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Abstract. ���������������������������������������������Numerous hereditary syndromes caused by muta-
tions in multiple tumor suppressor genes can cause cancers. 
Germline mutations in PTEN and p53 tumor suppressor cause 
Cowden syndrome and Li-Fraumeni syndrome, respectively. 
There exists some phenotypic overlap in these syndromes, and 
they are associated with high risks of breast cancer. The tumor 
suppressor protein PTEN is a dual-specificity phosphatase 
which has protein phosphatase activity and lipid phospha-
tase activity that antagonizes PI3K activity. Cells that lack 
PTEN have constitutively higher levels of PIP3 and activated 
downstream targets. PTEN gene is recognized as one of the 
most frequently mutated or mutated in many human cancers. 
Li-Fraumeni syndrome results from germline mutations of the 
tumor suppressor p53 gene encoding a transcriptional factor 
able to regulate cell cycle and apoptosis when DNA damage 
occurs. The p53 protein cooperates with PTEN and might be 
an essential blockage in development of mammary tumors. 
Many findings have demonstrated that PTEN as well as p53 
plays a critical role in DNA damage response. This review 
summarizes the function of PTEN and p53 in carcinogenic 
cell signaling. In addition, we will discuss the role of PTEN 
signaling through its interaction with p53 and MDM2 pathways 
for the potential implications in hereditary cancer prevention 
and therapeutic intervention.
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1. Introduction

PTEN (phosphatase and tensin homolog deleted in chromo-
some 10) is a tumor suppressor gene that is deleted or mutated 
in a variety of human cancers  (1,2). Germ line mutations 
of PTEN are also the cause of PTEN hamartoma tumor 
syndromes (Cowden syndrome, Bannayan-Riley-Ruvalcaba 
syndrome, PTEN-related Proteus syndrome, Proteus-like 
syndrome) with increased risk for the development of 
cancers (3). Cowden syndrome is a rare, autosomal dominant, 
familial cancer syndrome characterised by hamartomas, 
acral keratosis, multiple smooth facial papules, and multiple 
oral papillomas (4). In contrast, Bannayan-Riley-Ruvalcaba 
syndrome is characterized by lipomatosis, macrocephaly, 
hemangiomatosis (5). Loss of heterozygosity (LOH) studies 
suggest that PTEN may play its most important role in 
advanced cancers of particular tissue (6). Alterations of PTEN 
in tumors are associated with a poor prognosis (7). Germinal 
mutations of the p53 gene constitute an etiological genetic 
base of Li-Fraumeni syndrome, which is a rare genetically and 
clinically heterogeneous autosomal dominant inherited cancer 
disorder, characterized by a specific range of tumors observed 
at an early age, in particular a predominance of bone and soft 
tissue sarcomas and breast cancer (8). Generally, cells with 
dysfunctional p53 are predisposed to development of cancer 
phenotype. Of importance, it is mutated frequently in the 
common human malignancies of the breast and colon rectum 
and also in other significant cancers such as glioblastoma with 
less frequency (9).

The PTEN and p53 tumor suppressors are among the most 
commonly inactivated or mutated genes in human cancer (10). 
The PTEN has been shown to be involved in a complex network 
of interactions with p53 (Fig. 1). Although they are functionally 
distinct, reciprocal cooperation has been proposed, as PTEN 
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is thought to regulate p53 stability, and p53 to enhance PTEN 
transcription. Once PTEN is lost, however, the p53 pathway is 
strongly activated (11,12). Furthermore, an absence of PTEN 
cooperates with an absence of p53 to promote cancer (13). The 
inactivation of tumor suppression may be caused by lack of key 
interaction partners. Recent studies have revealed a functional 
ubiquitin ligase for tumor suppressors playing a pivotal role in 
tumor cell survival (14,15). Mutations found in genes such as 
p53 and PTEN have emerged as high penetrance susceptibility 
genes and are clinically relevant for determination of cancer 
risk. In this review, we summarize the current research and 
our view of how and when PTEN and p53 with their partners 
transduce signals downstream and the implications for cancer-
associated biology.

2. Expression, structure and characteristics of PTEN and 
p53

The human genomic PTEN locus consists of 9 exons on chro-
mosome 10q23.3 encoding a 5.5 kb mRNA that specifies a 403 
amino acid open reading frame (16,17). The translation product 
is a 53 kDa protein with homology to tensin and protein tyro-
sine phosphatases. PTEN is ubiquitously expressed throughout 
early embryogenesis in mammals  (18). PTEN gene can be 
upregulated by early growth regulated transcription factor 1, 
peroxisome proliferator activated receptor γ (PPARγ), p53, and 
activating transcription factor 2 (ATF2) (19-22), while trans-
forming growth factor (TGF)-β, nuclear factor κB (NF-κB), 
and Jun negatively regulate PTEN expression (23-25). Of note, 
rosemary extract represses PTEN expression in K562 leukemic 
culture cells (26). PTEN activity can be regulated by posttrans-
lational regulation including phosphorylation, acetylation, and 
oxidation. Methylation of the PTEN promoter can result in 
transcriptional silencing of the PTEN gene (27). Schematic 
structure of the predicted PTEN protein is shown in Fig. 2. 
PTEN negatively regulates the activity of PI3K/AKT signaling 
through converting phosphatidylinositol 3,4,5-triphosphate 
(PIP3) into phosphatidylinositol 4,5- bisphosphate (PIP2). The 
PIP3 is the principal second messenger of the PI3K pathway 
that mediates receptor tyrosine kinase (RTK) signaling to the 
survival kinase AKT. Activated AKT transfers a phosphate 
group to target proteins involved in cell survival, cell cycling, 
proliferation, and migration, which also are all critical for 
tumor development (28,29). 

PTEN acts as regulator of maintaining basal levels of PIP3 
below a threshold for the signaling activation. PTEN protein 
consists of N-terminal phosphatase, and C-terminal C2, and 
PDZ (PSD-95, DLG1, and ZO-1) binding domains. The PTEN 
CX5R(S/T) motif resides within an active site that surrounds 
the catalytic signature with three basic residues, which are 
critical for PTEN lipid phosphatase activity. The structure 
endows PTEN with its preference for acidic phospholipid 
substrates such as PIP3. Overexpression of PTEN induces 
growth suppression by promoting cell cycle arrest, which 
requires lipid phosphatase activity (30,31). Overexpression of 
PTEN also correlates with decreased levels and nuclear local-
ization of cyclin D1 (32), a key cell cycle molecule regulated 
by AKT. One mechanism by which PTEN induces cell cycle 
arrest is the regulation of AKT activity such that levels of 
the cell cycle inhibitor p27kip1 are increased (33). However, 

despite the main role of PTEN as a negative regulator of 
the PI3K pathway, studies report various tumor suppressive 
activities for PTEN that are exerted from within the nucleus, 
where catalysis of PIP3 does not seem to represent a dominant 
function of this enzyme (34). The nuclear PTEN activities may 
include the regulation of genomic stability, cell cycle progres-
sion, and gene expression.

The p53 gene, located on chromosome 17p 13.1 and 
encoding a nuclear 393-amino acid protein, acts to control cell 
growth and apoptosis (Fig. 2). The p53 protein is a transcrip-
tion factor which is able to induce G1 arrest of the cell cycle 
by transactivating several downstream genes. Inactivation 
of p53 gene is a common event in the development of most 
types of cancer. The importance of p53 as an inherited cancer 
susceptibility gene has been demonstrated in Li-Fraumeni 
syndrome (35). However, there are still a significant number of 
Li-Fraumeni families for which no underlying genetic determi-
nant has been identified. It would be beneficial to understand 
the alterations of genes or additional components involved 
in DNA damage recognition, DNA repair, and/or cell cycle 
checkpoint pathways responsible for the specific phenotype.

3. Protein interaction and functional interplay between 
PTEN and p53

PTEN and p53 is known to interact and regulate each other at 
the transcription as well as protein level, which could be at the 
important control machinery for switching between survival 
and death. This cross talk is frequently a combination of recip-
rocally antagonistic pathways, which often involves another 
tumor suppressor gene MDM2, and may serve as an added 
regulatory effect on the expression of key genes involved in 
cancer. It has also been revealed that PTEN regulates p53 
stability and in turn regulates its own transcriptional activity.

At transcription level. The PTEN and p53 complex 
enhances p53 DNA binding and transcriptional activity (36). 
An important p53 function is to act as a transcription factor 
by binding to the specific DNA consensus sequence in respon-
sive genes, which may increase the synthesis of p21waf1 that 
is an important protein involved in cell cycle arrest (37). In 
addition, one of transcriptional targets of p53 is PTEN. One 
way by which p53 inhibits production of PIP3 indirectly is by 
inducing the expression of PTEN (38). Under hypoxic condi-
tions PTEN and p53 form a complex in the nucleus and induce 
strong expression of the tumor suppressor Maspin (39). Loss 
of PTEN attenuates the induction of Maspin even in the pres-
ence of wild-type p53. The integration of PTEN and p53 into a 
common pathway for the induction of Maspin may constitute a 
tumor suppressor network (40).

MDM2 is an oncoprotein that controls tumorigenesis, its 
mRNA level is transcriptionally regulated by p53 in response to 
DNA damage such as oxidative stress (41). The MDM2 protein 
and subcellular localization are post-translationally modulated 
by AKT (42). PTEN inhibits PI3K/AKT signaling that promotes 
translocation of MDM2 into the nucleus. In addition, PTEN 
modulates MDM2 transcription and isoform selection by nega-
tively regulating its promoter (43). In PTEN‑null cells, MDM2 
promoter activity is upregulated, resulting in increased MDM2 
expression. Furthermore, PTEN controls MDM2 promoter 
activity through its lipid phosphatase activity, independent 



INTERNATIONAL JOURNAL OF ONCOLOGY  44:  1813-1819,  2014 1815

of p53 (36). Although another transcription factors such as 
AP-1 are able to modulate MDM2 transcription, they have 
been characterized to work through the p53 responsible 
promoter (44). MDM2 is a key regulator of p53. It regulates the 
activity of p53 protein by blocking its transcriptional activity, 
exporting nuclear p53 protein into the cytoplasm, and/or by 
promoting the degradation of the p53 protein. PTEN upregu-
lates the p53 level as well as its activity by downregulating 
MDM2 transcription and p53 binding activity (45). However, 
in the absence of p53, PTEN may have a role inhibiting 
MDM2-mediated carcinogenesis through regulation of 
MDM2 transcription as well as the isoform selection. MDM2 
is degraded, when restricted to the cytoplasm. The ability of 
PTEN to inhibit the nuclear entry of MDM2 increases the 

cellular content and transactivation of the p53 to promote the 
induction of responsive genes such as p21 (46).

Protein modification and interaction. p53 and AKT influ-
ence the process of apoptosis in opposite ways. The AKT 
promotes cell survival by suppressing pro-apoptotic proteins 
such as Bad through phosphorylation (47). There is cross talk  
between p53 and AKT involving gene transcription as well 
as posttranslational protein modifications. p53 inhibits PIP3 
production indirectly by repressing the catalytic subunit of 
PI3K. A subsequent p53-induced expression of PTEN causes 
the p53-PTEN interaction, which then suppresses the cell 
survival machinery of AKT pathway. AKT phosphorylates 
MDM2 to translocate into the nucleus (48). In addition, PTEN 
physically associates with endogenous p53 and regulates 

Figure 1. The proposed integrative model of tumor suppressor signaling including PTEN and p53. Examples of molecules known to act on DNA damage 
response, cell proliferation, and cell cycle via the regulatory pathways are shown. Note that some critical pathways have been omitted for clarity.

Figure 2. The structures of PTEN and p53 protein. The predicted consensual domain structures for each protein are depicted. The functionally important 
sites are also shown. TA, transactivation domain; PxxP, proline rich region; C2 domain, a protein structural domain involved in targeting proteins to cell 
membranes; PDZ, a common structural domain in signaling proteins (PSD95, Dlg and ZO-1).
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the transcriptional activity of p53 by modulating its DNA 
binding (36). PTEN is required for the maintenance of p53 
acetylation, which is also required for target gene transcrip-
tion (49).

Growth factor-activated AKT signaling promotes 
progression of cell cycles by acting on downstream factors 
involved in controlling the G1/S and/or G2/M transitions. 
Several studies have also implicated AKT in modulating 
DNA damage responses and genome stability  (50). AKT 
therefore modifies downstream signaling in complex ways. 
In addition, PTEN also plays a critical role in DNA damage 
repair and DNA damage response through its interaction 
with p53 pathways in an AKT-independent manner  (51). 
Furthermore, nuclear PTEN is sufficient to reduce tumor 
progression in a p53-dependent manner. It has also been 
suggested that nuclear PTEN plays a unique role to protect 
cells upon oxidative damage and to regulate carcinogen-
esis (52), thus, the PTEN-p53-MDM2-AKT loop becomes 
dominant (Fig. 3).

Protein degradation. One aspect of the PTEN tumor 
suppressor signaling is achieved through stabilization of the 
p53 protein. PTEN has been shown to physically interact with 
p53 and prevent its degradation by excluding a portion of p53 
protein from the p53 and MDM2 complex. Evidence indicates 
the existence of a link between PTEN and p53 functions 
through the control of the phosphorylation state of MDM2. 
AKT mediates MDM2 nuclear translocation by its phos-
phorylation. In the nucleus, MDM2 negatively regulates p53 
by binding and signaling for destabilization (53). Therefore, 
attenuation of the AKT pathway by PTEN protects p53 from 
MDM2 mediated degradation and inactivation. The p53 and 
MDM2 complex is transported from the nucleus into the 
cytoplasm where MDM2 serves as an E3 ubiquitin ligase (54). 
Consequently, p53 and MDM2 form a regulatory feedback 
loop in which p53 positively regulates MDM2 expression, 
whereas MDM2 negatively regulates the level of p53 protein. 
Thus, PTEN may protect p53 from MDM2-mediated degra-
dation, whereas p53 can enhance the transcription of PTEN 
(Fig. 3). Therefore, inactivation of either gene result in lower 
protein levels of the other gene.

The instability of PTEN correlated with its missense 
mutations has been shown to involve protein interactions. 
PTEN may be regulated by ubiquitin-mediated proteasomal 
degradation, a common mechanism to control protein levels. 
In cells, a ubiquitin ligase NEDD4-1 negatively regulates 
PTEN stability by catalyzing PTEN ubiquitination (55). As 
truncation or mutation of the C2 domain of PTEN makes the 
protein unstable and accelerates protein degradation, the C2 
domain seems to regulate the phosphatase domain through 
maintaining the protein stability (56). In addition to the C2 
domain, the C-terminus of PTEN contains two PEST (proline, 
glutamic acid, serine and threonine) sequences involved in 
ubiquitin protein degradation pathway. Treatment of cells 
with proteasome inhibitors can cause an increase of PTEN 
protein level (57,58). Several NEDD4-like E3 also regulate 
p53. Interestingly, multiple NEDD4-like E3 show ligase 
independent function. Furthermore, most of NEDD4-like E3 
are frequently regulated by phosphorylation, ubiquitination, 
translocation, and transcription in cancer cells. NEDD4-like 
ubiquitin protein ligase-1 (NEDL1) is a type E3 ubiquitin 
protein ligase. Functional interaction of NEDL1 with p53 
might contribute to the induction of apoptosis in cancer cells 
bearing wild-type p53 (59,60).

Casein kinase II-mediated phosphorylation stabilizes the 
PTEN protein by preventing its proteasomal degradation, while 
keeping it in an inactive state. Inhibition of the PTEN phos-
phorylation by the Casein kinase II results in increased PTEN 
activity and a corresponding reduction in AKT activation (61). 
Importantly, inhibitors of Casein kinase II also activate p53 
function in wild-type, but not in p53 mutant cells. Activation 
of p53 function is involved in increased DNA-binding ability, 
transcriptional activation, increased expression of p53 target 
genes, associated with cell cycle progression and apoptosis. 
In addition, inhibitors of Casein kinase II increase senescence  
p53-dependently (62), thus, Casein kinase II may control the 
PTEN and the p53 balance.

4. Involvement of PTEN and p53 tumor suppressors in 
hereditary cancer

The PTEN gene is found in 80% of Cowden syndrome 
patients (63,64). Mutations of the PTEN gene are thus frequent 
in hereditary cancer syndromes, and are found in all exons 
except 1, 4, and 9 in Cowden syndrome (63-65). These muta-
tions target the PTEN gene not only at its coding regions, but 
also at exon-intron boundaries and promoter regions, most 
of which have a major impact in the PTEN protein levels of 
expression, being causative of PTEN functional deficiency 
and considered as pathogenic (66,67). It has been suggested 
that the differential expression of the PTEN gene correlates 
with the different phenotypes. Mutations targeting the PTEN 
coding region include frame-shift and nonsense mutations, 
which also generate unstable truncated PTEN proteins, as 
well as missense mutations that result in individual amino 
acid changes. Functional analyses of these missense muta-
tions have revealed that the amino acid substitutions generate 
PTEN proteins with impaired intrinsic catalytic activity and/
or protein stability (68-70). 

Some examples have been described of missense PTEN 
mutations that do not affect the intrinsic catalysis nor the 

Figure 3. Implication of various feedback loops involving the PTEN-AKT-
p53-MDM2 regulatory network. Interactions are shown as arrows indicating 
activation, while hammerheads indicate inhibition. Note that some critical 
pathways have been omitted for clarity.



INTERNATIONAL JOURNAL OF ONCOLOGY  44:  1813-1819,  2014 1817

stability of the protein, but rather impair essential regula-
tory PTEN properties, such as binding to membranes or 
nuclear entry (71). PTEN hamartoma tumor syndrome is the 
term used to describe Cowden syndrome (65). Mutations in 
PTEN together with p53 make the tumor suppressor genes 
one of the most frequently affected in human malignancies 
in solid tumors (72-74). PTEN is considered haplo-insufficient 
to prevent certain malignancies, suggesting that dosage is 
important for its function, as it is influenced by a given point 
mutation in the catalytic activity of the enzyme (75). Tumors 
initiated by a subtle downregulation of a tumor suppressor 
gene can progress in the absence of LOH of the wild-type 
allele (76). These regulatory cues are presumed to play a key 
role in tumorigenesis through the alteration of the appropriate 
levels, localization, and activity of PTEN. However, it has been 
shown that PTEN germ-line SNPs are unlikely to have an 
important role in hereditary prostate susceptibility (77). The 
lifetime risk of breast cancer for Cowden syndrome patients is 
81% (78), and bilateral risk-reducing mastectomy with imme-
diate reconstruction is performed to eliminate further risk of 
breast cancer (79).

5. Perspective

Advances in the field of hereditary cancer genetics have led 
to an improved understanding of detection and prevention 
strategies. Germline genetic testing for mutations in PTEN 
and p53 allows for the identification of individuals at increased 
risk for breast, ovarian and other cancers. PTEN and p53 may 
be regulated and interact with each other at multiple levels 
including transcription, protein modulation, and protein 
stability (80,81). Understanding the regulation is crucial for 
the effective design of novel cancer therapeutics. In addition, 
it is important to investigate the functional linkage between 
PTEN, p53 and MDM2 isoforms in human cancer samples, 
and elucidation of interaction-specific functions may provide 
insight into regulatory aspects of these tumor suppressors as 
well as opportunities for therapeutic intervention. Further 
mechanistic studies are needed in order to understand the 
precise molecular mechanisms for the effective treatment of 
both cancer and other diseases with their alteration.
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