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Abstract. Current staging methods are inadequate for 
predicting the overall survival of meningioma. DNA micro-
array technologies improve the understanding of tumour 
progression. We analysed genome wide expression profiles of 
119 meningioma samples from two previous published DNA 
microarray studies. The Cox proportional hazards regression 
models were applied to identify overall survival related gene 
signature. A total of 449 genes (109 upregulated and 340 
downregulated) were identified as differentially expressed 
in meningioma. Among these differentially expressed genes, 
37 genes were identified to be related to meningioma overall 
survival. Our 37-gene signature is closely associated with 
overall survival among patients with meningioma. This gene 
expression profile could provide an optimization of the clinical 
management and development of new therapeutic strategies 
for meningioma.

Introduction

Meningioma usually appears in the senior age of life and 
accounts to ~22% of intracranial tumours in males and 
38% in females (1). According to the WHO grading criteria, 
meningioma is divided into three grades: benign meningioma 
(grade  I), atypical meningioma (grade  II) and anaplastic 
meningioma (grade III). Anaplastic meningioma shows poorer 
prognosis than other common types of meningioma with a 
median overall survival time 2 years. Due to the difficulty of 
managing meningioma recurrence (2) and the low predictive 
powers of clinic pathological factors, biomarkers to identify 

high-risk patients with a poor prognosis are strongly needed. 
From a previous study conducted in a total 124 samples 
from 105 patients using the high-resolution FISH-technology 
(iFISH), it is reported that the deletion of chromosome 1p 
may be an independent marker of meningioma recurrence and 
progression (3).

DNA microarray technology has enabled the simultaneous 
measurements of expression levels of thousands of genes 
in a group sample of tumour tissue, which could be used to 
provide prognostic information, or discriminate between 
various histologic subtypes. For the last decade, many research 
groups have used this technology to define prognostic gene 
signatures in many different tumour types, such as ovarian (4)
breast (5), gastric (6), lung cancer (7) and neuroblastomas (8). 
The survival related gene signature might capture tumour 
progression status and could serve as a prerequisite to a more 
patient-tailored therapy.

Nevertheless, to the best of our knowledge, no study in 
which gene expression profiling was used to predict menin-
gioma overall survival has been published yet. In the present 
study, we analysed genome-wide expression profiles of 119 
meningioma samples using DNA microarray technologies. 
We applied Cox proportional hazards regression models and 
identified 37 prognostic genes related to meningioma overall 
survival, which could provide an optimization of the clinical 
management and development of new therapeutic strategies 
for meningioma.

Materials and methods

Data collection. Gene expression profiling datasets from two 
previously published studies analysed in the present study 
were referred as dataset 1 and dataset 2. Dataset 1 consists of 
51 samples, while dataset 2 consists of 68 samples.

For dataset 1 (9), there are 47 meningioma samples and 
4 normal meninges. As previously discussed, the selection 
criteria of these samples include availability of enough 
tumour RNA, high quality of the extracted RNA and the 
representativeness of its cytogenetic profiles as defined by 
interphase fluorescence in situ hybridization (iFISH) within 
the whole series of tumours. Total RNA was extracted using 
RNeasy Mini kit (Quiagen, Valencia, CA, USA). The RNA 
integrity was assessed using the Agilent 2100 Bioanalyzer 
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(Agilent Technologies, Inc., Palo Alto, CA, USA). The 
labelling process was performed according to the proto-
cols from Affymetrix. Labelled RNA was hybridized to 
Human Genome U133A microarray, after quality checking 
on GeneChips Test 3 Arrays. Washing and scanning were 
performed using Fluidics Station 400 and GeneChip Scanner 
(Affymetrix).

For dataset 2 (10), tumour biopsies from 43 female and 
25 male subjects with sporadic meningioma were selected 
from the UCLA Neuro-oncology Program Tissue Bank 
through institutional review board approved protocols. RNA 
was extracted from 20-50 mg tumour pieces using QiagenTM 
(Qiagen)  RNeasy Mini kits per manufacturer's protocols. 
The extracted total RNA was assessed for integrity using 
the 2100 Bioanalyzer by Agilent Technologies. Total RNA 
(1 µg) was used for single-round biotinylated probe synthesis 
using the Affymetrix Array Station device made by Caliper 
Life Sciences (Hopkinton, MA, USA) by the manufacturer's 
protocols. Labelled and sheared cRNA was manually applied 
to Affymetrix Human Genome U133 Plus 2.0 Arrays 
(Affymetrix). All microarrays were scanned using the 
Affymetrix GeneChip scanner 3000.

Data processing. We retrieved the raw fluorescence intensity 
data within CEL files from NCBI GEO database with acces-
sion number GSE43290 (dataset 1) and GSE16581 (dataset 2). 
The raw datasets were preprocessed with gcrma algorithm, 
as implemented with R packages from Bioconductor (http://
www.bioconductor.org). The gcrma algorithm (11) adjusts 
for the background intensities in Affymtrix array data by 
including optical noise and non-specific binding (NSB). It then 
converts background adjusted probe intensities to expression 
measures using the same normalization and summarization 
methods implanted by the robust multiarray average (RMA)
(12) algorithm. Because two different microarray platforms 
were used in these datasets, the probe sets had to be matched 
to identical genes. Based on the latest official symbol annota-
tion provided by the manufacturer, we developed a Perl script 
to match probe sets among datasets 1 and 2. This process 
produced a total of 13,879 genes on both the two Affymetrix 
microarray systems: Human Genome U133A microarray and 
Human Genome U133 Plus 2.0 Arrays.

Microarray and statistical analysis. We then used the statis-
tical software programs R, the R-package, limma (13), for the 
analysis of gene expression microarray data from dataset 1. 
This algorithm uses linear models, as well as Empirical 
Bayesian methods, for analysing designed experiments and 
assessment of differential expression. The Cox proportional 
hazards regression analysis was conducted to identify survival 
related genes. Survival analysis was performed using the 
R-package ‘survival’  (14). Overall survival (OS) was anal-
ysed using the Kaplan-Meier product-limit method and the 
significance of the variables was measured by the log-rank 
test. Hierarchical clustering based on Euclidean distance and 
Ward's clustering method were used to show the expression 
patterns of survival-related genes in dataset 2. We further 
analysed the gene ontology and canonical pathways with the 
use of DAVID (The Database for Annotation, Visualization 
and Integrated Discovery) tools (15).

Results

Clinical characteristics. The clinical characteristics of 
samples in dataset 1 and 2 are summarized in Table I. We used 
dataset 1 for the differential expression analysis to pre-select 
the survival gene candidates. Within this dataset, a total of 51 
patients (16 males and 35 females with a median age 65 years; 
range, 23-84 years) were analysed. All tumours were diagnosed 
and classified according to WHO criteria: 33 patients (64.71%) 
were diagnosed as grade I, 12 patients (23.53%) as grade II, 
and 2 patients (3.92%) as grade III. On the other hand, we used 
dataset 2 for the identification of survival related gene expres-
sion profile. Among the 68 samples (25 males and 43 females 
with a median age 64 years; range, 32-89 years), 43 patients 
(63.24%) were diagnosed as grade  I, 19 patients (27.94%) 
as grade II and 6 patients (8.82%) as grade III. The median 
survival time is 1,726 days with range of 19-3,387 days.

Identification of a 37-gene signature for meningioma 
prognosis. Our hypothesis is that the genes involved in the 
progression of meningioma may also contribute to the predic-
tion of prognosis. Therefore, we firstly conducted differential 
expression analysis in dataset 1 using Affymetrix Human 
Genome U133A microarray. A total of 449 genes (109 upregu-
lated and 340 downregulated) were identified as significantly 
differentially expressed in meningioma. As shown in Fig. 1, the 
threshold is set as a log-odds value of >4.6 (99% probability 
that the gene is differentially expressed) and a fold-change 
>2-fold. The 449 genes were used as a discovery set for the 
identification of survival related profiles in meningioma.

To investigate the prognostic potential of these genes, we 
prepared dataset 2. To deal with cross-platform microarray 
data appropriately, we mapped the probe set IDs from two 
microarray platforms to official symbols. A univariate Cox 
proportional hazard model showed that expression levels 
of 51 probes (representing 37 non-redundant genes) were 

Table  I. Clinical characteristics of the patients with menin-
gioma tumours.

Demographics	 Dataset 1, n=51	 Dataset 2, n=68

survival time, days
  Median	 NA	 1,726
  Range	 NA	 19-3,387
Age, years
  Median	 65	 64
  Range	 23-84	 32-89
Gender
  Male	 16	 25
  Female	 35	 43
Grade
  I	 33	 43
  II	 12	 19
  III	 2	 6
  Normal	 4	 NA
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correlated with overall survival time (p<0.05) (Table ii). As 
shown in Fig. 2, the 37-gene signature was the dominant char-
acteristics that permitted the stratification of individuals into 
cancerous and normal groups. To determine whether the gene 
expression profiles could accurately predict overall survival, 
hierarchical clustering was used to classify all of the samples 
from dataset 2 into two groups as high- and low-risk groups 
(Fig. 3A). Kaplan-Meier analysis demonstrated that the high- 
and low-risk groups were significantly different in their overall 
survival (p<0.01) (Fig. 3B).

Characterization of survival related profile. We conducted 
gene set enrichment analysis to understand the biological 
characteristics of the 37-gene signature. The gene signature 
includes three oncogenes, FUS (FUS RNA binding protein), 
ERG (v-ets avian erythroblastosis virus E26 oncogene 
homolog) and SET (SET nuclear proto-oncogene); two cell 
differentiation markers, CD200 (CD200 molecule) and 
L1CAM (L1 cell adhesion molecule); five transcription factors, 
ESR1 (estrogen receptor 1), MAFG (v-maf avian musculo-
aponeurotic fibrosarcoma oncogene homolog G), CNOT3 

Table II. Thirty-seven genes composing the survival related profile.

Symbol	 Chromosome location	 Description

ARHGDIA	 17q25.3	 Rho GDP dissociation inhibitor (GDI) α
ATP6V1G2	 6p21.3	 ATPase, H+ transporting, lysosomal 13 kDa, V1 subunit G2
BCAS1	 20q13.2	 breast carcinoma amplified sequence 1
CD200	 3q12-q13	 CD200 molecule
CNOT3	 19q13.4	 CCR4-NOT transcription complex, subunit 3
CSF3	 17q11.2-q12	 colony stimulating factor 3 (granulocyte)
CSGALNACT2	 10q11.21	 chondroitin sulfate N-acetylgalactosaminyltransferase 2
CTBP1	 4p16	 C-terminal binding protein 1
CXCL3	 4q21	 chemokine (C-X-C motif) ligand 3
EIF2S3	X p22.2-p22.1	 eukaryotic translation initiation factor 2, subunit 3 γ, 52 kDa
EIF5A	 17p13-p12	 eukaryotic translation initiation factor 5A
ELAVL1	 19p13.2	 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1 (Hu antigen R)
ERG	 21q22.3	 v-ets erythroblastosis virus E26 oncogene homolog (avian)
ESR1	 6q25.1	 estrogen receptor 1
FKBP8	 19p12	 FK506 binding protein 8, 38 kDa
FUS	 16p11.2	 fused in sarcoma
HBD	 11p15.5	 hemoglobin, δ
HLA-F	 6p21.3	 major histocompatibility complex, class I, F
HMGN1	 21q22.2	 high mobility group nucleosome binding domain 1
HNRNPR	 1p36.12	 heterogeneous nuclear ribonucleoprotein R
IL8	 4q13-q21	 interleukin 8
L1CAM	X q28	 L1 cell adhesion molecule
LOC100129518	 6q25.3	 uncharacterized LOC100129518
MAFG	 17q25.3	 v-maf musculoaponeurotic fibrosarcoma oncogene homolog G (avian)
MBP	 18q23	 myelin basic protein
NUPL1	 13q12.13	 nucleoporin like 1
PAPOLA	 14q32.31	 poly(A) polymerase α
PRRC2B	 9q34.13	 proline-rich coiled-coil 2B
SCAF4	 21q22.1	 SR-related CTD-associated factor 4
SENP3	 17p13	 SUMO1/sentrin/SMT3 specific peptidase 3
SET	 9q34	 SET nuclear oncogene
SETP4	X q21.1	 SET pseudogene 4
SOD2	 6q25.3	 superoxide dismutase 2, mitochondrial
SOX10	 22q13.1	 SRY (sex determining region Y)-box 10
SUMO2	 17q25.1	 SMT3 suppressor of mif two 3 homolog 2 (S. cerevisiae)
USP46	 4q12	 ubiquitin specific peptidase 46
WBP4	 13q14.11	 WW domain binding protein 4
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Figure 1. Plot of log-fold changes vs. log-odds of differential expression. The x-axis indicates the log2 value of fold-change between the two conditions. The 
log-odds (or B value) on the y-axis is the odds (or probability) that the gene is differentially expressed. The red dots located in the upper left and right square are 
genes that have a log-odds score of 4.6 or more, have a fold-change >2-fold, and are identified as significantly differentially expressed in meningioma tumours.

Figure 2. Hierarchical clustering analysis of dataset 1 using the 37-gene signature. The data are presented in matrix format, in which rows represent individual 
genes and columns represent each sample. The genes are labelled with Affymetrix probe set IDs, while the samples are labelled with NCBI GEO accession 
numbers.
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(CCR4-NOT transcription complex, subunit 3), SOX10 (sex 
determining region Y-box 10) and ERG.

To characterize the gene list based on GO classification 
on ‘biological process’, ‘molecular function’ and ‘cellular 

component’, we examined in which categories the gene 
signature was significantly enriched. The 37 genes were 
significantly (p-value <0.05) enriched in 16 GO categories. In 
the biological process class, the genes were notably enriched 

Figure 3. Application of the 37-gene signature for meningioma tumours. (A) Clustering of the patient samples into high-risk (red) and low-risk (green) groups 
using the 37-gene signature. The data are presented in matrix format, in which rows represent individual genes and columns represent each sample. The genes 
are labelled with Affymetrix probe set IDs, while the samples are labelled with NCBI GEO accession numbers; (B) Kaplan-Meier overall survival analysis of 
the high- and low-risk groups according to the hierarchical clustering result.
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in behaviour (GO:0007610), regulation of cell proliferation 
(GO:0042127), pigment cell differentiation (GO:0050931), 
regulation of cell adhesion (GO:0030155), negative regulation 
of cellular component organization (GO:0051129), neutrophil 
chemotaxis (GO:0030593) and mRNA metabolic process 
(GO:0016071). In cellular component class, the genes were 
significantly enriched in axon part (GO:0033267), internal 
side of plasma membrane (GO:0009898), integral to organelle 
membrane (GO:0031301), intrinsic to organelle membrane 
(GO:0031300), cytosol (GO:0005829), axon (GO:0030424), 
plasma membrane part (GO:0044459) and terminal button 
(GO:0043195). In the molecular function class, the genes 
were only enriched in translation factor activity, nucleic acid 
binding (GO:0008135) (Fig. 4).

However, we could not identify any pathway that the 37 
genes were significantly enriched in.

Discussion

In the present study, we identified a 37-gene prognostic signa-
ture for meningioma patients across two types of microarray 
expression profiling datasets by using Cox proportional hazard 
models. This gene signature was independently predictive 
of survival and outperforming current pathological staging 
criteria.

Our survival gene signature consists of genes that showed 
prognostic potential in other cancer types. For instance, the 
gene ARHGDIA [Rho GDP dissociation inhibitor (GDI) alpha] 
is associated with mesothelioma (16,17) prognosis and could 

serve as an independent prognostic factor in hepatocellular 
carcinoma (18). Another example is the gene CD200. CD200 
is expressed in most PCM (plasma cell myeloma) cases and 
its expression level remains stable even during the treatment 
process, which could serve as a useful marker for the prog-
nosis of PCM (19,20). It is also reported that CD200 could be a 
new prognostic factor in acute myeloid leukaemia (21). ESR1, 
a ligand-activated transcription factor, involves in pathological 
processes of breast (22-25), prostate (26) and non-small cell 
lung cancer (27).

Surprisingly, from the differential expression analysis, a 
small number of genes that upregulated or downregulated were 
identified in meningioma comparing to normal meninges. This 
suggests that meningioma and normal meninges may remain 
largely homogeneous at global gene expression level. However, 
the identified differentially expressed genes appear to be clini-
cally and even biologically important, which could ultimately 
influence the prognostic outcome.

To the best of our knowledge, the present study is the first 
to identify a prognostic signature for meningioma prognosis 
based on genome wide expression profiling technologies. 
However, because most of the current public accessible menin-
gioma data lack sufficient follow-up information, we could not 
evaluate the prognostic predictive power in other independent 
datasets. For future work, we will continuously work on opti-
mizing the prognosis model by integrating more meningioma 
datasets.

In conclusion, these results suggest that the 37-gene signa-
ture could serve as a useful tool to predict the meningioma 

Figure 4. Biological characteristics of the 37 overall survival-related genes. The significantly enriched Gene Ontology (GO) categories in gene set enrichment 
analysis.
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progression and survival. To apply in the clinical practice, a 
prospective multi-centre study is still needed to improve the 
predictive ability and reliability of the gene expression profile. 
Nevertheless, the survival related gene expression profile 
could provide an optimization of the clinical management and 
development of new therapeutic strategies for meningioma.
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