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Abstract. Downregulation of inhibitor of DNA binding 2 
(ID2) is associated with poor prognosis in cases of hepato-
cellular carcinoma (HCC). Therefore, to search for effective 
antitumor drugs for the treatment of HCC exhibiting poor 
prognostic indicators, we used two HCC-derived cell lines 
(HuH-7 and HLE) to alter ID2 levels. Specifically, ID2 
expression was knocked down in HuH-7 cells via transfec-
tion with ID2-specific small interfering RNAs and separately 
ID2 was overexpressed in HLE cells via an ID2 expression 
plasmid vector. To assess the effect of antitumor drugs, 
MTS assay was performed. Annexin V staining was used 
to evaluate apoptosis and real-time RT-PCR was used to 
measure mRNA levels. ID2 knockdown cells were more 
susceptible to histone deacethylase (HDAC) inhibitors 
including sodium butyrate (NaB), sodium 4-phenyl-butyrate, 
tricostatin A, suberoylanilide hydroxamic acid, MS-275, 
apicidin and HC-toxin. Conversely, cells that overexpressed 
ID2 were less susceptible than control cells to HDAC inhibi-
tors. NaB-induced apoptosis was inversely correlated with 
ID2 expression. Expression of the anti-apoptotic mRNA 
BCL2 was induced by NaB in control cells, but this induction 
of BCL2 was inhibited by ID2 knockdown and strengthened 
by ID2 overexpression. Expression of another anti-apoptotic 
mRNA, BCL2L1, was decreased by NaB administration and 
then partially recovered. However, in ID2 knockdown cells, 
BCL2L1 levels did not recover from NaB-induced suppres-
sion. ID2 affected the susceptibility of two HCC-derived cell 
lines to an HDAC inhibitor by regulating the expression of 
anti-apoptotic genes. Therefore, HDAC inhibitors may be 
effective for the treatment of HCC for which the prognosis 
is poor based on ID2 downregulation and ID2 could serve as 

a marker that is predictive of the clinical response to HDAC 
inhibitors.

Introduction

Hepatocellular carcinoma (HCC) is one of the most lethal 
malignancies worldwide  (1,2). HCC is caused mainly by 
chronic liver inflammation due to hepatitis B virus, hepatitis C 
virus (HCV) or alcohol abuse (1). Despite curative resection 
and recent advances in treatments, the clinical course of HCC 
is variable and many patients suffer recurrence after surgery. 
Poor prognoses in cases of HCC can be explained largely by the 
high rate of intrahepatic recurrence (IHR), which results from 
metastatic spread of cancer cells (3).

Previously, we identified a gene, inhibitor of DNA binding 2 
(ID2), that is significantly downregulated in HCCs, especially 
in advanced HCCs, relative to surrounding liver tissues (4,5). 
Moreover, we found that ID2 is a portal vein invasion-related 
gene in HCV-related HCC (6) and that ID2 negatively regu-
lates the invasive potential of cancer cells (7). Therefore, HCC 
patients with low ID2 expression have poor prognoses (7). ID2 
belongs to a protein family that comprises ID1 to ID4; these 
proteins have a helix-loop-helix structure and form heterodi-
mers with basic helix-loop-helix transcription factors to act as 
dominant-negative inhibitors of transcription (8-10). IDs are 
involved in proliferation processes, differentiation, develop-
ment, senescence and angiogenesis (11-15), and are linked to 
various malignant tumors (16-31).

In this study, we searched for antitumor drugs that are 
effective against cells with low ID2 expression because such 
antitumor drugs might be useful in the treatment of patients 
who have HCC and a poor prognosis. We found that alteration 
of ID2 expression affected the susceptibility of cells to histone 
deacetylase (HDAC) inhibitors and that HDAC inhibitors were 
the only antitumor drugs tested for which alteration of ID2 
expression had an effect. HDAC inhibitors have emerged as 
a new class of antitumor agents (32-34). HDAC inhibitors can 
cause multiple epigenetic changes in aberrant cells. Treatment 
with HDAC inhibitors most frequently induces apoptosis 
(35-37). Although their precise mode of action remains uncer-
tain, HDAC inhibitors can modulate the cell cycle, apoptosis, 
angiogenesis, invasion and metastases (32,33,38-40). Here, we 
aimed to investigate how and whether ID2 affected the anti-
tumor activity of sodium butyrate (NaB), an HDAC inhibitor.
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Materials and methods

Hepatoma cell lines. Human hepatoma-derived cell lines, HLE 
and HuH-7, were purchased from the Health Science Research 
Resources Bank (Osaka, Japan). Cells were cultured in DMEM 
(Nissui Pharmaceutical, Tokyo, Japan) containing 10% 
heat‑inactivated fetal bovine serum (Life Technologies, Tokyo, 
Japan) and supplemented with penicillin (100 U/ml), strepto-
mycin (100 µg/ml) and sodium bicarbonate (1.5 g/l) at 37˚C in 
5% CO2 in air. As in our previous report (7), ID2-knockdown 
and ID2-overexpression were accomplished by transfection of 
HuH-7 and HLE cells with ID2-specific small interfering RNAs 
(siRNAs) or an ID2-expression plasmid vector, respectively. 
HuH-7 and HLE cells transfected with control siRNA or empty 
pcDNA3.1(-) plasmid DNA were used as the respective control.

Administration of histone deacetylase inhibitors. NaB 
(Sigma‑Aldrich, Tokyo, Japan), sodium 4-phenyl-butyrate (NaPB; 
Funakoshi, Tokyo, Japan), tricostatin A (TSA; Sigma‑Aldrich), 
suberoylanilide hydroxamic acid (SAHA; Cosmo Bio, Tokyo, 
Japan), MS-275 (Sigma‑Aldrich), apicidin (Sigma‑Aldrich) and 
HC-toxin (Sigma-Aldrich) were each used as an HDAC inhibitor 
in this study. HDAC inhibitors were added to cultures 24 h after 
cells had been seeded; cultures were then further incubated with 
the inhibitor for defined periods at 37˚C in 5% CO2 in air.

MTS assay. The CellTiter 96 AQueous One Solution Cell 
Proliferation Assay (Promega, Tokyo, Japan) which includes 
3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4- 
sulfophenyl)-2H-tetrazolium, inner salt (MTS) was used 
according to the manufacturer's instructions to evaluate cell 
survival. Cells (3x103) were seeded into the wells of 96-well 
plates and cultivated. At the appropriate time, MTS was added to 
the cells, which were then incubated for 2 additional hours at 
37˚C. The optical density of the culture medium at 492 and 
650 nm were then measured by using an EnVision plate reader 
(PerkinElmer, Waltham, MA). Triplicate wells were analyzed in 
each assay.

Annexin V staining. The Annexin V-FLUOS Staining Kit (Roche 
Diagnostics, Tokyo, Japan), which includes Αnnexin V/prop-
idium iodide (PI), was used according to the manufacturer's 
instructions to detect apoptosis. The cultures were observed 
under a fluorescent microscope (IX71; Olympus, Tokyo, Japan). 
Simultaneously, Hoechst33342‑positive cells were counted as 
total number of cells in cultures; Hoechst33342 was purchased 
from Sigma-Aldrich.

Semiquantitative real-time RT-PCR. Semiquantitative real‑time 
RT-PCR (semi-qRT-PCR) was performed as described 
previously (7,41) with minor modifications. Real‑time PCR 
amplification was performed using the LightCycler 480 Probe 
Master and Universal ProbeLibrary Probes in a LightCycler 
System Version 3 (all from Roche Diagnostics). Primers and 
probes that were used are listed in Table I. Amplification was 
performed according to a two-step cycle procedure consisting of 
45 cycles of denaturation at 95˚C for 10 sec and annealing/elon-
gation at 60˚C for 30 sec. We used the ∆/∆ threshold cycle 
method to semiquantitatively measure mRNA levels; glycer-
aldehyde-3-phosphate dehydrogenase (GAPDH) and β-actin 

(ACTB) were both used as reference genes. All values of mRNA 
levels are expressed relative to control.

Statistical analysis. Data are presented as mean ± standard 
deviation. Dunnett's test for multiple comparisons was used to 
evaluate the differences between three groups. Calculations 
were performed using SPSS Statics 17.0 software (IBM, Tokyo, 
Japan). P<0.05 was considered statistically significant.

Results

Susceptibility to histone deacetylase inhibitors in HCC-derived 
cell lines in which ID2 was knocked down or overexpressed. We 
used the MTS assay and previously established HCC-derived cell 
lines in which ID2 expression was suppressed or enhanced (7) 
to examine the susceptibility of HCC cells to antitumor drugs. 
Among the tested antitumor drugs, the antitumor activity of an 
HDAC inhibitor, NaB, was increased in ID2 knockdown cells 
and decreased in ID2‑overexpressing cells (Fig. 1). Similar 
results were obtained with other HDAC inhibitors including 
TSA, SAHA, PBA, MS-275, apicidin and HC-toxin (Figs. 2 

Table I. The primers and hydrolysis probes used in this study.

Primers and probes	 Sequence (5'→3')

ID2
  5'-primer	 ATATCAGCATCCTGTCCTTGC
  3'-primer	 AAAGAAATCATGAACACCGCTTA
  Hydrolysis probe	 UPL Probe #5a

BCL2
  5'-primer	 TTGACAGAGGATCATGCTGTACTT
  3'-primer	 ATCTTTATTTCATGAGGCACGTT
  Hydrolysis probe	 UPL Probe #6a

BCL2L1 (BCL-XL)
  5'-primer	 GCTGAGTTACCGGCATCC
  3'-primer	 AGATTCTGAAGGGAGAGAAAGAGA
  Hydrolysis probe	 UPL Probe #83a

BAX
  5'-primer	 ATGTTTTCTGACGGCAACTTC
  3'-primer	 ATCAGTTCCGGCACCTTG
  Hydrolysis probe	 UPL Probe #57a

CDKN1A (P21)
  5'-primer	 TCACTGTCTTGTACCCTTGTGC
  3'-primer	 GGCGTTTGGAGTGGTAGAAA
  Hydrolysis probe	 UPL Probe #32a

GAPDH
  5'-primer	 AGCCACATCGCTCAGACAC
  3'-primer	 GCCCAATACGACCAAATCC
  Hydrolysis probe	 UPL Probe #60a

ACTB
  5'-primer	 CCAACCGCGAGAAGATGA
  3'-primer	 CCAGAGGCGTACAGGGATAG
  Hydrolysis probe	 UPL Probe #64a

aThe number of Universal ProbeLibrary probes (Roche Applied 
Bioscience).
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Figure 1. ID2 levels and antitumor activity of NaB. Cells were subjected to an MTS assay 72 h after 20 mM NaB administration; NaB is one of several HDAC 
inhibitors that had an effect on survival of HCC-derived cells. Cell viability was lower in HCC-derived cells transfected with ID2 knockdown siRNAs than those 
transfected with control siRNA. Cell viability was higher in HCC-derived cells that overexpressed ID2 than in those transfected with an empty vector. *P<0.05 
compared with HuH-7/siCont or HLE/pCont.

Figure 2. The antitumor activity of HDAC inhibitors in ID2 knockdown cells. Cells were subjected to an MTS assay to evaluate the effect of ID2 on the antitumor 
activity of HDAC inhibitors other than NaB. Each HDAC inhibitor had an effect similar to that of NaB (Fig. 1) on the ID2 knockdown cells. *P<0.05 compared 
with HuH-7/siCont.
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and 3). However, for other types of antitumor agents than 
HDAC inhibitors (e.g., 5-fluorouracil, cisplatin, docetaxel and 
etoposide), such results were not observed (Fig. 4).

Inf luence of ID2 on NaB-induced apoptosis. In HLE 
derivatives treated with 20 mM NaB for 72 h, the number 
of cells positive for both Annexin V and PI (late apoptosis) 
was significantly lower among ID2-overexpressing cells 
than empty-vector control cells (approximately 44 vs. 87%, 
respectively) (Fig. 5B). For HuH-7 derivatives treated with 
20 mM NaB for 72 h, the percentage of cells positive for 
both Annexin V and PI (late apoptosis) was 34% among 
ID2-knockdown cells and 25% among siRNA-transfected 
control cells (Fig. 5A). In both HLE and HuH-7 derivatives, 

Annexin V single-positive cells (early apoptosis) showed 
same tendency with the Annexin V and PI double-positive 
cells, although Annexin V single-positive cells were less than 
10% of each cell type.

We examined expression of apoptosis-related genes 
in HLE and HuH-7 cells that had been treated with NaB. 
Following addition of 20 mM NaB, about half of the HLE 
cells had died within 24 h and about half of the HuH-7 cells 
had died within 48 h. Treatment with NaB induce expression 
of BCL2 mRNA (an anti-apoptotic mRNA) in HuH-7 cells 
transfected with control siRNA and in HLE cells transfected 
with empty vector; however, this NaB-dependent induction 
was suppressed in HuH-7 cells transfected with ID2-specific 
siRNAs and enhanced in HLE cells that overexpressed ID2 

Figure 3. The antitumor activity of HDAC inhibitors in cells that overexpressed ID2. Cells were subjected to an MTS assay to evaluate the effect of ID2 on the 
antitumor activity of HDAC inhibitors other than NaB. In cells that overexpressed ID2, each HDAC inhibitor, except SAHA, had an effect similar to that of NaB 
(Fig. 1). *P<0.05 compared with HLE/pCont.
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(Fig. 6A and B). Levels of another anti-apoptotic mRNA, 
BCL2L1 (BCL-XL), decreased immediately after addition of 
NaB in control HuH-7 cells and in ID2-knockdown HuH-7 
cells; 48 h after NaB addition, BCL2L1 levels had partially 
recovered in control cells, but they had not recovered in 

ID2-knockdown HuH-7 cells (Fig. 6C). HLE cells that overex-
pressed ID2 and control HLE cells did not differ significantly 
in BCL2L1 mRNA levels (Fig. 6D). The mRNA level of BAX, 
a pro-apoptotic gene, was not influenced by ID2 expression 
(Fig. 6E and F).

Figure 4. ID2 levels and antitumor activity. Cells were subjected to MTS assay 72 h after administration of the indicated antitumor drugs,. †P<0.05 compared with 
HuH-7/siCont or HLE/pCont.

Figure 5. ID2 levels and apoptosis caused by NaB. Cells were stained with Annexin V/Propidium iodide (PI)/Hoechst 33342 after 20 mM NaB had been admin-
istered for 72 h; cells were then assessed by fluorescence microscope. Cells positive for both Annexin V and PI staining were considered to be in the late stage of 
apoptosis. Cultures containing ID2 knockdown cells had higher percentages of apoptotic cells than did cultures with control siRNA transfected cells. Cultures 
with ID2 overexpressing cells had lower percentages of apoptotic cells than did cultures containing cells transfected with empty vector. *P<0.05 compared with 
HuH-7/siCont or HLE/pCont.
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Discussion

In this study, ID2 negatively regulated the susceptibility of 
HCC-derived cells to HDAC inhibitors (Figs. 1-3). Several types 
of antitumor drugs were tested for their effects on HCC-derived 
cells with altered ID2 levels; cells became more susceptible 
HDAC inhibitors when ID2 was downregulated, but no other 
type of antitumor drug had this effect (Fig. 4). Previous reports 
showed that ID2 expression was linked to poor prognosis of 
HCC (5-7). ID2 expression is low in HCC samples that also 
exhibit other poor prognosis indicators such as poor differentia-
tion or portal vein invasion. Therefore, we reasoned that HDAC 
inhibitors may be useful for treating HCC characterized by 
indicators of poor prognosis.

HDAC inhibitors have emerged as a new class of antitumor 
drugs that are intended to modulate epigenetic regulation and 
several clinical trials have been conducted (42,43). Although 
HDAC inhibitors act on HDACs specifically, genome-wide 
acetylation of chromatin as a result of HDAC inhibition cause 
changes in the expression of many genes (45-47). Interestingly, 
addition of NaB to HCC-derived cell lines induced expres-
sion of anti-apoptotic BCL2 and this induction of BCL2 was 
positively regulated by ID2 expression (Fig. 6). This finding 
indicates that ID2 may exert an anti-apoptotic function via 
regulation of anti-apoptotic genes in the presence of this 
HDAC inhibitor (Figs. 5 and 6), although a pro-apoptotic 
gene, BAX, was not influenced by ID2 expression (Fig. 6). 
Cyclin-dependent kinase inhibitor 1A (CDKN1A; p21, Cip1) is 

Figure 6. Changes in expression of anti-apoptotic genes following NaB administration. The mRNA levels of BCL2, BCL2L1 and BAX were measured after 
20 mM NaB administration for 0, 6, 24 or 48 h. (A and B) BCL2 mRNA level was induced by NaB administration when compared to the induction in control 
cells, this NaB-dependent induction was suppressed in ID2 knockdown cells and enhanced in cells that overexpressed ID2. (C and D) The BCL2L1 mRNA level 
decreased immediately after NaB administration and was then partially restored. In ID2 knockdown cells, the restoration of BCL2L1 expression was largely 
suppressed relative to that in control cells. **Both ID2-targeted cells showed P<0.05 compared with control cells.
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one of the genes activated by HDAC inhibitors and activated 
CDKN1A inhibits the transition from G1 to S phase (48). The 
activation of CDKN1A induced by HDAC inhibitors results 
in growth arrest and apoptosis in several malignant cell 
types (47,49,50). We also observed NaB-mediated induction 
of CDKN1A and this induction was significantly suppressed 
by ID2 overexpression (data not shown). In ID2 knockdown 
cells, however, that NaB-mediated CDKN1A induction was not 
affected. The expression of ID2 itself was gradualy induced 
following the addition of NaB (data not shown). This increase 
in ID2 expression might be an endogenous defensive effect in 
response to HDAC inhibitors. Because ID2 acts as a domi-
nant‑negative inhibitor of basic helix-loop-helix transcription 
factors by forming heterodimers  (8-10), some of counter 
partners forming heterodimers with ID2 may responsible for 
HDAC susceptibility.

We suggest that ID2 could serve as a predictive marker 
of the response of HCC to HDAC inhibitors. ID2 influences 
the susceptibility of HCC cells to the HDAC inhibitor by 
regulating the expression of anti-apoptotic genes. Further 
investigation of the mechanism by which ID2 affects suscep-
tibility to HDAC inhibitors, and of the influence of ID2 on 
DNA methylation are needed because histone acetylation and 
DNA methylation are each correlated with epigenetic regula-
tion. Biomarkers for clinical response are strongly needed 
for improvement of patients' quality of life and also medical 
economics. ID2 may be useful as a biomarker of the likely 
response of HCC to HDAC inhibitors; moreover, further 
research on ID2 expression in HCC may contribute to the 
identification of new molecular targets that can be altered to 
enhance the effects of HDAC inhibitors. Such advances may 
lead to the improvement of antitumor therapy that is based on 
HDAC inhibitors.
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