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Abstract. The linchpin of colorectal cancer is the oncoprotein 
and transcriptional cofactor β-catenin, whose overexpression 
is causative for the neoplastic transformation of colon cells. 
However, the molecular details of β-catenin dependent gene 
transcription in cancer cells are still not comprehensively 
explored. Here, we show that the histone demethylase KDM4B 
was upregulated in colon and rectal adenocarcinomas and 
required for efficient growth and clonogenic activity of 
human HT-29 colon cancer cells. Moreover, KDM4B formed 
complexes with β-catenin in vitro and in vivo, which involved 
its central amino acids 353-740. In addition, KDM4B also 
interacted with the DNA-binding protein TCF4, which is the 
main factor recruiting β-catenin to chromatin in the intestine. 
KDM4B downregulation resulted in reduced expression of the 
β-catenin/TCF4 target genes JUN, MYC and Cyclin D1, all of 
which encode for oncoproteins. Collectively, our data indicate 
that KDM4B overexpression supports β-catenin mediated 
gene transcription and thereby contributes to the genesis of 
colorectal tumors. Accordingly, inhibition of the KDM4B 
histone demethylase may represent a novel avenue of fighting 
colorectal cancer, one of the major causes of cancer death 
throughout the world.

Introduction

Colorectal cancer is a major health issue and over 50,000 US 
residents alone are expected to die from this disease this year 
(1). A crucial defect in the vast majority of colorectal tumors 
is the overexpression of the oncoprotein β-catenin. This is 
primarily due to the loss of the tumor suppressor adenomatous 
polyposis coli (APC), which normally directs the intracellular 
destruction of β-catenin, or activating mutations in β-catenin 

itself (2). Unfortunately, knowledge on the devastating impact 
of these genetic mutations has not yet translated into improved 
therapy.

Aside from genetic mutations, epigenetic changes are an 
underlying cause of tumorigenesis. Most prominently, such 
epigenetic changes involve the methylation of DNA on cytosine 
residues and the modification of histones by acetylation and 
methylation (3,4). In contrast to DNA methylation and histone 
acetylation, the methylation of histones was only recently vali-
dated as a major epigenetic mechanism. Methylation occurs 
on lysine and arginine residues at multiple sites on histones 
and the tight regulation of the histone methylation status is 
absolutely required for normal cell physiology and safeguards 
against aberrant cell growth. Thus, enzymes affecting histone 
methylation play seminal roles in cellular homeostasis and, 
accordingly, dysregulation of both histone methyltransferases 
as well as the opposing demethylases is thought to be capable 
of inducing cancer (5,6). However, the roles of the enzymes 
determining histone methylation in colorectal tumors are 
largely unexplored.

The family of human Jumonji C domain containing proteins 
comprises 30 members, many of which have been shown 
to function as histone demethylases (7). These include the 
four related lysine-specific demethylase 4 (KDM4) proteins, 
KDM4A-D (8). They can demethylate histone H3 on lysines 
9 and 36 as well as histone H1.4 on lysine 26 (9-15). Notably, 
KDM4A, B and C are overexpressed in human breast tumors 
and promote proliferation of breast tumor cells, in part due 
to their ability to function as cofactors of estrogen receptor α 
(16-21). Likewise, all four KDM4 proteins were shown to 
coactivate the androgen receptor and may thereby contribute 
to prostate tumor formation (22-24). Despite these examples of 
overlapping function, KDM4 proteins can also behave differ-
ently from each other (8). For instance, KDM4B seems to be 
less catalytically active (9,12) and is the only KDM4 protein 
that is robustly overexpressed under hypoxia (25,26). Here, we 
explored the role of KDM4B in colorectal cancer.

Materials and methods

Lentivirus mediated KDM4B downregulation with shRNA. To 
generate an inducible miRshRNA entry vector, annealed 
oligonucleotides KDM4B-shRNA sense (5'-AGCGAGCG 
CTGACACTGTATTCTTATTAGTGAAGCCACAGATGTA 
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ATAAGAATACAGTGTCAGCGC-3') and KDM4B-shRNA 
antisense (5'-GGCAGGCGCTGACACTGTATTCTTATT 
ACATCTGTGGCTTCACTAATAAGAATACAGTGTCAGC 
GCT-3') were cloned into pEN_TTRmiRc2 (Addgene). To 
transfer sequences into the lentiviral destination vector, the 
miRshKDM4B entry vector was incubated together with 
pSLIK Hygro (Addgene) and Clonase 2 (Invitrogen) per 
company instructions. The resulting miRshKDM4B lentiviral 
expression vector was cotransfected along with packaging 
plasmids pMD2.G (Addgene), pMDL/RRE g/p (Addgene) and 
pRSV-Rev (Addgene) into 293T cells. Cells were seeded at 
~60% confluence and DNA was delivered using the polyethyl-
enimine transfection method overnight. Polyethylenimine to 
DNA ratio was 3:1. Forty-eight and 72 h post-transfection, 
supernatant was harvested and filtered through a 0.45-µm 
membrane. Cleared viral supernatant was concentrated using 
poly(ethylene glycol)-8000 and used to infect HT-29 cells (27).

Cell proliferation assay. HT-29 cells that inducibly expressed 
shRNA targeting KDM4B were seeded into 96-wells and 
grown in DMEM medium plus 10% fetal calf serum. One day 
thereafter, the cell number was determined for the first time 
and defined as number of cells at day 0. Then, cells were 
mock treated or with 500 ng/ml doxycycline and cell numbers 
measured at the indicated days thereafter with the TACS 
(Trevigen) MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-
tetrazolium bromide) kit (28). Averages with standard errors 
of triplicate experiments were determined.

Clonogenic assay. Cells were seeded at 5,000 cells per well. 
Thereafter, cells were mock treated or with 500 ng/ml doxy-
cycline and grown in DMEM medium plus 10% fetal calf 
serum. Media without and with doxycycline were replenished 
every four days for twelve days. The cells were then fixed in 
3.7% formaldehyde for 10 min and stained with 1% crystal 
violet blue for 30 min. After rinsing with distilled water, cells 
were photographed.

Coimmunoprecipitation assays. Human embryonic kidney 
293T  cells were grown in a humidified atmosphere in 
10% CO2 at 37˚C (29). Cells were seeded into 6-cm dishes that 
were coated with poly-L-lysine 12-24 h before transfection 
(30). Cells were then transiently transfected by the calcium 
phosphate coprecipitation method (31) and lysed 36 h after 
transfection with 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 
50 mM NaF, 0.25 mM Na3VO4, 0.5% Igepal CA-630, 10 µg/
ml leupeptin, 2 µg/ml aprotinin, 1 µg/ml pepstatin A, 0.5 mM 
PMSF, 0.2 mM DTT. Immunoprecipitation was performed 
with anti-Flag M2 or anti-Myc 9E10 monoclonal antibodies 
as described (32). Coprecipitated proteins were detected by 
western blotting employing enhanced chemiluminescence 
(33).

Glutathione S-transferase (GST) pull-downs. GST fusion 
proteins were produced in Escherichia coli and purified as 
previously described (34). Cell extract containing Myc-tagged 
β-catenin protein was prepared from transiently transfected 
293T cells (35). This extract was then incubated for 3 h at 4˚C 
with GST fusion proteins bound to glutathione agarose beads 
utilizing 20 mM HEPES (pH 7.4), 50 mM NaCl, 1 mM DTT, 

0.01% Tween-20, 0.5 mM PMSF as a binding buffer. After three 
washes in the same buffer, any bound Myc-tagged β-catenin 
was revealed by western blotting employing anti‑Myc 9E10 
monoclonal antibodies.

Reporter gene assay. HT-29 cells inducibly expressing 
KDM4B shRNA were infected with pBARLS lentivirus (kind 
gift from Dr Randall Moon) that encodes 12 TCF4 binding 
elements upstream of luciferase cDNA. Equal numbers of 
cells were then split into two groups of triplicates and treated 
without and with 500 ng/ml doxycycline for 72 h. Then, cells 
were lysed as described before (36) and luciferase activities 
derived from pBARLS were measured in a Berthold LB9507 
luminometer (37).

Reverse transcription-polymerase chain reaction (RT-PCR). 
RNA was isolated employing TRIzol (Invitrogen) and utilized 
in the Access RT-PCR kit (Promega) as described before (38). 
Oligonucleotides used were 5'-GTGACCGCGACTTTTCA 
AAGC-3' and 5'-CGTTGCTGGACTG GATTATCAG-3' for 
JUN, 5'-TGAGGAGACACCGCCCAC-3' and 5'-CAACATCG 
ATTTCTTCCTCATCTTC-3' for MYC, 5'-AAGGCGGAGG 
AGACCTGCGCG-3' and 5'-ATCGTGCGGGGTCATTGC 
GGC-3' for Cyclin D1, and 5'-GAGCCACATCGCTCAGAC 
ACC-3' and 5'-TGACAAGCTTCCGCTTCTCAGC-3' for 
GAPDH. Resulting PCR products were separated on agarose 
gels and stained with ethidium bromide (39).

Chromatin immunoprecipitations. These were performed 
essentially as described before (40) with rabbit KDM4B anti-
bodies either from Bethyl (A301-478A) in case of the JUN 
promoter or from Novus Biologicals (NBP1-67802) in case of 
the Cyclin D1 promoter. For promoter fragment amplification, 
nested PCR was employed using the temperature program 
98˚C for 2 min; 8 cycles of 98˚C for 30 sec, 65˚C (-1˚C per 
cycle) for 30 sec, 72˚C for 25 sec; 18 cycles (in the first PCR) 
or 15 cycles (in the second PCR) of 98˚C for 30 sec, 57˚C for 
30 sec, 72˚C for 25 sec (+ 1 sec per cycle), followed by a final 
4-min extension at 72˚C (41). The iProof high fidelity DNA 
polymerase (Bio-Rad) was used in the first PCR and GoTaq 
polymerase with 5X Green buffer (Promega) in the second 
PCR. The primers for the first PCR were: Jun-ChIP-2805-for 
(5'-GGCAGCCACCGTCACTAGACAGTC-3') and Jun-ChIP-
3184-rev (5'-GCCACACTCAGTGCAACTCTGAGC-3'), or 
D1-pro-for6 (5'-GTAACGTCACACGGACTACAGG-3') and 
D1-pro-rev5 (5'-GCACACATTTGAAGTAGGACACC-3'). 
The primers for the second PCR were: Jun-ChIP-2834-for 
(5'-CCAAGACGTCAGCCCACAATGCACC-3')  and 
Jun-ChIP-3145-rev (5'-GCTCAACACTTATCTGCTACCA 
GTC-3'), or D1-ChIP-2726-for (5'-GTTGCAAAGTCCTGGA 
GCCTCCAG-3') and D1-ChIP-2982-rev (5'-CGGTCGTTGAG 
GAGGTTGGCATCG-3'). The resultant 312 bp JUN promoter 
and 257 bp Cyclin D1 promoter fragments were revealed by 
agarose gel electrophoresis (42).

Results

Overexpression of KDM4B in colorectal tumors. To 
comprehensively assess the expression pattern of KDM4 
genes in human colorectal tumors, we performed in silico 
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analyses comparing normal and cancer tissues with the help of 
Oncomine (www.oncomine.org). In two independent data sets 
(43,44), KDM4B mRNA was significantly upregulated in both 
colon and rectal adenocarcinomas compared to normal colon 
tissue, whereas no relevant upregulation of KDM4A, KDM4C 
or KDM4D was observable (Fig. 1). These data implicate that 
elevated KDM4B levels, but not overexpression of any of the 
other three KDM4 family members, play a role in the develop-
ment of colorectal tumors.

Growth deficit of colon cancer cells following loss of KDM4B. 
To test the impact of KDM4B on cell physiology, we infected 
human HT-29 colon cancer cells with lentivirus that doxycy-
cline-inducibly expressed KDM4B shRNA. After selection 
for viral integration, these cells were treated with and without 
doxycycline, which resulted in efficient downregulation 
of KDM4B (Fig.  2A). Importantly, doxycycline treatment 
significantly reduced HT-29 cell growth (Fig. 2A), suggesting 
that KDM4B has a pro-growth effect. We also determined 
the importance of KDM4B for growing colonies from single 
cells, another litmus test for oncogenic activity. When treated 
with doxycycline to ablate KDM4B expression, HT-29 cells 
displayed a markedly reduced ability to establish colonies 

(Fig. 2B). Altogether, these results support the notion that 
KDM4B promotes neoplastic growth of colon cells.

Complex formation of KDM4B with β-catenin. Overexpression 
of the β-catenin oncoprotein, the linchpin of colon tumorigen-
esis, is observed in >80% of sporadic colorectal tumors (2). 
Like KDM4B, β-catenin is a transcriptional cofactor (45). 
Therefore, we tested whether KDM4B might interact with 
β-catenin. To this end, we coexpressed Flag-tagged β-catenin 
with Myc-tagged KDM4B in 293T cells and performed coim-
munoprecipitation experiments. We found that β-catenin 
coprecipitated with KDM4B (Fig. 3A). Similarly, in a reverse 
order coimmunoprecipitation experiment, KDM4B copre-
cipitated with β-catenin (Fig. 3B). These data demonstrate that 
KDM4B and β-catenin form complexes in vivo.

Next, we explored whether β-catenin would bind to KDM4B 
in vitro and which domains of KDM4B would be involved. 
To this end, we divided KDM4B into three parts and puri-
fied respective GST fusion proteins. These were then bound 
to glutathione agarose beads, which were subsequently incu-
bated with a cell extract containing Myc-tagged β-catenin. No 
binding of β-catenin to the GST moiety itself was detectable, 
but it interacted with KDM4B amino acids 353-740 (Fig. 4A). 

Figure 1. KDM4 mRNA levels in human colorectal cancer. Shown are medians with 25-75 percentile intervals of log2 transformed mRNA datasets. **p<0.002 
(Student's t-test). (A) Microarray data set from Kaiser et al (43). Five normal (N), 41 colon adenocarcinomas (AC) and 8 rectal adenocarcinomas (RC) were 
compared. (B) Microarray data set from Kurashina et al (44). Ninety-four normal, 52 colon and 38 rectal adenocarcinomas were included.
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These amino acids are devoid of any known structural motifs 
(Fig. 4B). In contrast, β-catenin did not appreciably bind to 
the N-terminal KDM4B amino acids 2-352 encompassing the 
catalytic JmjC and JmjN domains or the C-terminal amino 
acids 741-1130, which contain the double PHD and TUDOR 
domains that are involved in recognizing methylated histone 
residues (8,46). Collectively, our data reveal that KDM4B and 
β-catenin interact both in vitro and in vivo.

Coactivation of gene transcription by KDM4B. The β-catenin 
protein itself does not directly bind to DNA. Rather, it is 
primarily recruited to chromatin in the intestine by the 
DNA-binding transcription factor TCF4 (47). Therefore, we 
reasoned that not only β-catenin, but also TCF4 might form a 
complex with KDM4B. To test this hypothesis, we coexpressed 
Flag-tagged KDM4B and Myc-tagged TCF4 in 293T cells, 
immunoprecipitated with Flag antibodies and then tested for 
coprecipitated TCF4 by anti-Myc western blotting. Indeed, 
TCF4 coprecipitated with KDM4B (Fig. 5A), implicating that 
a tripartite complex of TCF4, β-catenin and KDM4B can be 
formed.

To determine whether KDM4B stimulates or represses 
β-catenin/TCF4-dependent transcription, we employed a 

Figure 2. Impact of KDM4B on HT-29 colon cancer cells that were engineered to express KDM4B shRNA in a doxycycline-inducible manner. (A) Analysis of 
cell growth after challenge with doxycycline (DOX) or mock treatment. Statistical significance was determined with an unpaired, two-tailed t-test. The inset 
shows corresponding western blots for KDM4B and actin as a loading control. (B) Representative clonogenicity assay. Cells were treated without and with 
DOX for two weeks and then stained with crystal violet.

Figure 3. Interaction of KDM4B with β-catenin. (A) Flag-tagged β-catenin was coexpressed with Myc-tagged KDM4B in 293T cells. After anti-Myc immu-
noprecipitation (IP), coprecipitated β-catenin was detected by anti-Flag western blotting (top panel). The bottom panels reveal input levels of Flag-β-catenin 
and Myc-KDM4B. (B) Reverse order coimmunoprecipitation assay.

Figure 4. (A) GST pull-down assays. Binding of Myc-tagged β-catenin to 
indicated KDM4B amino acids fused to GST or the GST moiety alone was 
assessed (top panel). The bottom panel shows that comparable levels of GST 
fusion proteins were employed. (B) Sketch of human KDM4B (1130 amino 
acids long isoform).
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TOPflash luciferase reporter system that specifically measures 
β-catenin/TCF4-dependent transcription in colon cells (48). 
A lentiviral vector was employed to stably introduce the 
luciferase reporter gene into our HT-29 colon cancer cells 
that doxycycline-inducibly expressed KDM4B shRNA. In the 
absence of doxycycline, high luciferase activity was expect-
edly observable (Fig. 5B). However, upon depletion of KDM4B 
after doxycyline treatment, luciferase activity was ~3-fold 
reduced, indicating that KDM4B can stimulate β-catenin/
TCF4-dependent gene transcription.

We next sought to assess how endogenous target genes of 
β-catenin/TCF4 would be affected by KDM4B downregula-
tion. Specifically, we studied three oncogenes encoding the 
JUN or MYC transcription factor or the cell cycle regulator 
Cyclin D1, all of which are bona fide targets of β-catenin/
TCF4 (48-51). When utilizing our doxycycline-inducible 

KDM4B shRNA expressing HT-29 cells, we observed that 
JUN, MYC and Cyclin D1 transcription became reduced upon 
KDM4B downregulation, whereas the control GAPDH was 
unaffected (Fig. 6A). In addition, western blotting showed that 
this also held true at the protein level for JUN and Cyclin D1 
(Fig. 6B), whereas MYC protein expression was below our 
detection level (not shown); as controls, neither β-catenin nor 
actin protein levels were affected by KDM4B downregulation 
(Fig. 6B).

Finally, we assessed whether KDM4B would bind to the 
JUN or Cyclin D1 gene promoter. To this end, we performed 
chromatin immunoprecipitation experiments. While control 
IgG antibodies barely or not at all led to precipitation of 
promoter fragments, KDM4B antibodies were able to robustly 
precipitate both JUN and Cyclin  D1 promoter fragments 
(Fig. 6C). This indicates that JUN and Cyclin D1 are directly 

Figure 5. (A) Coimmunoprecipitation of Myc-tagged TCF4 with Flag-tagged KDM4B in 293T cells. (B) HT-29 cells expressing doxycycline-inducible KDM4B 
shRNA were infected with a lentiviral TOPflash vector. Resulting TOPflash luciferase activities were measured in the absence and presence of doxycycline.

Figure 6. Impact of KDM4B on β-catenin/TCF4 target genes. (A) RT-PCR analysis of HT-29 cells treated without or with doxycycline to downregulate 
KDM4B. This RNA was isolated from the same cells as used in Fig. 2A. (B) Corresponding western blots. (C) Chromatin immunoprecipitation experiments 
in HT-29 cells. Shown are PCR amplified JUN and Cyclin D1 promoter fragments.
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regulated by KDM4B. Altogether, our data provide evidence 
that KDM4B coactivates β-catenin/TCF4-dependent gene 
transcription.

Discussion

The data described in this report provide novel information. 
First, we discovered that the KDM4B histone demethylase 
is appreciably upregulated at the mRNA level in colorectal 
tumors, whereas none of the other three KDM4 family 
members is. Second, we showed that growth and colony 
formation ability of HT-29 colon cancer cells is stimulated by 
KDM4B, and third, we revealed that KDM4B is capable of 
forming complexes with β-catenin and TCF4 and can thereby 
enhance transcription of oncogenes such as JUN, MYC and 
Cyclin D1. Altogether, these data strongly suggest that KDM4B 
has oncogenic properties in colorectal cells.

KDM4B is a histone demethylase that especially demeth-
ylates trimethylated H3K9, H3K36 and H1.4K26 (9,12,14). 
In general, both trimethylated H3K9 and H1.4K26 at a gene 
promoter are associated with a transcriptionally repressed 
status of chromatin (52,53), providing an explanation how 
KDM4B may stimulate gene transcription by removing these 
repressive marks. On the other hand, trimethylated H3K36 has 
a variety of functions: it may promote transcription elongation 
but suppress transcription initiation at the promoter (54). Thus, 
the net effect on gene expression upon removal of H3K36 
trimethylation by KDM4B is debatable. However, since 
KDM4 proteins appear to more efficiently target H3K9 than 
H3K36 (8), it is likely that the effect of KDM4B on gene tran-
scription is primarily governed by its ability to demethylate 
trimethylated H3K9 (and H1.4K26) and accordingly KDM4B 
overexpression should result in enhanced transcription of 
target genes like JUN, MYC and Cyclin D1.

MYC and JUN encode for DNA-binding transcription 
factors and are prominent oncogenes (55,56). They are also 
β-catenin target genes (48,49) and upregulated in human 
colorectal tumors (57,58). Interestingly, JUN can form 
complexes with β-catenin and TCF4, which stabilizes the 
β-catenin/TCF4 complex and enhances β-catenin dependent 
transcription (59,60). Furthermore, a dominant-negative 
version of JUN was able to suppress the tumorigenic potential 
of HT-29 colon cancer cells and JUN inactivation also reduced 
gastrointestinal tumor formation in the APCMin mouse model, 
in which inactivation of APC leads to β-catenin overexpression 
(59,61). Likewise, the cell cycle regulator Cyclin D1 is upregu-
lated in colorectal tumors (62) and its ablation suppressed 
tumor formation in APCMin mice (63). Thus, stimulation of 
JUN, MYC and Cyclin D1 expression by KDM4B is predicted 
to promote colorectal tumor formation.

Cooperation with β-catenin may not be the only mechanism 
by which KDM4B contributes to the causation of colorectal 
cancer. Recently, it was reported that KDM4B is involved in 
the stimulation of hypoxia-inducible genes in colon cancer 
(64). Possibly, this may involve complex formation of KDM4B 
with the hypoxia-inducible factor 1α, the master mediator of 
the hypoxic response, since a relative of KDM4B, the KDM4C 
protein, can actually bind to hypoxia-inducible factor 1α (65). 
Moreover, KDM4A is capable of binding to the p53 tumor 
suppressor in colon cancer cells and inhibit p53-dependent 

transcription (66), raising the possibility that also KDM4B 
might do so.

Apart from transcription regulation, KDM4B is also 
involved in DNA repair. Its TUDOR domains can bind to 
dimethylated H4K20, which normally recruits 53BP1 to sites 
of DNA damage and thereby facilitates repair. Notably, this 
activity of KDM4B is independent of its enzymatic activity 
(67). Accordingly, KDM4B overexpression could impair DNA 
repair by preventing the recruitment of 53BP1 and thereby 
induce genomic instability, another mechanism by which 
KDM4B could contribute to tumor formation. However, a 
recent report posits that KDM4B enhances DNA repair in a 
manner dependent on its enzymatic activity and thus promotes 
cell survival (68). This may be relevant during therapy, when 
KDM4B overexpression could help cancer cells to repair the 
DNA damage caused by radiotherapy and many chemothera-
peutic agents.

In conclusion, our study highlighted the pro-growth 
function of KDM4B in colorectal tumors and provided a 
mechanism by which KDM4B may attain this through inter-
action with β-catenin/TCF4. Given that β-catenin is involved 
in many other types of cancer (2,45), including breast and 
bladder cancer where KDM4B is also overexpressed (18,69,70), 
the oncogenic functions of KDM4B may be of widespread 
importance. Thus, inhibition of KDM4B enzymatic activity 
or preventing its interaction with β-catenin by small molecule 
drugs, similar to the inhibition of chromatin recruitment of the 
BRD4 epigenetic regulator in acute myeloid leukemia (71,72), 
may hold promise in cancer therapy.
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