Overexpression of integrin αv facilitates proliferation and invasion of oral squamous cell carcinoma cells via MEK/ERK signaling pathway that is activated by interaction of integrin αvβ8 with type I collagen

YASUTAKA HAYASHIDO¹, HISATAKA KITANO², TAISHI SAKAUE¹, TAKAHIKO FUJII¹, MIREI SUEMATSU¹, SHIGERU SAKURAI¹ and TETSUJI OKAMOTO¹

¹Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Minami-ku, Hiroshima 734-8553;
²Department of Oral Surgery, Nihon University Itabashi Hospital, Itabashi-ku, Tokyo 173-8610, Japan

Received June 25, 2014; Accepted August 13, 2014

DOI: 10.3892/ijo.2014.2642

Abstract. To examine the role of integrin αv subunit in the progression of squamous cell carcinoma (SCC), oral SCC cells were stably transfected with integrin av cDNA. Integrin av transfectants exhibited the enhancement of proliferation on type I collagen, and seemed to have a high ability to invade type I collagen gel. Overexpression of integrin av led to rapid phosphorylation of focal adhesion kinase (FAK), mitogen-activated protein kinase kinase 1/2 (MEK1/2) and extracellular signal-regulated kinase 1/2 (ERK1/2) in SCC cells on type I collagen. The downregulation of integrin ß8 in integrin av transfectants by its specific antisense oligonucleotide led to a decrease in type I collagen-stimulated activation of FAK and the MEK/ERK signaling pathway, and also suppressed the proliferation on type I collagen and the invasiveness into type I collagen gel. Moreover, the expression of integrin $\beta 8$ was induced following transfection with integrin av cDNA. These results indicated that the overexpression of integrin av induces integrin avß8 heterodimer formation and the binding of integrin $\alpha v\beta 8$ to type I collagen might enhance the proliferation and invasion of SCC cells via the activation of the MEK/ERK signaling pathway.

E-mail: hayashiy@hiroshima-u.ac.jp

Key words: integrin αv, integrin β8, squamous cell carcinoma, proliferation, invasion, MEK/ERK signaling pathway

Introduction

The behavior of cancer cells such as invasion and metastasis has been proposed to be mediated by the surrounding microenviroment including extracellular matrix (ECM) proteins and stromal cells (1-5). Integrins are heterodimeric transmembrane receptors composed of α and β subunits, which bind a wide range of ligands such as ECM proteins and cell surface proteins. There are at least 18 α subunits and eight β subunits, forming 24 different integrin heterodimers (6,7). Most of α subunits dimerize with only one β subunit. In contrast, integrin αv is unique because αv subunit associates with $\beta 1$, $\beta 3$, $\beta 5$, $\beta 6$ or $\beta 8$ subunit and forms five distinct heterodimers (7,8).

Integrin-ECM interaction leads to the activation of signal transduction pathways, which regulate various biological events including cell adhesion, migration, proliferation and differentiation (9,10). Integrins also contribute to tumor progression by facilitating the proliferation, migration and survival of cancer cells (11-13). Altered expression of integrins has been shown in malignant tumors compared to their normal counterparts (14-17). Especially, it has been shown that the overexpression of the integrin αv subfamily such as $\alpha v\beta 1$, $\alpha v\beta 3$, $\alpha\nu\beta5$ and $\alpha\nu\beta6$ correlates with poor prognosis in malignant tumors such as ovarian cancer (18,19), lung cancer (20), nasopharyngeal cancer (21), gastric cancer (22) and breast cancer (23). In vitro studies have also shown the participation of αv integrins in the proliferation (24), motility (25,26) and proteolysis (26-28) in various cancer cells. In addition, integrin $\alpha v\beta 3$ is a cell-surface receptor for active matrix metalloproteinase (MMP-2), indicating that integrin $\alpha v\beta 3$ regulates tumor invasion and metastasis by increasing pericellular proteolysis (29). However, the precise mechanism of the progression of squamous cell carcinoma (SCC) mediated by integrin αv is poorly documented.

In the present study, to elucidate the role of integrin αv in the progression of oral SCC, the effect of induction of integrin αv on the proliferation and invasion of oral SCC cells were examined. The signal transduction via integrin αv that

Correspondence to: Dr Yasutaka Hayashido, Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan

1876

regulates the proliferation and invasiveness of oral SCC cells was also examined.

Materials and methods

Cells and culture. The oral SCC cell line, SCCKN (30) was grown in RD medium (a 1:1 mixture of RPMI-1640 and Dulbecco's Modified Eagle's Medium) supplemented with 5% fetal bovine serum (FBS) in 5% CO₂ at 37°C. The proliferation of the cells on ECM proteins was estimated as follows: The wells of 24-well tissue culture plates were incubated with 100 μ g/ml type I collagen, type IV collagen, fibronectin, laminin or vitronectin (all from Sigma, St. Louis, MO, USA) overnight at 4°C. Poly-L-lysine (100 µg/ml; Sigma) was used as a non-integrin-dependent adhesion substrate. The cells $(2x10^4)$ suspended in RD containing 10 μ g/ml bovine insulin, 5 μ g/ml human transferrin, 0.5 mg/ml fatty acid-free bovine serum albumin (BSA), 10 µM 2-mercaptoethanol, 10 µM 2-aminoethanol and 10 nM sodium selenite (all from Sigma) (31) were seeded in each well of the culture plates and cultured in 5% CO₂ for 6 days at 37°C. The number of cells was measured by the Coulter counter (Beckman Coulter, Inc., Tokyo, Japan). The measurements were done in triplicate.

Construction of integrin av expression vector. The open reading frame of human integrin av was amplified by PCR from plasmid CDM8 containing human av cDNA, which was provided by Dr Joseph C. Loftus (Mayo Clinic Arizona, Scottsdale, AZ, USA). The forward primer (5'-CGGAAT TCTTCGGCGATGGCTTTTCCGC-3') containing EcoRI site (underlined) and the reverse primer (5'-TCCCCCGGGT TAAGTTTCTGAGTTTCCTTCACCAT-3') containing Smal site (underlined) were used for the amplification. The PCR products were double-digested with EcoRI (New England Bio Labs, Ipswich, MA, USA) and SmaI (New England Bio Labs) and then ligated into pCI-neo Mammalian Expression Vector (Promega Corporation, Madison, WI, USA) digested with both EcoRI and SmaI. The inserted cDNA sequences were all verified by DNA sequence analysis. The resultant plasmid was termed as pCI/neo-av, and pCI/neo without insert was used as negative control.

Transfection and selection. SCCKN cells were transfected with pCI/neo- α v or pCI/neo (5 μ g per 60-mm dish) using TransFast transfection reagent (Promega Corporation) according to the manufacturer's instruction. Selection was initiated 48 h after transfection by adding 600 μ g/ml G418 (Geneticin; Invitrogen Life Technologies, San Diego, CA, USA) to the culture medium. The selection medium was changed every 4 days for 2 weeks until all non-transfected cells died. Resistant cell clones were isolated. Cell clones transfected with pCI/neo- α v or pCI/neo were termed as KN α v or KNmock, respectively.

Western blotting. To detect integrin αv and $\beta 8$ proteins, SCCKN, KNmock and KN αv cells were lysed with lysis buffer [10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 1% protease inhibitor cocktail (Sigma)]. The samples containing 10 μ g of total protein were electrophoresed on 10% SDS-polyacrylamide gels under reducing condition and transferred to polyvinylidene difluoride (PVDF) membrane filters (Millipore, Bedford, MA, USA). The filters were blocked in T-TBS (20 mM Tris-HCl, pH 7.5, 137 mM NaCl, 0.1% Tween-20) containing 5% skim milk for 1 h at room temperature and then incubated with rabbit anti-integrin αv polyclonal antibody (Santa Cruz Biotechnology, Inc., Dallas, TX, USA) or goat anti-integrin β8 polyclonal antibody (Santa Cruz Biotechnology, Inc.), followed with the incubation with horseradish peroxidase (HRP)-conjugated anti-rabbit IgG antibody (Cell Signaling Technology, Inc., Danvers, MA, USA) or HRP-conjugated anti-goat IgG antibody (KPL, Gaithersburg, MD, USA), respectively. Rabbit anti-\beta-actin polyclonal antibody (Cell Signaling Technology, Inc.) was used as internal control to confirm equal loading of total protein. Protein bands were visualized by enhanced chemiluminescence detection (ECL Plus System; GE Healthcare, Uppsala, Sweden).

Cell adhesion assay. The wells of 24-well culture plates were incubated with 100 μ g/ml type I collagen, type IV collagen, fibronectin, laminin or vitronectin overnight at 4°C. Poly-L-lysine (100 μ g/ml) was used as a non-integrin-dependent adhesion substrate. The wells were washed five times with phosphate-buffered saline (PBS) and incubated with in PBS containing 1% BSA for 1 h at 37°C to block non-specific binding. Subconfluent culture of cells was radiolabeled with 1 μ Ci/ml [methyl-³H]-thymidine (Perkin-Elmer, Waltham, MA, USA) for 24 h. The labeled cells (1x10⁵) suspended in RD medium containing 0.1% BSA were added to each well of the culture plates. After incubation for 30 min at 37 °C, the medium was aspirated, and the wells were gently rinsed twice with PBS. The cells adhering to the well were dissolved in 1 N NaOH, and the radioactivity was measured with a liquid scintillation counter (LSC903; Aloka, Co., Ltd., Tokyo, Japan). The adhesion capacity was determined relative to the radioactivity of seeded cells (1x10⁵) that was considered to be 100%. Each assay was performed in triplicates and repeated three times.

Collagen gel culture. Five hundred-microliters of 0.21% type I collagen gel solution (Koken, Co., Ltd, Tokyo, Japan) in RD neutralized with reconstitution buffer (0.05 N NaOH, 2.2% NaHCO₃, 0.2 M HEPES) was pipetted into each well of 24-well culture plate and gelled as a basal layer with incubation for 1 h at 37°C. Thereafter, 500 μ l type collagen solution containing cells (2.5x10⁴) was poured onto the basal layer and gelled, and received 1 ml RD containing 5% FBS. The cells in the gels were cultured for 12 days at 37°C. The colonies that formed in the gel were fixed with phosphate-buffered 10% formalin. Sections were prepared and stained with hematoxylin and eosin.

Phosphorylation assay. SCCKN, KNmock and KNαv cells suspended in RD containing 2% BSA were seeded on culture dishes coated with 100 μ g/ml type I collagen. At various incubation times, the cells were washed with ice-cold PBS containing 1 mM sodium vanadate and lysed with Laemmli sample buffer (62.5 mMTris-HCl,pH6.8,2% SDS, 10% glycerol, 1% β-mercaptoethanol) supplemented with protease inhibitor cocktail and 1 mM sodium vanadate. The samples were separated on 10% SDS-polyacrylamide gels and transferred onto PVDF membrane filters. The immunoblot analysis was performed

using rabbit anti-phospho-focal adhesion kinase (FAK) monoclonal antibody, rabbit anti-phospho-mitogen-activated protein kinase kinase 1/2 (MEK1/2) monoclonal antibody and rabbit anti-phospho-extracellular signal-regulated kinase 1/2 (ERK1/2) monoclonal antibody. To detect total FAK, MEK1/2 and ERK1/2 proteins, rabbit anti-FAK monoclonal antibody, rabbit anti-MEK1/2 monoclonal antibody and rabbit anti-ERK1/2 monoclonal antibody were used, respectively. After incubation with primary antibodies, the membranes were incubated with HRP-conjugated secondary antibody, and protein bands were detected using an enhanced chemiluminescence reagent. All antibodies used for the phosphorylation assay were purchased from Cell Signaling Technology, Inc.

Integrin β 8-specific morpholino antisense oligonucleotide. To downregulate integrin β 8, a morpholino antisense oligonucleotide specific for integrin β 8 obtained from GeneTools (Philomath, OR, USA) was used. The sequence of the antisense oligonucleotide is as follows: 5'-AAGCCAGGGC CGAGCCGCACATAAT-3'. A standard control morpholino oligonucleotide (5-CCTCTTACCTCAGTTACAATTTATA-3) was used as a negative control. Delivery of the oligonucleotides into the cells was performed according to the GeneTools protocol. Briefly, 80-100% confluent SCCKN, KNmock or KN α v cells were treated with 10 μ M of the morpholino antisense oligonucleotide or the standard control oligonucleotide, and 6μ M of Endo-Porter reagent (GeneTools). After 24 h, the cells were used for the subsequent experiments.

Northern blot analysis. Total cytoplasmic RNA of SCCKN, KNmock or KNav cells in confluent cultures was isolated with using TRIzol reagent (Life Technologies, Rockville, MD, USA) according to manufacture's instruction. Total RNA (20 µg) obtained from the cells were separated on a 1% agarose gels containing 2.2 M formaldehyde and transferred directly from the gel to a nylon membrane (Hybond-N+; GE Healthcare) in 10X SSC (1X SSC is 0.15 M NaCl plus 1.5 mM sodium citrate) overnight. After transfer, RNA was UV cross-linked (120,000 µJ of UV), and the membrane was prehybridized with Rapid-hyb buffer (GE Healthcare) for 15 min at 65°C. The specific probe for integrin $\beta 8$ was obtained by reverse transcriptase-PCR as follows: First-strand cDNA was synthesized from total RNA of SCCKN cells with ReverTra Ace (Toyobo, Osaka, Japan) and PCR amplification was performed using forward primer (5'-GATCAGACGTCTCATCTCGC-3') and reverse primer (5'-CTCTTCCACTGCACACTTGG-3'). The PCR products (961 bp) were subcloned into pGEM-T Easy Vector (Promega Corporation), and the inserted cDNA sequences were verified by DNA sequence analysis. The plasmid was digested with EcoRI, and the insert was gel-purified and radiolabeled with $[\alpha^{-32}P]$ -dCTP (Perkin-Elmer) using Rediprime II DNA Labeling System (GE Healthcare). Hybridization was carried out for 2 h at 65°C in Rapid-hyb buffer containing 1x10⁶ cpm/ml probe. The membrane was washed with 2X SSC/0.1% SDS for 20 min at room temperature and washed twice with 0.5X SSC/0.1% SDS for 15 min at 65°C. Hybridization signals were detected by the BAS 2000 image analyzer (Fujifilm, Tokyo, Japan). Equivalent loading of ribosomal RNA was confirmed by methylene blue staining.

Results

Effect of overexpression of integrin av on cell adhesion to ECM proteins. A small amount of integrin av protein was observed in SCCKN and KNmock cells. In contrast, integrin av transfectants in KNav cells showed a large amount of integrin av protein (Fig. 1A).

To examine the effect of integrin αv on cell adhesion to ECM proteins, SCCKN, KNmock and KN αv cells were seeded on various ECM protein-coated wells and incubated for 30 min. Only 5 or 10% of SCCKN and KNmock cells adhered to any ECM protein. In contrast, over 35% of KN αv cells adhered to type I collagen, type IV collagen, fibronectin and vitronectin after 30-min incubation (Fig. 1B).

Effect of overexpression of integrin αv on the proliferation of SCC cells on ECM proteins. To examine the participation of integrin αv in the proliferation of SCC cells, SCCKN, KNmock and KN αv cells were grown on various ECM proteins in the absence of serum for 6 days. Transfection with integrin αv cDNA led to a marked increase in cell proliferation on type I collagen. The number of KN αv cells grown on type I collagen was about 3-fold compared to the number of SCCKN and KNmock cells on type I collagen. In contrast, other ECM proteins exhibited no significant effect on the proliferation of KN αv cells (Fig. 2A).

Effect of overexpression of integrin av on the morphology of colonies of SCC cells in three-dimensional type I collagen gels. The behavior of SCCKN, KNmock and KNav cells was examined by three-dimensional culture using type I collagen gel. The cells embedded in type I collagen gel were cultured for 12 days. SCCKN and KNmock cells formed small and spherical colonies in the gel. In contrast, KNav cells formed dilated colonies with irregular margins, and some cells migrated into the surrounding collagen gel, suggesting that transfection with integrin av cDNA led to the enhancement of invasiveness of SCC cells (Fig. 2B).

Activation of FAK and the MEK/ERK signaling pathway by type I collagen. Type I collagen enhanced the proliferation of KNav cells, and KNav cells exhibited the enhanced invasiveness into type I collagen gel compared to SCCKN and KNmock cells. Several studies have shown that the MEK/ERK signaling pathway via integrin av regulates cell proliferation (32-34). To clarify the participation of the MEK/ERK signaling pathway in type I collagen-induced proliferation and invasion of KNav cells, SCCKN, KNmock and KNav cells were detached and replated onto type I collagen, and the phosphorylation of FAK, MEK1/2 and ERK1/2 in the cells was investigated after cultivation for various periods. The phosphorylation of FAK, MEK1/2 and ERK1/2 in KNav cells was observed at 2, 6 h and 6 h after replating on type I collagen, respectively. In contrast, the phosphorylation of FAK, MEK1/2 and ERK1/2 in SCCKN and KNmock cells was observed at 12, 24 h and 24 h after replating, respectively (Fig. 3).

Participation of integrin $\beta 8$ in integrin αv -mediated cell adhesion of SCC cells. To examine the effect of the suppression of integrin $\beta 8$ on the adhesion of SCC cells to ECM proteins,

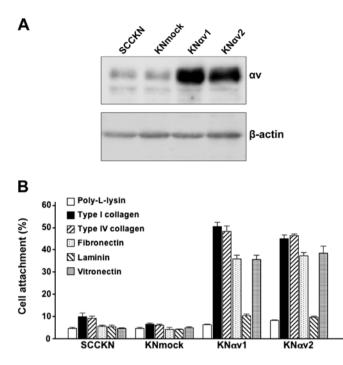


Figure 1. Effect of integrin av on the cell adhesion to extracellular matrix (ECM) proteins. (A) The expression level of integrin av protein in SCCKN, KNmock and KNav cells was analysed by western blotting. The cell lysates were electrophoresed on a 10% SDS polyacrylamide gel and transferred to a polyvinylidene difluoride (PVDF) membrane. The expression of integrin av protein was detected by anti-integrin av antibody, followed by enhanced chemiluminescence detection reagents as described in Materials and methods. (B) [Methyl-³H]-thymidine-labeled cells (1x10⁵) suspended in RD containing 0.1% bovine serum albumin (BSA) were added to 24-well culture plates coated with indicated ECM proteins. After incubation for 30 min at 37°C, the medium was aspirated, and the wells were gently rinsed twice with phosphate-buffered saline (PBS). The radioactivity of cells adhering to the well was measured. The adhesion capacity was determined relative to the radioactivity of seeded cells (1x10⁵), which was considered to be 100%. The results are represented the means \pm SD of triplicate determinations.

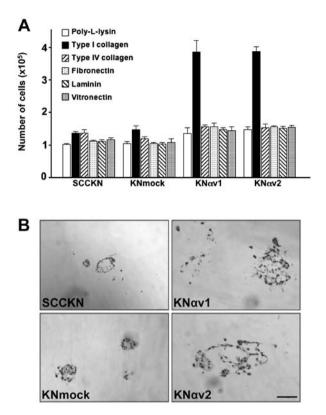


Figure 2. Effect of αv integrin on the growth of squamous cell carcinoma (SCC) cells. (A) SCCKN, KNmock and KN αv cells (2x10⁴) suspended in RD containing 10 μ g/ml bovine insulin, 5 μ g/ml human transferrin, 0.5 mg/ml fatty acid-free bovine serum albumin (BSA), 10 μ M 2-mercaptoethanol, 10 μ M 2-aminoethanol and 10 nM sodium selenite were seeded in each well of 24-well tissue culture plates coated with indicated extracellular matrix (ECM) proteins. After cultivation for 6 days, the number of cells was measured. The results are the means of triplicate determinations \pm SD. (B) Morphology of SCCKN, KNmock and KN αv cells in type I collagen gel. The cells (2.5x10⁴) embedded in type I collagen gel were cultured for 12 days. The colonies were fixed in buffered formalin and embedded in paraffin, and the sections stained with hematoxylin and eosin. Scale bar, 250 μ m.

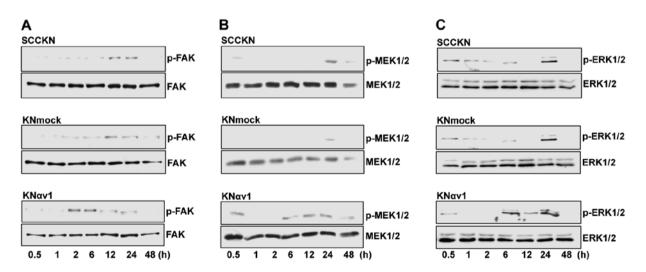


Figure 3. Phosphorylation of focal adhesion kinase (FAK), mitogen-activated protein kinase kinase 1/2 (MEK1/2) and extracellular signal-regulated kinase 1/2 (ERK1/2) in squamous cell carcinoma (SCC) cells on type I collagen. SCCKN, KNmock and KN α v cells were detached and replated onto type I collagen. The cells were lysed at the indicated times after replating, and the phosphorylation of (A) FAK, (B) MEK1/2 and (C) ERK1/2 was analysed by western blotting.

the cells were transfected with a morpholino antisense oligonucleotide targeting integrin $\beta 8$ subunit (Fig. 4A) or a

control oligonucleotide (Fig. 4B). The adhesion of SCCKN and KNmock cells to ECM proteins were not greatly affected

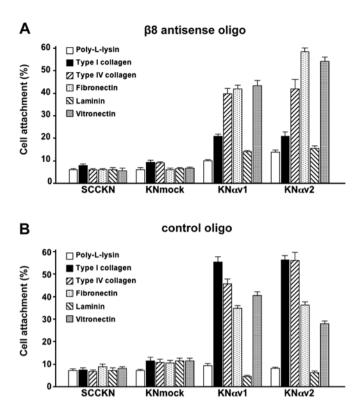


Figure 4. Participation of integrin β 8 in integrin α v-mediated adhesion of squamous cell carcinoma (SCC) cells to extracellular matrix (ECM) proteins. SCCKN, KNmock and KN α v cells were transfected with (A) an antisense oligonucleotide targeting integrin β 8 (β 8 antisense oligo) or (B) a control oligonucleotide (control oligo). The cells were radiolabeled with [methyl-³H]-thymidine. The cells (1x10⁵) suspended in RD containing 0.1% bovine serum albumin (BSA) were added to 24-well culture plates coated with indicated ECM proteins. The adhesion capacity of the cells was determined as described in the legend of Figure 1. The results are presented the means \pm SD of triplicate determinations.

by the suppression of integrin $\beta 8$. In contrast, the suppression of integrin $\beta 8$ by the antisense oligonucleotide led to the remarkable decrease in the attachment of KNav cells to type I collagen compare to the attachment of KNav cells transfected with the control oligonucleotide. However, the suppression of integrin $\beta 8$ did not reduce the adhesion of KNav cells to any ECM protein except type I collagen.

Participation of integrin $\alpha\nu\beta\beta$ on the proliferation of SCC cells via the MEK/ERK signaling pathway. We examined the participation of integrin $\alpha\nu\beta\beta$ in type I collagen-induced proliferation of KN $\alpha\nu$ cells. The suppression of integrin $\beta\beta$ by a morpholino antisense oligonucleotide targeting integrin $\beta\beta$ led to remarkable decrease in the proliferation of KN $\alpha\nu$ cells cultured on type I collagen. However, transfection with the antisense oligonucleotide did not have strong effect on the proliferation of SCCKN and KNmock cells on type I collagen (Fig. 5A).

We next examined the effect of the suppression of integrin $\beta \beta$ on the morphology of colonies of KNav cells in type I collagen gels. KNav cells transfected with the control oligonucleotide formed dilated colonies with irregular margin, and some cells migrated into the surrounding collagen gel. In contrast, the colonies of KNav cells transfected with the antisense oligonucleotide were small and spherical colonies (Fig. 5B).

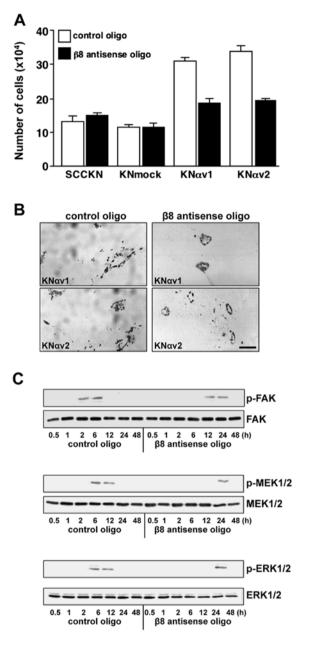


Figure 5. Suppression of integrin ß8 reduces type I collagen-induced growth and phosphorylation of focal adhesion kinase (FAK), mitogen-activated protein kinase kinase 1/2 (MEK1/2) and extracellular signal-regulated kinase 1/2 (ERK1/2) of squamous cell carcinoma (SCC) cells. (A) SCCKN, KNmock and KN α v cells (2x10⁴) transfected with β 8 antisense oligo or control oligo were suspended in RD containing 10 µg/ml bovine insulin, 5 μ g/ml human transferrin, 0.5 mg/ml fatty acid-free bovine serum albumin (BSA), 10 µM 2-mercaptoethanol, 10 µM 2-aminoethanol and 10 nM sodium selenite, and were seeded in each well of 24-well tissue culture plates coated with type I collagen. After cultivation for 6 days, the number of cells was measured. The results are the means of triplicated determinations \pm SD. (B) KN α v cells transfected with β 8 antisense oligo or control oligo were embedded in type I collagen gel and cultured for 12 days. The cells were fixed in buffered formalin and embedded in paraffin and the sections stained with hematoxylin and eosin. Scale bar, 250 μ m. (C) KN α v cells transfected with the ß8 antisense oligo or control oligo were detached and replated onto type I collagen. The cells were lysed at the indicated times after replating, and the phosphorylation of FAK, MEK1/2 and ERK1/2 was analysed by western blotting.

The phosphorylation of FAK, MEK1/2 and ERK1/2 in KN α v cells transfected with the control oligonucleotide was observed at 2, 6 h and 6 h after replating on type I collagen,

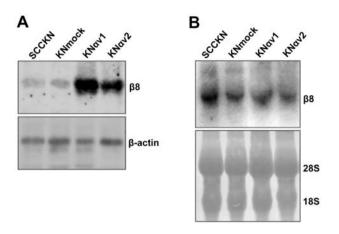


Figure 6. The expression level of integrin β 8 protein and mRNA in SCCKN, KNmock and KN α v cells. (A) The expression of integrin β 8 protein in SCCKN, KNmock and KN α v cells was analysed by western blotting. The cell lysates were electrophoresed on a 10% SDS polyacrylamide gel and transferred to a polyvinylidene difluoride (PVDF) membrane. The integrin β 8 protein was detected by anti-integrin β 8 antibody, followed by enhanced chemiluminescence detection reagents as described in Materials and methods. (B) The expression of integrin β 8 mRNA in SCCKN, KNmock and KN α v cells was analysed by Northern blotting. Total RNAs obtained from the cells were separated on a 1% agarose gels containing 2.2 M formaldehyde and transferred directly from the gel to a nylon membrane. The immobilized RNAs were hybridized with the radiolabeled specific probe for integrin β 8. The membrane was stained in methylene blue to visualize the relative amounts of 28S and 18S rRNA present in each lane (lower panel).

respectively. In contrast, the phosphorylation of FAK, MEK1/2 and ERK1/2 in KN α v cells transfected with the antisense oligonucleotide was observed at 12, 24 h and 24 h after replating, respectively (Fig. 5C).

Expression of integrin $\beta 8$ in integrin αv transfectants. The proliferation of KN αv cells on type I collagen was reduced by the suppression of integrin $\beta 8$. Moreover, type I collagen-stimulated phosphorylation of FAK, MEK1/2 and ERK1/2 in KN αv cells was also inhibited by the suppression of integrin $\beta 8$. These findings suggest that the interaction of integrin $\alpha v\beta 8$ with type I collagen might activate FAK and the MEK/ERK signaling pathway and induce the proliferation of SCC cells. Therefore, the expression of integrin $\beta 8$ protein and mRNA in SCCKN, KNmock and KN αv cells was examined by western blotting and northern blotting, respectively. The expression of integrin $\beta 8$ protein in KN αv cells was enhanced compared to SCCKN and KNmock cells. In contrast, there was no remarkable difference in the expression of integrin $\beta 8$ mRNA between SCCKN, KNmock and KN αv cells (Fig. 6).

Discussion

Integrin αv , which heterodimerizes with $\beta 1$, $\beta 3$, $\beta 5$, $\beta 6$ or $\beta 8$, regulates several biological events such as cell adhesion, proliferation and differentiation (7,8). Several studies have shown that integrin $\alpha v \beta 3$, $\alpha v \beta 5$ and $\alpha v \beta 6$ are implicated in carcinogenesis, tumor invasion and metastasis (34-37). Our previous study has also shown that integrin αv mediates the proteolytic activity of SCC cells by anchoring active MMP-2 on the cell surfaces, suggesting that integrin αv might promote the progression of oral SCC (38).

In this study, the role of integrin αv in the progression of SCC cells was examined. Induction of integrin av expression led to the enhancement of cell attachment of SCCKN cells to any ECM proteins used in the present study. Especially, integrin av transfectants, KNav cells had a high ability to bind type I collagen, type IV collagen and fibronectin. We next examined the proliferation of SCC cells on ECM proteins. The proliferation of SCCKN and KNmock cells was not greatly influenced by any ECM proteins. In contrast, the proliferation of KNav cells on type I collagen was significantly enhanced. Moreover, the effect of integrin αv on the behavior of SCC cells using three-dimensional type I collagen gel culture system was examined. SCCKN and KNmock cells embedded in type I collagen gel formed small and spherical colonies. In contrast, KNav cells in type I collagen gel formed dilated colonies with irregular margins, and some cells migrated into the surrounding gel. These findings suggest that the binding of αv integrins to type I collagen activates the signaling pathway involved in the proliferation and invasion of SCC cells.

The binding of integrins to ECM proteins leads to the activation of FAK, and results in the activation of several signaling pathways such as Akt/PI3 kinase signaling, mitogen-activated protein (MAP) kinase signaling and Rho family GTPase signaling (39-42). It is well known that cell proliferation via the integrin αv subfamily such as $\alpha v\beta 3$ and $\alpha v\beta 5$ is mediated by the MEK/ERK signaling pathway, which is characterized firstly in MAP kinase cascades (32-34). Therefore, the participation of the MEK/ERK signaling pathway in type I collagen-induced growth of integrin αv transfectants was examined. Rapid phosphorylation of FAK, MEK1/2 and ERK1/2 was observed in KNav cells cultured on type I collagen. In contrast, the phosphorylation of these molecules was delayed in SCCKN and KNmock cells on type I collagen. These findings indicate that type I collagen induces the activation of FAK and the MEK/ERK signaling pathway via αv integrins.

Formation of α/β heterodimer is essential for the expression and function of integrins. Integrin av subunit associates with β 1, β 3, β 5, β 6 or β 8 subunit and forms five distinct heterodimers (7,8). Integrin av transfectants, KNav cells had a high ability to bind type I collagen, and exhibited a remarkable proliferative response to type I collagen. These findings suggest that some of the five av integrins of KNav cells interact with type I collagen and regulate cell proliferation as well as cell adhesion. The five αv integrins bind various ECM proteins such as fibronectin, laminin, vitronectin, fibrinogen and osteopontin. The binding of the αv integrins to ECM proteins is dependent upon the β subunit counterpart. Some studies have shown that only integrin $\alpha v\beta 8$ in the integrin αv subfamily is a potential receptor for collagens (43,44). We therefore examined the participation of integrin $\alpha v\beta 8$ in type I collagen-induced proliferation of KN α v cells. The suppression of integrin β 8 by its antisense oligonucleotide led to a remarkable decrease in the adhesion of KNav cells to type I collagen. The treatment of integrin ß8 antisense oligonucleotide also reduced the proliferation of KNav cells on type I collagen and the invasiveness of KNav cells into type I collagen gel. In addition, the activation of FAK and the MEK/ERK signaling pathway of KNav cells on

type I collagen was inhibited by the treatment of integrin $\beta 8$ antisense oligonucleotide. These findings indicate that the binding of integrin $\alpha \nu \beta 8$ to type I collagen might induce the proliferation and invasion of SCC cells via the MEK/ERK signaling pathway.

We next examined the expression of integrin $\beta 8$ in SCCKN, KNmock and KNav cells. Interestingly, KNav cells expressed a large amount of integrin ß8 protein compared to SCCKN and KNmock cells, whereas there is no significant difference in the expression of integrin ß8 mRNA between SCCKN, KNmock and KNav cells. At present, the mechanism of the enhanced expression of integrin β8 protein following transfection with integrin av cDNA is unclear. A previous study showed that the expression of mouse integrin β 1 and β 7 was induced following transfection with human integrin $\alpha 4$ subunit in mouse fibroblasts (45). The possibility should be considered that integrin $\beta 8$ subunit dimerizes with integrin αv subunit expressed abundantly in KNav cells, and integrin ß8 dimerized with integrin αv might be stable compared to integrin $\beta 8$ monomer. Most of integrin ß8 subunits in SCCKN and KNmock might exist as monomer because of the insufficiency of integrin αv subunits available for forming $\alpha v\beta 8$ heterodimers.

In conclusion, the overexpression of integrin αv led to the enhancement of the proliferation of oral SCC cells via interaction with type I collagen. The expression of integrin $\beta 8$ subunit is induced following transfection with integrin αv subunit in SCC cells. Interaction of integrin $\alpha v\beta 8$ with type I collagen activates the MEK/ERK signaling pathway in SCC cells, resulting in the enhancement of the proliferation and invasiveness. These findings suggest that integrin $\alpha v\beta 8$ might be a prognostic factor for oral SCC and could serve as a therapeutic target to prevent the progression of oral SCC.

References

- 1. Bosman FT, de Bruïne A, Flohil C, van der Wurff A, ten Kate J and Dinjens WW: Epithelial-stromal interactions in colon cancer. Int J Dev Biol 37: 203-211, 1993.
- Ziober BL, Lin CS and Kramer RH: Laminin-binding integrins in tumor progression and metastasis. Semin Cancer Biol 7: 119-128, 1996.
- 3. Chrenek MA, Wong P and Weaver VM: Tumour-stromal interactions. Integrins and cell adhesions as modulators of mammary cell survival and transformation. Breast Cancer Res 3: 224-229, 2001.
- Labat-Robert J: Fibronectin in malignancy. Semin Cancer Biol 12: 187-195, 2002.
- Huang CY, Lee CY, Chen MY, *et al*: Stromal cell-derived factor-1/CXCR4 enhanced motility of human osteosarcoma cells involves MEK1/2, ERK and NF-kappaB-dependent pathways. J Cell Physiol 221: 204-212, 2009.
- 6. Hynes RÖ: Integrins: bidirectional, allosteric signaling machines. Cell 110: 673-687, 2002.
- Barczyk M, Carracedo S and Gullberg D: Integrins. Cell Tissue Res 339: 269-280, 2010.
- 8. Takada Y, Ye X and Simon S: The integrins. Genome Biol 8: 215, 2007.
- 9. Howe A, Aplin AE, Alahari SK and Juliano RL: Integrin signaling and cell growth control. Curr Opin Cell Biol 10: 220-231, 1998.
- Dedhar S: Cell-substrate interactions and signaling through ILK. Curr Opin Cell Biol 12: 250-256, 2000.
- Schwartz MA and Assoian RK: Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J Cell Sci 114: 2553-2560, 2001.
- Hood JD and Cheresh DA: Role of integrins in cell invasion and migration. Nat Rev Cancer 2: 91-100, 2002.
- Chung J and Mercurio AM: Contributions of the α6 integrins to breast carcinoma survival and progression. Mol Cells 17: 203-209, 2004.

- 14. Gleason B, Adley B, Rao MS and Diaz LK: Immunohistochemical detection of the β4 integrin subunit in pancreatic adenocarcinoma. J Histochem Cytochem 53: 799-801, 2005.
- Valea FA, Haskill S, Moore DH and Fowler WC Jr: Immunohistochemical analysis of α1-integrins in cervical cancer. Am J Obstet Gynecol 173: 808-813, 1995.
- 16. Boudjadi S, Carrier JC and Beaulieu JF: Integrin α1 subunit is up-regulated in colorectal cancer. Biomark Res 1: 16, 2013.
- Bartolazzi A, Cerboni C, Flamini G, Bigotti A, Lauriola L and Natali PG: Expression of α3β1 integrin receptor and its ligands in human lung tumors. Int J Cancer 64: 248-252, 1995.
- Goldberg I, Davidson B, Reich R, *et al*: αv integrin expression is a novel marker of poor prognosis in advanced-stage ovarian carcinoma. Clin Cancer Res 7: 4073-4079, 2001.
- Davidson B, Goldberg I, Reich R, et al: αv- and β1-integrin subunits are commonly expressed in malignant effusions from ovarian carcinoma patients. Gynecol Oncol 90: 248-257, 2003.
- 20. Jin Y, Tong DY, Chen JN, *et al*: Overexpression of osteopontin, $\alpha\nu\beta3$ and Pim-1 associated with prognostically important clinicopathologic variables in non-small cell lung cancer. PLoS One 7: e48575, 2012.
- Xuan SH, Zhou YG, Pan JQ, Zhu W and Xu P: Overexpression of integrin αv in the human nasopharyngeal carcinoma associated with metastasis and progression. Cancer Biomark 13: 323-328, 2013.
- 22. Kawashima A, Tsugawa S, Boku A, *et al*: Expression of αv integrin family in gastric carcinomas: increased αvβ6 is associated with lymph node metastasis. Pathol Res Pract 199: 57-64, 2003.
- Vogetseder A, Thies S, Ingold B, *et al*: αv-Integrin isoform expression in primary human tumors and brain metastases. Int J Cancer 133: 2362-2371, 2013.
- 24. Cruet-Hennequart S, Maubant S, Luis J, Gauduchon P, Staedel C and Dedhar S: αv integrins regulate cell proliferation through integrin-linked kinase (ILK) in ovarian cancer cells. Oncogene 22: 1688-1702, 2003.
- Wong NC, Mueller BM, Barbas CF, *et al*: αν integrins mediate adhesion and migration of breast carcinoma cell lines. Clin Exp Metastasis 16: 50-61, 1998.
- 26. Samanna V, Wei H, Ego-Osuala D and Chellaiah MA: Alpha-V-dependent outside-in signaling is required for the regulation of CD44 surface expression, MMP-2 secretion, and cell migration by osteopontin in human melanoma cells. Exp Cell Res 312: 2214-2230, 2006.
- 27. Khatib AM, Nip J, Fallavollita L, Lehmann M, Jensen G and Brodt P: Regulation of urokinase plasminogen activator/plasmin-mediated invasion of melanoma cells by the integrin vitronectin receptor αvβ3. Int J Cancer 91: 300-308, 2001.
- Dutta A, Li J, Lu H, *et al*: Integrin ανβ6 promotes an osteolytic program in cancer cells by upregulating MMP2. Cancer Res 74: 1598-1608, 2014.
- Brooks PC, Strömblad S, Sanders LC, *et al*: Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell 85: 683-693, 1996.
- Hayashido Y, Shirasuna K, Sugiura T, Nakashima M and Matsuya T: Effect of dexamethasone on invasion of human squamous cell carcinoma cells into collagen gel. Cancer Lett 108: 81-86, 1996.
- 31. Yamanaka T, Sakamoto A, Tanaka Y, *et al*: Isolation and serum-free culture of epithelial cells derived from epithelial rests of Malassez in human periodontal ligament. In Vitro Cell Dev Biol Anim 36: 548-553, 2000.
- 32. Hood JD, Frausto R, Kiosses WB, Schwartz MA and Cheresh DA: Differential αv integrin-mediated Ras-ERK signaling during two pathways of angiogenesis. J Cell Biol 162: 933-943, 2003.
- 33. Kobayashi-Sakamoto M, Isogai E, Hirose K and Chiba I: Role of αv integrin in osteoprotegerin-induced endothelial cell migration and proliferation. Microvasc Res 76: 139-144, 2008.
- 34. Bianchi-Smiraglia A, Paesante S and Bakin AV: Integrin β5 contributes to the tumorigenic potential of breast cancer cells through the Src-FAK and MEK-ERK signaling pathways. Oncogene 32: 3049-3058, 2013.
- 35. Natali PG, Hamby CV, Felding-Habermann B, et al: Clinical significance of αvβ3 integrin and intercellular adhesion molecule-1 expression in cutaneous malignant melanoma lesions. Cancer Res 57: 1554-1560, 1997.
- 36. Fabricius EM, Wildner GP, Kruse-Boitschenko U, Hoffmeister B, Goodman SL and Raguse JD: Immunohistochemical analysis of integrins $\alpha\nu\beta3$, $\alpha\nu\beta5$ and $\alpha5\beta1$, and their ligands, fibrinogen, fibronectin, osteopontin and vitronectin, in frozen sections of human oral head and neck squamous cell carcinomas. Exp Ther Med 2: 9-19, 2011.

- 37. Enns A, Korb T, Schlüter K, et al: ανβ5-integrin mediate early steps of metastasis formation. Eur J Cancer 41: 1065-1072, 2005.
- 38. Hayashido Y, Urabe K, Yoshioka Y, Kitano H, Okamoto T and Matsuya T: Participation of fibroblasts in MMP-2 binding and activation on the surface of oral squamous cell carcinoma cells. Int J Oncol 22: 657-662, 2003.
- 39. Wang S and Basson MD: Integrin-linked kinase: a multi-functional regulator modulating extracellular pressure-stimulated cancer cell adhesion through focal adhesion kinase and AKT. Cell Oncol 31: 273-289, 2009.
- 40. Cary LA, Han DC and Guan JL: Integrin-mediated signal transduction pathways. Histol Histopathol 14: 1001-1009, 1999.
- 41. Cabodi S, Di Stefano P, Leal Mdel P, et al: Integrins and signal transduction. Adv Exp Med Biol 674: 43-54, 2010
- 42. Huveneers S and Danen EH: Adhesion signaling-crosstalk between integrins, Src and Rho. J Cell Sci 122: 1059-1069, 2009.
- 43. Metlapally R, Jobling AI, Gentle A and McBrien NA: Characterization of the integrin receptor subunit profile in the mammalian sclera. Mol Vis 12: 725-734, 2006.44. Nemeth JA, Nakada MT, Trikha M, *et al*: Alpha-v integrins as
- therapeutic targets in oncology. Cancer Invest 25: 632-646, 2007.
- 45. Webb DL, Conrad PJ, Ma L and Blue ML: Induction of mouse β integrin expression following transfection with human α 4 chain. J Cell Biochem 61: 127-138, 1996.