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Abstract. Cancer is a complex disease resulting from altera-
tions of multiple signaling networks. Cancer networks have 
been identified as scale-free networks and may contain a 
functionally important key player called a hub that is linked 
to a large number of interactors. Since a hub can serve as 
a biological marker in a given network, targeting the hub 
could be an effective strategy for enhancing the efficacy 
of cancer treatment. Chemotherapies and radiotherapies 
are generally used to treat tumors not amenable to resec-
tion, and target single or multiple molecules associated 
with hubs. However, these therapies may unexpectedly 
induce the resistance of cancer cells to drugs and radia-
tion. Cancer cells can overcome therapy-induced damage 
via the activation of back-up signaling pathways and flex-
ible modulation of affected networks. These activities are 
considered to be the main reasons for chemoresistance and 
radioresistance, and subsequent failure of cancer therapies. 
Much effort is required to identify the key molecules that 
control the modulation of signaling networks in response 
to drugs and radiation. Network-based therapy that affects 
network flexibility, including rewired network structures 
and hub molecules in these networks, could minimize the 
occurrence of side-effects and be a promising strategy for 
enhancing the therapeutic efficacy of cancer treatments. This 
review is intended to offer an overview of current research 
efforts including ones focused on cancer-associated complex 
networks, their modulation in response to cancer therapy, 
and further strategies targeting networks that may improve 
cancer treatment efficacy.
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1. Introduction

Cancer is characterized as a complex and heterogeneous 
disease involving an orchestration of distinct cellular signaling 
events that can be affected by the aberrant expression or muta-
tion of genes and chromosomes, tumor microenvironments and 
tissue origin of the tumor. Experimental and literature‑based 
analyses of signaling networks supported the hypothesis that 
a common network and its components are the same for all 
cells (1-3). Therefore, it has been proposed that differentially 
expressed tumor phenotypes might result from distinct inter
actions and consequent activation of specific subnetworks (2). 
Thus, single-target therapies using highly specific compounds 
will likely fail as a cancer treatment unless the compounds are 
able to disrupt an actual network. In order to deal with this 
problem, network-based approaches have emerged (4). Most 
cellular components interact with each other to carry out 
biological functions within the same cell or between cells. 
These intra- and intercellular interactions form a complex and 
flexible network, and are dynamically altered on temporal and 
spatial scales. This is responsible for the determination of tumor 
phenotypes. Therefore, cancer-associated molecular networks 
and their dynamics could be potential targets for therapeutic 
intervention. With chemo- and radiotherapies, dynamic altera-
tion of signaling networks occurs in tumor cells as protective 
processes against stress stimuli. These cellular responses are 
the main cause of resistance to therapies. To develop better 
cancer treatment strategies, it is important to determine which 
subnetworks are activated and which factors play a crucial role 
in network alteration upon chemo- and radiotherapies. In this 
review, we will describe the complex networks associated with 
cancers, their properties, and further strategies targeting these 
networks for development of efficient anticancer therapies.

2. Complex networks in biology

Cells can be depicted as complex networks of macromolecular 
interactions (5). Most biological processes are executed 
through multi-scale dynamic complex systems formed by 
interacting macromolecules, metabolites, cells and tissues (6). 
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At a highly abstract level, components of a network can be 
reduced to a series of nodes that are interconnected by several 
links with each link representing the interactions between two 
components (7). Nodes are basic components of a network 
and are connected by links. In biological networks, proteins, 
metabolites, DNA and RNA correspond to nodes and their 
interactions represent links.

Several model organisms have produced a bulk of informa-
tion for understanding biological networks (8). Based on these 
data, several studies examining human-specific networks 
have been recently performed. Many groups have focused 
on molecular networks such as protein-protein interaction 
networks, metabolic networks, DNA/RNA networks and gene 
regulatory networks. In networks of protein-protein interac-
tion, proteins serve as nodes and are linked to each other by 
physical interactions (8-10). Metabolic networks consist of 
metabolites as nodes that are linked if they play a role in the 
same biochemical pathway (11,12). In DNA/RNA networks, 
regulatory RNA molecules (such as microRNA and small 
interfering RNA) and DNA are considered nodes and their 
links indicate functional interactions that influence the regula-
tion of gene expression (13-15). In gene regulatory networks, 
direct links of each node represent the regulatory relationships 
between a transcriptional factor and a gene (13,16). Each 
of these networks is fundamentally present in all cells (3). 
However, these networks are differentially modulated in a cell 
type-specific manner. Due to the complexity and dynamics of 
the networks, cells are able to develop unique phenotypes (2). 
It means that each cell may distinctively respond to the same 
stimulus. Thus, it is encouraged to understand the common 
network structures and their signaling process by downstream 
effectors that are associated with specific phenotype, which 
can be applied to the implication of cancer cell-specific 
responses to targeted therapies.

Network structures are divided into two major classes 
based on the distribution of connections, indicating the prob-
ability that one node in the network is linked to other nodes. 
One class of networks is characterized as a random network, 
and follows a Poisson distribution (Fig. 1A). In a random 
network, most nodes generally have the same number of 
links, resulting in a fairly homogeneous network. In contrast, 
many real systems including biological networks belong to a 
class of heterogeneous networks called scale-free networks 
(Fig. 1B). This type of network follows a power-law for which 
a few nodes have a lot of links and most nodes have a few 
links (1 or 2 links) (17,18). The few highly connected nodes 
are known as hubs. Perturbing these hubs could be cata-
strophic since they render the whole network structure more 
stable and robust (19). Ironically, existence of hubs could 
cause network fragility by offering reasonable targets for 
attacks. However, natural events that cause network disrup-
tion (such as mutations) are classified as failures rather than 
attacks since these are non-specific events. In the absence of 
specific attacks, hubs are relatively free from damage owing 
to dilution effect of a number of non-hub nodes when a given 
network is disrupted in a non-specific or random manner. 
Due to the existence of hubs, networks can display a robust-
ness to random errors (20). 

As mentioned above, most biological networks character-
ized as heterogeneous scale-free networks have the unique 

property of possessing hubs. In a scale-free network, hub 
disruption can lead to a major loss of connectivity that 
induces network disturbance (21). Due to this property, it is 
very likely that the proteins identified as hubs are critical 
players in various biological processes. In particular, studies 
using model organisms have shown that hub proteins are 
more closely associated with essential genes. Due to their 
functions and essentiality, the genes encoding hub proteins 
also tend to be more conserved and evolve more slowly 
than ones encoding non-hub proteins (19,22). In addition 
to protein networks, disruption of the networks containing 
essential metabolites (hub metabolites) could cause severe 
cellular damage that would negatively impact cell survival 
and growth. However, when the processes involving non-
essential metabolites are interfered with, cellular functions 
are not significantly affected (23). These data demonstrate that 
targeting hubs can cause considerable damage to an overall 
cellular network compared to targeting non-hub molecules. 
Another study was conducted to identify cancer-specific 
network signatures using proteomic analysis (24). Several 
proteins including PTEN, cyclin B1, p-CREB and vascular 
endothelial growth factor (VEGF) were considered to be 
hubs of cancer-associated networks, which could provide 
the implication to cancer diagnostic markers, prognostic 
markers and potential therapeutic targets. Thus, extracting 
hub elements could serve as an invaluable strategy for drug 
discovery. The importance of hubs is also emphasized by 
their potential use as biological markers.

Based on spatial and chemical connections for cellular 
functionality in a process, a biological network is subdivided 
in a modular manner (25,26). Several functional modules 
(subnetworks) could determine phenotypic changes. In disease 
processes, these modules are called disease modules, and 
their development is associated with disease occurrence (27). 
Since various modules composed of a complex web of node 
interactions are densely integrated, modular organization 
for a disease process is not immediately apparent in a whole 
network and it is difficult to specify a disease-associated 
module correctly. Previous studies have been conducted to 
characterize specific networks and their hubs, including ones 
associated with cancer, that might be used as disease markers 
(28-32). Furthermore, disease incidence, state and severity 
could be evaluated based on network signatures. Altogether, 
identification of the hub molecules in biological complex 
networks is important because these hubs could serve as 
specific biomarkers and drug targets.

3. Cancer-associated networks

Cancer is one of complex diseases caused by alterations of 
various signaling networks responsible for major cellular 
functions such as proliferation, survival and apoptosis. These 
complex networks consisting of several signaling modules are 
driven by dynamics of various components, including DNA, 
RNA, and proteins, as well as their connections leading to many 
intracellular pathways such as crosstalk and feedback loops in 
response to internal and external stimuli. Components in each 
module function within different temporal and spatial scales, 
leading to cancer heterogeneity. The integration of dynamic 
signaling modules ultimately influences cell phenotype and 
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may result in tumorigenesis. Thus, understanding the complex 
networks and their modules associated with cancer can be 
promising for the development of novel therapeutic strategies.

Much effort has been devoted to understanding tumor-
associated networks involved in tumor initiation, progression, 
and metastasis using various high-throughput techniques 
(microarray, next-generation sequencing, and 2-dimensional 
electrophoresis/mass spectrometry) and bioinformatics 
(computational algorithms and statistical/analytical tools). 
Detailed interactome maps of several tumor types may help 
identify network nodes as potential targets for therapeutic 
strategies that are more effective than traditional approaches 
such as gene-focused therapies which hardly consider the 
biological context of the targets (31,33-36). Out of approxi-
mately 25,000 human genes, only hundreds are considered 
to represent essential diseases genes. A large proportion of 
these genes has been identified as tumor-associated hubs and 
includes ones encoding epidermal growth factor receptor 
(EGFR), Ras, Akt, PTEN and p53 (37-40). EGFR network 
is important for tumor growth, progression and metastasis in 
human cancers, since EGFR have been identified to play a 
critical role in DNA repair, cell cycle progression, prolifera-
tion, and cell motility (39). It has been reported that EGFR 
mutations were accumulated in patients with non-small cell 
lung cancer and these mutant EGFR could be indicators for 
tumor behavior and poor prognosis (41). In case of p53, a 
tumor suppressor gene, DNA damage response can induce 
the expression of this gene, consequently leading to cell 
cycle arrest and apoptosis. p53 has been identified to have 
loss-of-function mutations in various types of cancers (37). 
Furthermore, it is very likely that disruption of p53 is highly 
associated with tumor initiation and development (42). These 
hub genes usually have been revealed to be dysregulated in 
many cancers, leading to hyper-activation of proliferative 

networks, distant metastatsis, and evasion of apoptotic cell 
death. Due to the functional importance of hubs in cellular 
systems, modulation of such hub networks is highly respon-
sible for decision of cancer phenotypes. In addition, these hubs 
may serve to the clinical implications in promising design for 
therapeutic strategy.

4. Network-based approaches for chemotherapy

Over the past decades, chemotherapeutic drug discovery and 
development have focused on specific inhibitors that target 
hub or hub-associated proteins (Table  I). Although these 
strategies initially increased curative efficacy with great 
potency of targeting hub element in a given disease network, 
these target therapies have generally been inappropriate for 
cancer treatment due to their side‑effects such as the induc-
tion of drug resistance. It is very likely that network structures 
have remarkable flexibility achieved through the alteration of 
subnetworks, including pathway reprogramming and activa-
tion of a crosstalk pathway, in response to external stimuli 
(43,44). Indeed, biological components are highly redundant 
due to gene duplication and the existence of protein isomers 
and families, which have different properties despite the 
inclusion of very closely related proteins. This redundancy 
enables the maintenance of an entire biological network 
through the activation of compensatory or detouring networks 
in response to stress-induced damage (45-47). For example, 
the MEK kinase inhibitor GSK1120212 inhibits MEK1 but 
not MEK2 that lacks a binding site for the inhibitor (48). 
Therefore, MEK2 could escape drug-induced inhibition. 
Undisturbed MEK2 could then reactivate the pathway blocked 
by GSK1120212 via the activation of mediator proteins 
instead of MEK1. This event is a consequence of network 
reprogramming (49). In another study, herceptin was devel-

Figure 1. The random network and scale-free network. (A) Random network follows Poisson distribution and is nearly homogenous. Most nodes have approxi-
mately the same numbers of links. The road system, for example, fits with this type of network model. (B) Scale-free network follows power-law and is 
inhomogeneous. Most nodes have one or two links but a few highly-connected nodes, so-called hubs, have a large number of links. The airline network and 
most of spontaneously-generated networks, for example, follow scale-free network. White circles indicate nodes and dark ones indicate hubs that are highly-
connected nodes.
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oped for targeting cases of breast cancer that express HER2, 
a member of the EGFR family (50,51). Herceptin-resistance 
is sometimes acquired during treatment due to the activation 
of other signaling subnetworks, including the Akt-induced 
glycolytic pathway or Bcl-2‑mediated anti-apoptotic pathway, 
as compensatory crosstalk networks (52,53). Additionally, 
for treating metastatic renal cell carcinomas, therapies that 
target both the VEGF receptor (VEGFR) and the mammalian 
target of rapamycin complex  1 (mTORC1) showed better 
therapeutic efficiency than previous traditional treatments 
(54). Unexpectedly, cancer cells have acquired resistance 
to the combination therapies via inhibition of VEGFR and 
mTORC1 and patients eventually suffered from tumor relapse 
with re-established tumor vasculature. Acquiring drug-resis-
tant mechanisms was accomplished by the loss of negative 
feedback networks involving suppression of mTORC2 and 
Akt signaling, which could consequently result in mTORC2-
mediated signaling activation as a crosstalk network for 
drug-induced mTORC1 inhibition. This event caused the 
mTORC2-mediated Akt and hypoxia-inducible factor-1 
(HIF-1) activation for angiogenesis, leading to poor prognosis 
in metastatic renal cell carcinomas.

These findings demonstrate that altered network states 
including network reprogramming and the existence of 
crosstalk network can complement a hub-associated network 
disrupted by a specific drug, and are major causes of drug 
resistance. Single-target drugs might not only have benefi-
cial effects on dysfunctional aspects of disease-associated 
modules in entire complex networks of cancer, but they could 
also turn-on other components in nearby disease-associated 
modules showing side‑effects.

5. Network-based approaches for radiotherapy

Radiotherapy is one of the major modalities of cancer 
management. More than 50% of the patients with cancer have 
undergone radiation treatment. Ionizing radiation (IR) gener-

ates intermediate free radicals and reactive oxygen species 
leading to DNA double-strand breaks (DSBs) (55). Unless cells 
repair this type of injury properly, they directly or indirectly 
undergo cell death. Although many tumor cells immediately 
die via apoptosis after radiation exposure, some of cells can 
survive through activation of DSB repair pathway including 
homologous recombination and non‑homologous end‑joining 
(56,57). The surviving tumor cells accompany unavoidable 
gene mutations due to the properties of DSB repair modules, 
leading to additional effects including hyper‑activation of 
crosstalk signaling to compensate the loss of a certain gene 
that account for radioresistance. Indeed, other modules are 
also activated and integrated for helping tumor cells overcome 
IR-induced stress. It is supported by several interactome and 
gene profiling analyses using various types of cancer cells 
treated with radiation (58-63). The results indicated that 
numerous cellular networks, including modules for DNA 
repair, survival, apoptosis, cell cycle, cell migration, protein 
localization, RNA processing, antioxidant defense, inflamma-
tion and cell proliferation, are altered by radiation exposure and 
help determine tumor cell fate. For example, p53-related genes 
and DNA-damage response genes are generally activated by 
irradiation in susceptible lung cancer cells while the networks 
associated with these genes are disrupted in radioresistant lung 
cancer cells (60,62,63).

In addition to drug-induced network alterations, radio-
therapy could also contribute to the activation of new 
subnetworks, resulting in network flexibility (64-66). Unlike 
drugs which act on specific target molecules, ionizing radia-
tion exerts effects on whole cell components (67). Thus, the 
proportion of hub elements that are functionally disrupted by 
radiotherapy is relatively low. This is due to the dilution effect 
of non-hub elements since these elements are more abundant 
and consequently subjected to greater damage (18). Hubs that 
remain undamaged could eventually activate other radiation-
responsive signaling networks, reintegrate network topologies 
and establish networks more resistant to radiotherapy, thus 

Table I. Hub elements and their functions in cancer-related networks.

Hub element	 Biological effect	 Targeted drug	 Refs.

VEGF	 Invasion, angiogenesis, metastasis	 Bevacizumab, Ranibizumab	 (24,54,71-73)
EGFR/Her2	 Proliferation, invasion, metastasis,	 Lapatinib, Erlotinib, Cetuximab,	 (39,41,50-53,77,78)
	 cell cycle progression, DNA repair,	 Trastuzumab
	 anti-apoptosis
NF-κB	 Inflammation, proliferation, survival,	 Denosumab (RANKL inhibitor)	 (70)
	 radioresistance
PI3K/Akt	 Proliferation, metabolism, survival,	 GS-1101 (phase II), PX-866 (phase II),	 (53,54)
	 anti-apoptosis	 KRX-0401 (phase III)
HIF-1	 Hypoxia response, glycolytic switch,	 EZN-2208 (phase I), EZN-2968 (phase I),	 (54,71-73)
	 survival, invasion, angiogenesis,	 PX-478 (phase I)
	 metastasis
p53	 Tumor suppressor activity, DNA repair,		  (37,42)
	 cell cycle arrest, senescence, apoptosis
PTEN	 Senescence, anti-proliferation,		  (24)
	 tumor suppressor activity
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leading to radioresistance (68,69). For example, NF-κB-
mediated inflammatory signaling cascade in cancer cells could 
be activated in response to reactive oxygen species generated 
by irradiation (70). Activated inflammatory network with 
various chemokines and cytokines is associated with cancer 
cell survival activity for overcoming radiotherapy-induced 
inflammatory stress. This event might result in acquired radio-
resistance in cancer cells and consequently reduced efficacy 
of following radiotherapy in tumor. During tumor develop-
ment, cancer cells partially undergo hypoxic condition due to 
insufficient vasculature systems. Thus, these cells show hyper-
activation of HIF-1 network for adaptation to hypoxic stress. It 
has been well-studied that cancer cells show more resistance 
to irradiation under hypoxia than under normoxia (71). Several 
studies have revealed that radiation induced HIF-1 stabilization 
and activate its signaling module in a solid tumor via oxidative 
stress leading to the increase in VEGF expression, which is 
well-known to play a protective role in endothelial cells from 
the radiation-induced cytotoxic effects (72,73). Consequently, 
tumor cells can be supplied oxygen and nutrients from the 
protected tumor vasculature, leading to tumor radioresistance 
and tumor growth progression.

Since exposure of tumor cells to radiation could impact a 
large number of proteins simultaneously, it might take much 
time and effort to identify hubs as specific drug targets among 
the proteins affected by IR. Instead, understanding the altered 
activation patterns of various IR-responsive modules could 
allow us to hypothesize which proteins are responsible for 
critical functions in each module. This will help identify hubs 
and consequently promote the development of novel radio-
therapy strategies. Moreover, therapeutic efficacy could be 
improved by administrating radiotherapy in conjunction with 
chemotherapeutic agents such as radiosensitizers or inhibitors 
targeting hub molecules associated with radioresistance.

6. Targeting network flexibility

As mentioned above, a large number of traditional strategies 
that do not account for the dynamics of complex systematic 
networks are not satisfactory cancer treatments. Biological 
networks in tumors gradually adapt to chemo- and radio-
therapy. Tumor cells are thus able to maintain their tumorigenic 
properties through compensatory mechanisms such as cross-
talk circuits (74,75). To improve cancer therapeutic efficacy, 
targeting the hub itself might be insufficient. Additionally, 
hub-associated network flexibility developed in response to 
therapeutic challenges could be targeted. Consequently, the 
field of network medicine has recently emerged (4,27,43). Based 
on numerous system biological studies, several investigations 
have been recently conducted to identify and discover ways 
to regulate back-up networks activated during chemotherapy, 
and develop network medicine to overcome chemoresistance 
(28,76,77). For the patients with Her2-positive breast cancer, 
lapatinib was approved as the first dual inhibitor of EGFR/Her2. 
However, the efficiency of this drug was not prolonged due to 
acquired resistance. A network‑based computational analysis 
showed that, while lapatinib initially induced inhibition of 
glucose uptake and energetic stress leading to apoptosis in 
Her2-positive cancer cells, the glucose deprivation response 
network is gradually activated as a compensatory mechanism 

in response to the inhibition of the Her2-mediated oncogenic 
network by lapatinib, which eventually result in drug resistance 
(Fig. 2) (77). It was suggested that novel combinations should 
be administered to simultaneously target Her2 networks and 
metabolic networks to treat cases of Her2‑positive breast 
cancer that had acquired drug resistance. For the patients with 
hormone receptor-positive metastatic breast cancer, letrozole, 
an inhibitor for aromatase (estrogen producing enzyme), 
could be treated for endocrine therapies (78). However, this 
endocrine therapy showed unsatisfactory effect due to the 
activation of cross-talk pathways involving EGFR/Her2 and 
estrogen receptor (ER), leading to resistance to therapies. It 
was presented that the combined therapies with lapatinib (or 
herceptin) and letrozole could be a promising strategy for endo-
crine resistance by blocking ER-mediated hormone signaling 
as well as compensatory EGFR/Her2 networks for survival 
signaling.

When it comes to radiotherapy, complex networks that 
are critically responsible for network flexibility resulting 
in acquired radioresistance are not fully understood. 
Nevertheless, some investigations have demonstrated the 
involvement of several genes, including HDAC1, MDM2, 
c-Jun, PKC-β, c-Abl and CDK1, in cellular responses to 
radiation (79-81). Some of these genes have been studied as 
potential targets for radiosensitizer development. For example, 
c-Abl, a non-receptor tyrosine kinase, plays a critical role 
in cell survival, proliferation, and anti-apoptotic activity, 
leading to tumorigenesis. In addition to oncogenic proper-
ties of c-Abl, a study using glioma cells showed that c-Abl 
elevated the expression of Rad51 in response to radiation, 
which is a crucial component of the DNA repair pathway, 
especially DSBs (82-84). It means that c-Abl could modulate 
radio-response through activating DNA repair module leading 
to radioresistance. In this case, STI571, a pharmacological 
drug of c-Abl kinase, could be used to block c-Abl-Rad51 
signaling for a DNA repair module to render radiosensitizing 
effect in glioma cells, but this drug had no effect in normal 
cells (82). It could be concluded that several compensatory 
modules such as the cell cycle module, proliferative module, 
and DNA repair module are activated after radiotherapy to 
protect tumor cells against IR-induced injuries. Activation of 
these modules would lead to acquired radioresistance, cancer 
cell survival, and tumor re-growth. Thus, it is necessary to 
use network-specific drugs as radiotherapeutic adjuvants 
that suppress the activity of survival-associated modules and 
prevent unexpected side‑effects. In order to prevent tumor 
cells from acquiring resistance to chemo- and radiotherapy, 
it is important to understand the rewiring states of networks 
and their essential nodes in response to cancer therapies. In 
this manner, a network-based combination therapy targeting 
the hubs associated with network flexibility can be formulated 
to overcome adverse effects induced by current therapies.

7. Conclusion

Network-based therapies for treating human cancers may 
have various promising biological and clinical applications. In 
particular, hub elements in a disease network could function as 
biological markers because these hubs are highly connected to 
biological scale-free networks and their roles in each network are 
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Figure 2. An EGFR network structure. (A) An EGFR network including several functional modules in cells is presented. EGFR and Her2 as well-known 
receptor tyrosine kinases can activate various downstream effectors in response to external stimuli, including their ligands, drugs and radiation. Consequently, 
many functional signaling modules are influenced, which are usually associated with tumor initiation and development, including cell survival, metabolism 
activation, cell cycle progression, proliferation and differentiation. EGFR/Her2-targeted drugs might interrupt some of these modules, leading to tumor cell 
death and therapeutic effects. (B) A compensatory module in response to lapatinib in drug-resistance cancer cells is presented as a shaded area. Lapatinib is one 
of EGFR/Her2 inhibitors. Although the tumor shrinkage efficiency was shown in Her2-positive breast cancer patients, it could not be repeatedly administered 
in cancer therapy due to acquired drug-resistance. The reason is that lapatinib-induced glucose deprivation, which led to tumor cytotoxicity, might activate a 
cross-talk module for the increase of glucose uptake and metabolism to adapt to stress condition, leading to drug-resistance and poor tumor prognosis.
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essential. It is probable that the fate of tumor cells is controlled 
by the regulation of hub elements. Analysis of biological 
networks and the discovery of hub elements will help identify 
novel drug-targets as well as diagnostic markers for detecting 
early stage cancer. Single‑target therapies might take advantage 
of some aspects of the disease modules associated with cancer, 
but these modalities are not generally effective since complex 
biological networks consisting of various disease modules exist 
in tumor cells and tissues. In addition, simple multi-target ther-
apies are still not optimal cancer treatments because biological 
networks are dynamically altered in a stimulus-dependent 
manner to maintain homeostasis (in this case, cancer cell 
homeostasis for survival and proliferation). Biological systems 
are highly heterogeneous and network structures in the context 
of tumors are flexible enough for adaptation to various external 
stimuli. Network-based combinational approaches could be 
the most promising strategies for silencing specific mediators 
(i.e., novel hubs) responsible for the alteration of network states. 
These techniques could maximize the effect of more traditional 
therapies by simultaneous administration of pharmacological 
agents that specifically target hubs and disrupt major disease 
modules. A large quantity of integrated bioinformatics data has 
been gradually collected over time. Using this information, we 
can closely examine entire network structures and their states. 
In addition, it will be possible to predict how a network state 
will be modified in response to chemo- and radiotherapy. This 
will facilitate the development of ideal network-based drug 
combinations and personalized therapeutic strategies.
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