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Abstract. The cytoskeleton-associated serine/threonine kinase 
death-associated protein kinase (DAPK) has been described as 
a cancer gene chameleon with functional antagonistic duality 
in a cell type and context specific manner. The broad range 
of interaction partners and substrates link DAPK to inflam-
matory processes especially in the gut. Herein we summarize 
our knowledge on the role of DAPK in different cell types that 
play a role under inflammatory conditions in the gut. Besides 
some promising experimental data suggesting DAPK as an 
interesting drug target in inflammatory bowel disease there 
are many open questions regarding direct evidence for a role 
of DAPK in intestinal inflammation.
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1. Introduction

Phosphorylation of proteins by kinases is the most frequent 
protein modification and plays a key role in multiple signal 
transduction pathways in normal and cancer cells. In recent 
years protein kinases have become novel promising candidates 
for targeted anticancer therapy. To identify and characterize 
kinases as biomarkers for tumor transformation or progres-
sion is a major challenge for clinicians, oncologists, and 
molecular biologists. The cytoskeleton-associated serine/
threonine kinase death-associated protein kinase (DAPK) has 
been described as a cancer gene chameleon showing func-
tional antagonistic duality in a cell type and context specific 
manner (1). Cancer genes are classified according to whether 
they function in a dominant or recessive manner. Dominant 
cancer genes (oncogenes) are constitutively activated by gain 
of function mutations and stimulate cell growth and survival. 
For recessive genes (tumor suppressors) the loss of function 
leads to the inactivation and loss of cell cycle control and repair 
capacity. Mutations in the DAPK gene are very rare. There are 
many other mechanisms such as promoter hypermethylation, 
autophosphorylation of calmodulin-domain, protein degrada-
tion or inhibitory phosphorylations of the DAPK molecule 
itself that might inactivate DAPK. Noteworthy, DAPK can 
act not only through its catalytic activity but also triggers 
multiprotein complexes through its scaffold function (2). The 
broad regulation levels of this kinase let it be involved in 
many different cellular functions such as cell death (apoptosis, 
anoikis, autophagy), repair and mechanosensing (3-5).

Colorectal cancer (CRC) develops in a multistep process 
and specific molecular hits have been defined that are closely 
correlated with single morphological alterations along the carci-
nogenesis process summarized in the Vogelstein model (6). 
For sporadic cancer two major different pathogenetic pathways 
exist: the chromosomal instability phenotype (CIN, counts for 
85% of tumors) and the microsatellite instability phenotype 
(MSI, counts for 15% of tumors), both are caused by loss of a 
general genetic stability. In 2012 a three-group classification 
system has been reported according to alterations in known 
signal transduction pathways: i) WNT and TGFβ signaling 
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ii) PIK3CA and RAS signaling, and iii) p53 signaling (7,8). 
Also epigenetic alterations contribute to altered gene expres-
sion in colorectal cancer  (9). In this regard a CpG island 
methylator phenotype has been described (CIMP). Moreover, 
CIMP is included in different molecular classification systems. 
Nevertheless its prognostic predictive role is not clarified due 
to lack of unified test systems. There are also other risk factors 
for the development of a colorectal carcinoma. Patients with 
inflammatory bowel disease (IBD) show an increased risk for 
tumor development. The pathogenesis of IBD-associated carci-
nogenesis is poorly understood. What we know is that similar 
to sporadic cancer also IBD-associated cancer is a consequence 
of a sequence of single molecular alterations (10).

Although it is not surprising that many molecular hits 
are overlapping in both cancers the major difference is the 
frequency and the timing of these molecular alterations (10,11). 
For DAPK in sporadic colorectal cancer there is a loss of 
protein by promoter hypermethylation already in very small 
tumors and thus DAPK loss plays a role at very early steps of 
the tumor formation process (12). Moreover, loss of DAPK in 
colorectal carcinomas has been associated with higher lymph 
node metastasis and poor prognosis (13). In contrast, besides an 
early inactivation by promoter methylation in a subset of tumors, 
DAPK is remarkably activated in colon cancer in the setting 
of inflammation (14). So far only one of the two major IBD 
forms has been studied for DAPK expression: ulcerative colitis 
(UC) (15). There are no data on the role of DAPK in Crohn's 
disease (CD). Recently, it has been shown that DAPK may play 
a role in UC-associated tumor transformation (16). Pro- as well 
as anti-inflammatory functions have been suggested for DAPK, 
dependent on the cell type and stimulus.

As the development of colorectal cancer is a long-term 
complication of chronic inflammation it would be helpful for 
patient management to identify molecular biomarkers that 
predict the risk of tumor development as early as possible. 
DAPK might be a possible candidate for therapeutic inter-
vention but its gene chameleon nature needs an ultimate 
understanding of its functions and regulation in different cell 
types under different inflammatory stimuli.

2. DAPK structure and functional domains

DAPK1 (here referred as DAPK) represents one of the five 
members of the DAPK family (4). These molecules differ in 
size and subcellular localization (Fig. 1, Tables I-III). DAPK-
related protein 1 (DRP-1, DAPK2) and zipper-interacting 
protein kinase (ZIPK, DAPK3) share the highest homology 
with approximately 80% at the N-terminus whereas DAPK 
related apoptosis inducing kinase 1 and 2 (DRAK1, DRAK2) 
have only 50% homology compared with DAPK (17-20). In 
contrast to the cytoskeleton-associated family members, ZIPK 
has also nuclear functions and interacts with transcription 
factors such as ATF4 and STAT3  (21). DAPK is a multi-
domain structure protein that exerts its action through the 
catalytic activity and phosphorylation of specific substrates 
with DAPK-containing motifs or as a scaffold protein by 
stabilizing or triggering multiprotein complexes. One of the 
most important functional domains is the calmodulin auto-
regulatory domain that is localized inside of the catalytic cleft. 
Calmodulin binding leads to changes in conformation which 

allow DAPK activation via binding to its substrates (22). Also 
auto-phosphorylation at residue Ser308 inhibits the DAPK 
function by reducing its affinity to calmodulin (23).

Besides the prominent function of the catalytic subunit all 
additional domains such as the ankyrin repeats, the ROC-COR 
domain in the cytoskeleton-binding region, and the death 
domain have particular function in the concerted action of 
this multifunctional protein (Tables I and II). DAPK contains 
8 ankyrin repeats that determine primarily the localization of 
DAPK. Moreover, this region is important for protein-protein 
interactions. Thereby a negative DAPK regulator, the DAPK-
interacting protein (DIP1), is binding at the ankyrin repeat 
domain. Phosphorylation of Tyr491/Tyr492 by Src tyrosine 
kinase within the ankyrin repeat domain leads to inactivation 
of DAPK (24) whereas the interaction with the phosphatase 
LAR reconstitutes the activity of DAPK (24).

Bialik and Kimchi et al (25) have shown that DAPK is a 
member of the ROCO protein family that is characterized by 
the tandem appearance of the ROC (Ras-like GTPase) domain, 
and a characteristic COR (C-terminal of Roc) domain. The 
ROC domain overlaps with the cytoskeleton binding region of 
DAPK and mediates the GTP binding at the P-loop motif. This 

Table I. Interacting partners of DAPK.

Protein	 OMIM ID	 Binding domain 
		  on DAPK

14-3-3	 609009	 Not defined
Actin	 102560	 Cytoskeletal-
		  binding region
Beclin-1	 604378	 Not defined
Calmodulin	 114180	 Calmodulin
(CaM)		  regulatory domain
Cathepsin B	 116810	 C-terminal region
DIP1 (MIB1)	 608677	 Ankyrin repeats
ERK1/2	 601795/176948	 Death domain
Hsp90	 140571	 Kinase domain
KLHL20	 Q9Y2M5 (UniProt)	 Death domain
LAR (PTPRF)	 179590	 Ankyrin repeats
LIMK/cofilin	 601329/601442	 Not defined
MAP1B	 157129	 Kinase domain
p38 MAPK	 600289	 Not defined
p53	 191170	 Not defined
PP2A	 176915	 ROC-COR domain
PKD	 173900	 Not defined
RSK	 601684	 Not defined
Scr	 190090	 Ankyrin repeats
STAT3	 102582	 Not defined
TNFR-1	 191190	 Not defined
TSC2	 191092	 Death domain
UNC5H2	 607870	 Death domain
ZIPK (DAPK3)	 603289	 Kinase domain

Bold, inflammation-associated interaction partners of DAPK.
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led to the definition of DAPK as a GTP-binding protein with 
intrinsic GTPase activity whereby GTP binding negatively 
regulates DAPK's activity. The serine/threonine protein phos-
phatase PP2A, the only known phosphatase dephosphorylating 
the inactive pDAPKSer308, also interacts with the ROC-COR 
domain of DAPK (26).

The death domain at the DAPK C-terminus mediates 
DAPK's function in Fas- and TNF-induced cell death (3). 
It interacts with microtubule affinity regulating kinases 
(MAPK1/2) that phosphorylate tau and thereby destabilize 
microtubules (27). ERK is known to phosphorylate DAPK at 
Ser735 in the death domain increasing its catalytic activity. 
The death domain-mediated phosphorylation of the TSC2 
protein leads to autophagy induction (28). Also the interac-
tion of the transmembrane receptor UNC5H is mediated 
through the death domain. UNC5H recruits DAPK and PP2A 
to the lipid rafts where Ser308 is then dephosphorylated 
leading finally to an increase in activity. There are death 
domain-mediated interactions that result in a destabilization 
of DAPK such as the binding with KLHL20, an adaptor for 
the Cullin3 ligase, which promotes the proteasomal degrada-
tion of DAPK.

3. Regulation of DAPK

The cellular level of DAPK can be regulated manifold. On 
the transcriptional level promoter hypermethylation has 
been described that strongly correlates with DAPK protein 
loss (21,29,30). The promoter of DAPK has a high density of 
CpG islands and motifs for a number of transcription factors 
are located within these regions such as for NFκB, E2F1 or 
AP1 (21). For colon tumors, the literature reports a wide range 
of 5-80% methylation frequency possibly caused by investi-
gating different CpG islands in different studies. So far there 
is no systematic study comparing the significance of different 
CpG islands for protein expression. Despite the high frequency 
of hypermethylated tumors DAPK is not included in the CIMP 
phenotype gene panel.

DAPK can be transcriptionally inhibited by the pro-inflam-
matory transcription factors STAT3 and NFκB (16,31,32). 
In addition, DAPK mRNA expression can be triggered by 

p53 (33), C/EBP-β (34), HSF1 (35), and SMAD (36). Whereas 
C/EBP-β binding depends on IFNγ exposure, the binding of 
SMAD to the corresponding motifs is triggered by TGF-β. 
In general, DAPK might be upregulated transcriptionally in 
response to DNA damage (21,37).

Jin and Gallagher (38) identified a second DAPK transcript 
that is alternatively spliced via intron retention which leads 
to the inclusion of a new stop codon downstream. Therefore, 
the alternative transcript is extended by 30 bp. Of note, both 
transcripts encode proteins with different cellular functions 
whereby DAPKα (classical DAPK1) is pro-apoptotic and 
DAPKβ is pro-survival.

Recently, miRNAs (miR-103, miR-107) have been identi-
fied to target DAPK 3'UTR. High miR-103 and miR-107 
expression was correlated with high level of metastases and 
poor survival in colorectal cancer patients which is in agree-
ment with DAPK's role as a metastasis suppressor (13). A data 
base search in silico predicted also some additional miRNAs 
that might play a role in DAPK regulation  (21). However, 
experimental evidence for these miRNAs is lacking.

The stability of DAPK is regulated post-translationally by 
two different intracellular proteolysis systems (Table III). One 
is the ubiquitin proteasome system with HSC70-interacting 
protein (CHIP) that forms the complex between DAPK and 
HSP90  (39), DIP1 that interacts with the ankyrin repeat 
domain of DAPK (40) or the KLHL20 protein that acts as an 
adaptor for Cullin3-based E3-ligases and interacts with the 
death domain of DAPK (41). Several reports show that selec-
tive mechanisms exist for reducing cellular DAPK levels by 
directed targeting degradation of active DAPK (39). The other 
degradation system is the autophagocytic/lysosomal system. 
Here, the tuberous sclerosis complex (TSC) formed by its two 
proteins TSC1 (hamartin) and TSC2 (tuberin) inhibits the acti-
vation of mammalian target of rapamycin complex 1 (mTOR). 
Binding of the death domain to TSC2 leads either to phos-
phorylation of TSC2 by DAPK, a dissociation of the complex 
and mTOR activation or a reduction in DAPK levels directly 
by TSC2 via a post-translational mechanism (42). Finally, 
there is a non-ubiquitin, non-autophagic pathway for DAPK 
regulation which is dependent on cathepsin B. Cathepsin B 
binds to C-terminus region between the cytoskeleton-binding 

Figure 1. Structure of different isoforms and functional domains of DAPK family members. Percentage gives structural similarity to the DAPK molecule.
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Table II. DAPK family - interaction partners of DRP-1, ZIPK, DRAK1 and DRAK2.

Protein	 Description	 Interacting kinase

RAD1	 Cell cycle checkpoint protein RAD1	 DRP-1, ZIPK, DRAK1, DRAK2
HORMAD1	 HORMA domain containing protein 1
HORMAD2	 HORMA domain containing protein 1
MAPK1	 Mitogen-activated protein kinase 1	 DRP-1, ZIPK
MAPK3	 Mitogen-activated protein kinase 3
RAB3IP	 RAB3A interacting protein
MAP2K1	 Mitogen-activated protein kinase kinase 1
UBC	 ubiquitin C	 ZIPK, DRAK1
MAP2K2 	 Mitogen-activated protein kinase kinase 2
RHOV	 Ras homolog family member V	 DRAK1, DRAK2
MLC1 	 Megalencephalic leukoencephalopathy with subcortical cysts 1	 DRP-1
TGFBR1 	 Transforming growth factor, β receptor 1
CSNK1A1 	 Casein kinase 1, α1
CSNK1E 	 Casein kinase 1, ε
NKD1 	 Naked cuticle homolog 1 (Drosophila)
DAPK2 	 Death-associated protein kinase 2, DRP-1
CAMK2A	 Calcium/calmodulin-dependent protein kinase II α
MAP2K5 	 Mitogen-activated protein kinase kinase 5
DAXX	 Death-domain associated protein	 ZIPK
ATF4	 Activating transcription factor 4
AATF	 Apoptosis antagonizing transcription factor
PRKCZ	 Protein kinase C, zeta
UBE2D3	U biquitin-conjugating enzyme E2D 3
MET	 Hepatocyte growth factor receptor, proto-oncogene C-Met
PAWR	 PRKC apoptosis WT1 regulator protein
CDKN1A 	 Cyclin-dependent kinase inhibitor 1A, p21
GRB14 	G rowth factor receptor-bound protein 14
TPM1	 Tropomyosin 1 (α)
UBE2D1	U biquitin-conjugating enzyme E2D 1
GRB2	G rowth factor receptor-bound protein 2
STAT3 	 Signal transducer and activator of transcription 3
UBE2D2	U biquitin-conjugating enzyme E2D 2
DAPK3 	 Death-associated protein kinase 3, ZIPK
IRF2BPL 	 Interferon regulatory factor 2 binding protein-like
TPM4	 Tropomyosin 4
UNC5B 	U nc-5 homolog B (C. Elegans)
GRIN1 	 Glutamate receptor, Ionotropic, N-methyl D-aspartate 1
UBE2D4 	U biquitin-conjugating enzyme E2D 4
AK3 	 Adenylate kinase 3
RPL34 	 Ribosomal protein L34
TCP10L	 T-complex 10-Like
RAD21 	 RAD21 homolog (S. Pombe)
PSMC3IP 	 PSMC3 interacting protein
ATM 	 Ataxia telangiectasia mutated
ULK3	 Unc-51 like kinase 3
HDAC3 	 Histone deacetylase 3	 DRAK1
CHP1 	 Calcineurin-like EF-hand protein 1	 DRAK2
RPS24 	 Ribosomal protein S24
CHEK2	 Checkpoint kinase 2
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domain and the death domain and leads to a decrease in DAPK 
expression (43).

4. DAPK interactome and substrates

In addition to the multitude of DAPK upstream regulators 
controlling its catalytic activity via phosphorylation events 
and also its structural stability as mentioned above, further 
DAPK-binding proteins grouped as the DAPK interactome 
have been discovered (44) (Tables I and III). Only the minority 
of these interaction partners has been identified to be DAPK 
substrates. Thus, it is assumed that the specific binding of 
these proteins itself to certain consensus DAPK phosphory-
lation motifs  (45) might be sufficient to trigger functional 
DAPK signaling. Effects of binding of CaM, cathepsin B, 
DIP1, Hsp90, LAR, Src, TSC2 and UNC5H2 to DAPK were 
discussed above.

Localized to the actin cytoskeleton, DAPK prominently 
interacts with cytoskeleton-associated proteins. In 2010, 
Ivanovska et al found first that DAPK has a scaffold func-
tion to the LIMK/cofilin complex under TNF treatment 
which indicates a novel cytoskeleton-associated mechanism 
of TNF-induced DAPK-dependent actin remodeling and 
apoptosis in colorectal cancer cells (2). Henshall et al demon-
strated that the interaction of actin and TNFR-1 with DAPK in 
rat brain is involved in the recruitment of DAPK to cell death 
signaling complexes including TNFR-1 and another DAPK 
interaction partner FADD (46). Actin binding was shown to 
cause structural rearrangement of microfilaments. Further 
on, they suggest that 14-3-3 binding modifies DAPK effects 
in epileptic brain injury. MAP1B was identified as a positive 
cofactor in DAPK-mediated autophagy including vesicle 
formation and membrane blebbing. In addition, beclin-1 acti-
vation by DAPK and further protein-protein interaction also 
was found to trigger autophagy (47). ERK enhances death-
promoting effects by DAPK Ser735 phosphorylation  (48) 

whereas Ser289 phosphorylation by RSK has a reducing 
effect on apoptotic activity of DAPK (49). Targeted by PKD, 
DAPK was found to mediate JNK signaling and caspase-
independent cell death upon oxidative stress (50). ZIPK and 
DAPK were shown to functionally cooperate in causing cell 
death (51).

A list of DAPK interacting partners and DAPK substrates 
with consensus DAPK motif (RxxS/T and KR/RxxS/T) 
is given in Tables I and III. It has to be mentioned that the 
prediction of DAPK substrates based only on phosphoryla-
tion sites is not a sufficient tool since some phosphorylation 
sites do not represent the specific DAPK motif. Nevertheless, 
the following proteins have been verified to be DAPK 
substrates: MLC and tropomyosin-1, MCM3, CaM, P21, P53, 
S6, Syntaxin-1A (52-58), TAU (MAPT) (27). MLC, ZIPK, 
Beclin1, HSF1, and tropomyosin-1 link DAPK to cell death 
associated membrane blebbing, cell motility and stress fiber 
formation (52,53).

5. Immunology and inflammatory responses associated 
with IBD

Inflammatory bowel diseases (IBD) comprise a heterogeneous 
set of gastrointestinal (GI) tract disorders which are grouped 
into two major entities, namely CD and UC (59,60). IBD typi-
cally affect children and young adults and the chronically 
relapsing inflammation of the GI-tract can cause a high indi-
vidual and socioeconomic disease burden for people suffering 
from IBD. Despite considerable progress in IBD therapy 
during the past years, treatment options are still limited and all 
potent therapeutics bear the risk of relevant side effects, e.g. by 
suppressing immune effector functions resulting in increased 
susceptibility to infections.

The precise etiology of IBD has not been clarified yet, but it 
is well accepted that multiple factors are involved in the patho-
genesis. Both CD and UC are characterized by dysregulated 

Table III. DAPK substrates.

Protein	 OMIM ID	 Phosphorylation consensus site
		  (Consensus: KRxxxxxKRRxxS/T)

Beclin-1	 604378	 RLKVT119GDL
CaM	 114180	G SRREERSLS115APG
MCM3	 602693	 TKKTIERRYS160DLTTL
MLC	 609211	 TTKKRPQRATS19NVF
p21	 116899	 RKRRQT145SMTDFYHSK
p53	 191170	 PPLSQET18FS20DLWKLL
S6	 180460	 QIAKRRRLS235SLRAS
Syntaxin-1A	 186590	 IIMDSSIS188KQALSEIE
Tau (MAPT)	 157140	 (1)
Tropomyosin-1	 191010	 HALNDMTS283I
ZIPK (DAPK3)	 603289	 KT299TRLKEYTIKS309HS311S312LPPNNS318YADFERFS326

HSF-1	 140580	Y SRQFS230LE…DERPLS290SS…PGRPSS320VD…RGHT355DTEGRPPS363PP

Mentioned indications are summarized from Stevens et al (28), Bialik and Kimchi (4), Benderska and Schneider-Stock (1), and Ivanovska 
et al (2). Bold, Inflammation-associated interaction partners of DAPK.
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immune-responses in genetically predisposed individuals 
influenced by the microbiome and additional environmental 
cues (59,60). In addition, defects of the intestinal epithelial 
barrier might precede and influence the onset of IBD (61).

Recent genetic and immunological investigations have 
revealed important insights into molecular players involved 
in the pathogenesis of IBD (62). Genome-wide association 
studies (GWAS) have linked susceptibility to IBD with single 
nucleotide polymorphisms (SNP) at more than 150 gene loci 
which are markedly enriched in genes involved in primary 
immunodeficiency as well as immune-mediated diseases (63). 
The contribution of a single risk locus to the individual's IBD 
risk appears low, and the majority of these loci is shared by 
both UC and CD.

Various innate and adaptive immune cells including 
macrophages, T effector cells, regulatory T cells or innate 
lymphoid cells have been implicated in intestinal inflamma-
tion and IBD pathogenesis (62-64). Moreover, current IBD 
therapies are primarily directed against imbalanced immune 
responses in IBD patients with strategies targeting the expan-
sion and/or homing of pro-inflammatory T cell lymphocytes 
and the T cell-macrophage axis (59,60,65-67). Notably, DAPK 
is well-known for being involved in modulating pro- and anti-
inflammatory immune responses in macrophage and T cell 
studies suggesting a potential role in IBD (68).

There is also growing evidence that defects of the intes-
tinal epithelial barrier may trigger and influence intestinal 
inflammation in IBD patients (61). Noteworthy, we were able 
to demonstrate that DAPK can act as negative regulator of 
STAT3 in IECs suggesting an important role for DAPK in 
barrier function and potentially during IBD pathogenesis (16).

Cytokines are central players of the immunological cross-
talk between different lamina propria cells and they can also 
shape barrier function by signaling from immune cell subsets 
to the intestinal epithelium (69,70). It is well-known that the 
expression of multiple cytokines is elevated in the intestine 
during ongoing gut inflammation  (59,60,64). In addition, 
functional studies in experimental models have revealed 
that cytokines can potently influence the course of intestinal 
inflammation (59,60,64). Such studies are further supported 
by genetic evidence from GWAS in IBD patients correlating 
single nucleotide polymorphisms with DNA loci containing 
genes associated with cytokine signaling (63).

Tumor necrosis factor alpha (TNF-α) is a pro-inflam-
matory key molecule promoting the perpetuation of chronic 
intestinal inflammation in IBD, and anti TNF-α therapies are 
potent treatment options within current IBD-therapies for a 
substantial portion of IBD patients (59,60,71). Of note, several 
studies reported that DAPK is crosslinked with TNF-receptor 
signaling and NF-κB activation providing further evidence 
for a potential therapeutic importance of DAPK in IBD. 
However, it was demonstrated that DAPK can process appar-
ently opposing roles when either inhibiting or promoting 
inflammation (16,35,68,72-74). Thus, further analyses with 
careful characterization of cell type specific actions and 
context-dependent influences are needed before DAPK might 
be considered a therapeutic target candidate in IBD. Besides 
TNF-α, several other pro-inflammatory cytokines have been 
associated with intestinal inflammation (64). Some of them 
such as IL-1β, IL-6, IL-17 and IL-18 are also known to be 

modulated by DAPK (16,75-77). In addition, DAPK is required 
for the formation of the NLRP3 inflammasome which is a key 
regulator for the expression of pro-inflammatory cytokines 
including IL-1β and IL-18 by macrophages and has been 
linked to IBD (75,78,79).

TGF-β receptor signaling is another pathway that seems 
to play a critical role in IBD. Notably, there is evidence that 
chronic intestinal inflammation in IBD patients is perpetuated 
by T effector cells expressing high levels of SMAD7 rendering 
them less susceptible towards suppression by regulatory 
T cells and TGF-β signaling (80). Moreover, SMAD7 inhibi-
tion by antisense oligonucleotides has evolved as promising 
therapeutic strategy in patients with CD (81). DAPK is also 
connected to TGF-β signal transduction via other SMAD-
protein family members (63,82,83).

Thus, several lines of evidence suggest that targeting 
DAPK might influence the course of intestinal inflammation 
via modulation of immune cell activity and intestinal epithelial 
barrier function (Fig. 2). However, direct evidence for a critical 
role of DAPK is limited so far indicating the need for further 
studies investigating the cell type specific function of DAPK 
during intestinal inflammation.

6. Link of IBD and cancer

DAPK is involved in several forms of cell death including 
apoptosis, autophagy and anoikis suggesting a potential role 
in colitis-associated cancer (CAC) (44,84). Although DAPK is 
often considered a tumor suppressor, pro-survival roles have 
also been reported (44,84). In particular, there is evidence that 
DAPK might exert divergent functions under inflammatory 
conditions (15,16).

IBD patients with longstanding inflammation of the colon 
are at increased risk for CRC (85). This risk is associated 
with the duration and anatomic extent of colitis and pres-
ence of other inflammatory diseases such primary sclerosing 
cholangitis (86-88). In fact, recommendations for colon cancer 
screening (time of initial screening colonoscopy and surveil-
lance intervals) in IBD patients are stricter than for the general 
population (89).

CRC can be grouped into different entities with sporadic 
CRC being the most frequent subtype. IBD patients including 
UC patients as well as CD patients with colonic involvement 
are particular prone to CAC which can differ from classical 
sporadic CRC in various features. Sporadic CRC classically 
develops from normal mucosa via adenomatous polyps to CRC 
spanning over many years undergoing the adenoma - carci-
noma sequence by accumulating sequential gene alterations 
including APC, KRAS and p53 (90-92). In CAC, similar genetic 
alterations are found, but a different order of hits including 
early p53 mutations could pave the way for direct progres-
sion to CAC skipping the stage of adenomatous precursor 
lesions (93,94). CAC can show typical morphological features 
including flat tumor growth from multiple foci (90). Previous 
work reported positive feedback mechanisms between DAPK 
and p53 indicating potential functional relevance of DAPK 
for CAC growth control (33,95). In addition, our studies have 
provided direct evidence for the interaction of DAPK with 
p38 MAPK and STAT3 signaling in inflammation-associated 
colorectal cancer cells (14,16).
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The composition of the local microenvironment can 
further influence the tumor development. Of note, elevated 

levels of inflammatory cytokines and growth factors are typi-
cally found in CAC allowing for tumor growth promotion in 

Figure 2. DAPK can be expressed by various cell types including intestinal epithelial cells (IECs) as well as innate and adaptive immune cells typically popu-
lating the gut in inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Further studies are needed to reveal context dependent contributions 
of DAPK in intestinal cell types potentially modulating the course of intestinal inflammation and/or CAC. Innate lymphoid cell (ILC), polymorphonuclear 
cells (PMN).

Figure 3. DAPK expression in inflammation (x10 and x40 fold magnification) (A1 and A2) Example of regular mucosa of the colon with mild inflammation 
(H&E, →). (A3 and A4) Diffuse expression of DAPK in the cytoplasm of lymphocytes, plasma cells and macrophages in the interstitium. (→) and loss of expres-
sion in epithelial cells of colon mucosa (�). (B1 and B2) Example of severe colitis with crypt architectural distorsion and chronic as well as acute inflammatory 
cells (H&E, →). (B3 and B4) Strong expression of DAPK in the cytoplasm of inflammatory cells (→). Mild expression in epithelial cells of colon mucosa (�). 
(C1 and C2) Example of colorectal carcinoma with intratumoral inflammatory reaction. (C3 and C4) Strong expression of DAPK in the cytoplasm of both, 
inflammatory cells (→) and tumor cells (�).
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experimental CAC models (96-99). As DAPK modulates the 
expression and/or signaling of some of these molecules such 
as IL-1β and IL-18, it is tempting to speculate that DAPK 
might also influence CAC development by interfering with the 
proinflammatory cytokine signaling. Moreover, elevated levels 
of reactive oxygen and nitrogen species typically found with 
chronic inflammation could further promote DNA damage 
and DAPK expression during CAC development (21,100).

As in sporadic CRC, epigenetic alterations are often present 
in CAC and may influence tumor development. DAPK belongs 
to the genes that are frequent targets of hypermethylation in 
CRC, and aberrant methylation of DAPK in long-standing UC 
and CAC was demonstrated (15,101).

In summary, several findings suggest that DAPK could 
modify molecular mechanisms of colitis-associated tumori-
genesis. To date however, it has not been clarified which 
particular context is critical for rendering DAPK1 either a 
tumor suppressor or oncogenic molecule in tumor epithelial 
and/or tumor stromal cells. Upcoming analyses could provide 
important functional insights and might put DAPK1 on stage 
as a target for CAC therapy.

7. DAPK regulation and function in different cell types of 
the intestine

The role of DAPK in the intestine has not been sufficiently 
elucidated so far. DAPK is expressed and can be activated by 
numerous cell types including intestinal epithelial cells (IECs) 
as well as innate and adaptive immune cells typically popu-
lating the gut such as macrophages and T cells, respectively. 
The immunohistochemical DAPK expression in single stages 
of UC-associated carcinogenesis in regard to different cell 
types is demonstrated exemplarily in Fig. 3.

Several studies point to a complicated regulatory role 
of DAPK in IECs (15,16). Noteworthy, DAPK expression in 
IECs is increased in long-standing UC and correlates with the 
activity of UC-associated inflammation suggesting a protec-
tive role of DAPK during the chronic inflammatory process 
of UC (15). In addition, DAPK protein expression is elevated 
in CAC, which may potentially link DAPK to the initiation 
of the neoplastic process in CAC (15). Remarkably, recent 
work provided further evidence for a substantial role of DAPK 
in modulating epithelial cell function  (16). In fact, it was 
demonstrated that STAT3 and DAPK are upregulated in UC 
but only STAT3 is downregulated in CAC. In addition, DAPK 
was identified to suppress TNF-induced STAT3 activation and 
a direct physical interaction of DAPK with STAT3 inducing 
conformational changes in the STAT3 dimer was proposed 
as molecular cause  (16). Thus, DAPK can act as negative 
regulator of STAT3 in IECs suggesting an important role for 
barrier function and regulation of the intestinal homeostasis 
upon inflammatory stimuli and cancer (16).

DAPK-positive tumor-associated macrophages have been 
localized in close proximity with apoptotic colorectal cancer 
cells suggesting direct crosstalk between macrophages and 
tumor epithelial cells in the intestine (102). Based on studies 
with purified primary leukocytes and immune cell lines, 
DAPK might also be involved in the functional regulation of 
immune cell populations during chronic intestinal inflamma-
tion (68). For macrophages, inhibition of inflammation was 

shown via IFN-γ activated inhibitor of translation (GAIT) 
complex (103). In addition, macrophages can produce a variety 
of pro-inflammatory cytokines that are partly controlled by 
DAPK, e.g. via functional assembly of the NLRP3 inflamma-
some and activation of caspase-1 (75).

In the adaptive arm of the immune system, DAPK was 
shown to block the nuclear translocation of ERK1/2 in 
T lymphocytes (104). Further work demonstrated decreased 
T cell proliferation and IL-2 production upon stimulation by 
the T cell receptor (74) indicating that DAPK can interfere 
with T cell activation which might have important implica-
tions for chronic inflammatory diseases such as IBD.

Thus, several pieces of evidence suggest potential contri-
butions of DAPK in the regulation of gut inflammation and 
intestinal homeostasis. However, further studies are needed 
to clarify the dominant effects of DAPK in different innate 
and adaptive immune cell subsets as well as non-immune cells 
populating the bowel wall during chronic gut inflammation.

8. Open questions and future challenges

Regarding direct evidence for a role of DAPK in intestinal 
inflammation there are many open questions: Which immune 
cells in the intestinal lamina propria are controlled by DAPK? 
Are there differential effects on subsets of T helper cell popu-
lations including Th1, Th17, and regulatory T cells? What is 
the role of DAPK in B cells? Are there different effects on 
macrophage subsets including M1 and M2 macrophages? 
Which role does DAPK play in non-immune stromal cells 
such as fibroblasts? How does DAPK interact with signals 
from the microbiome?

Providing answers to the above questions may help in 
better understanding of how DAPK controls the function of 
gut cell populations associated with the pathogenesis of IBD 
and CRC (Fig. 2). Perspectively, novel insights into molecular 
disease mechanisms and potential key checkpoints might 
facilitate the design of new therapeutic approaches for IBD 
and CRC. Therefore, further studies are awaited that directly 
reveal the role of DAPK in intestinal homeostasis, intestinal 
inflammation and CRC.
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