials as well 
as clinical therapy should focus on histological subtypes and 
be more indivualized in spite of the rarity and difficulties.
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