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Abstract. Though recent studies have revealed that stem 
cells of many tissues are harbored in hypoxic microenviron-
ment, little is known about the relationship between hypoxia 
and intestinal crypt base, where intestinal stem cells are 
supposed to exist. In this study, we focused on carbonic 
anhydrase IX (CA9), a hypoxia-inducible membrane-tethered 
protein, in normal intestinal crypt base, adenoma and early 
colorectal cancer. Using surgically resected human colorectal 
cancer specimen, we searched for the expression pattern 
and functional association of CA9 in human adult normal 
intestinal epithelia, adenoma and early colorectal cancer by 
immunofluorescent and immunohistochemical staining, flow 
cytometry, and quantitative real-time-polymerase chain reac-
tion. We demonstrated that almost all crypt base slender cells 
in ileum and crypt base cells with eosinophilic structure in 
their basal cytoplasm in right and left colon were CA9+ with 
the ratio of 25 to 40%, and that adenoma and T1 colorectal 
cancer showed broad expression of CA9. Flow cytometrically 
sorted CA9+ population showed increased mRNA level of a 
Wnt signaling factor AXIN2. In conclusion, these observa-
tions indicate that CA9 expression in normal crypt base cells 
has association with intestinal epithelial stemness and CA9 
may be involved in the carcinogenesis of colorectal cancer.

Introduction

Vigorous research has shown that the intestinal epithelial 
stem cells are located at the bottom of the crypt base  (1) 
and consist of proliferative and quiescent types. It is widely 
accepted that the proliferative stem cells are crypt base 
columnar (CBC) cells and are positive for the leucine-rich 
repeat-containing G-protein-coupled receptor 5 (Lgr5) (2) 
and that quiescent stem cells are located at +4 position from 
the bottom of the crypt base (3) and positive for Bmi-1 (4), 
Hopx (5), mTert (6) and Lrig1 (7). The intestinal stem cells 
are thought to be supported by their adjacent Paneth cells in 
small intestine (8) through Wnt (9), Notch (10) and epidermal 
growth factor (EGF) (11) signaling and adversely influenced 
by villus cells through bone morphogenetic protein (BMP) 
signaling (12).

Carbonic anhydrase 9 (CA9) is a membrane-bound 
isozyme of 12  enzymatically active CAs in human, and 
catalyzes the reversible reaction between carbon dioxide 
(CO2) and water to the bicarbonate ion and protons at its 
extracellular catalytic site. High expression of CA9 has 
been reported in limited cell types of normal tissues (13,14) 
and the relationship between CA9 and advanced status of 
cancer has been intensely studied (15-19). However, CA9 
expression in normal human intestinal epithelial cells and 
early stage colorectal cancer (CRC) remains incompletely 
understood.

In this study, we assessed the characteristics and distribu-
tion pattern of CA9 positive cells in human intestinal epithelial 
cells using clinical samples and in T1 CRC.

Materials and methods

Tissue samples. Surgically resected human adult intestinal 
normal tissues and T1 CRC tissues were obtained from 
20 patients with CRC (2 cecum, 5 ascending, 2 transverse, 
3 descending, 5 sigmoid colon, 3 rectum; 54 to 84 years old, 
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6 female and 14 male, 14 normal mucosa, 3 adenoma and 3 T1 
CRC tissues) after informed consent from Osaka University 
Medical Hospital with approval of the Research Ethics Board. 
Normal intestinal epithelia were collected from patients 
without evidence of symptomatic or microscopic inflammation, 
and distance of >3 cm to the tumors.

Histopathology, immunohistochemical and immunofluores-
cent analyses of intestinal tissue. Human colorectal tissue 
was fixed in 10% buffered formalin and embedded in 
paraffin. Sequential 5-µm sections were stained with hema-
toxylin and eosin (H&E) for histopathological analyses, and 
for immunohistological analyses with antibodies to CA9 
(2D3, 1:500; Abcam, Cambridge, MA, USA and EPR4151, 
1:200; Epitomics, Burlingame, CA, USA), neuron specific 
enolase (NSE) (1:100; Assaybiotech, Sunnyvale, CA, USA), 
CD68 (PG-M1; Dako, Carpinteria, CA, USA) and polypy-
rimidine tract-binding protein 1 (PTBP1) (M01, 3 µg/ml; 
Abnova, Taipei, Taiwan). Antigen retrieval (10 mmol/l citrate 
buffer, pH 6 at 100˚C for 40 min) was performed on paraffin-
embedded tissues. Visualization was performed using either 
fluorescent-conjugated species-specific secondary antibodies 
or the avidin-biotin-peroxidase method (Vectastain Elite ABC 
reagent kit; Vector Laboratories, Burlingame, CA, USA). 
Nuclear counterstaining was performed with hematoxylin  
or ProLong Gold antifade reagent with DAPI (Invitrogen, 
Carlsbad, CA, USA). All-in-one type fluorescence microscopy 
(BZ-8000; Keyence, Osaka, Japan) with digital photographic 
capability was used to visualize cells at several magnifications.

Calculation of the frequency of CA9+ cells of the intestinal 
crypts. The frequency of CA9+ cells at specific positions rela-
tive to the crypt bottom were evaluated using crypts which 
intact overall longitudinal sections were available in sections 
of immunohistochemical staining with anti-CA9 antibody. 
The counting of intestinal epithelial CA9+ and CA9- cells 
was performed three times independently using 20, 70 and 
150 crypts for ileum, right colon and left colon, respectively. 
The frequency of CA9+ cells was calculated by the ratio of the 
total number of CA9+ cells to the total number of CA9- and 
CA9+ cells at each cell position relative to crypt bottom.

Crypt isolation and cell dissociation. The intestinal tissues 
were washed with cold phosphate-buffered saline (PBS) until 
the supernatant was clear. Next, they were incubated in 8 mmol/l 
ethylenediaminetetraacetic acid (EDTA) cold chelation buffer 
(distilled water with 5.6 mmol/l Na2HPO4, 8.0 mmol/l KH2PO4, 

96.2  mmol/l NaCl, 1.6  mmol/l KCl, 43.4  mmol/l sucrose, 
54.9 mmol/l D-sorbitol, 0.5 mmol/l DL-dithiothreitol) (20) 
for 10 min on ice and the intestinal crypts were stripped and 
collected with angled Debakey forceps under a stereomicro-
scope (SZX10; Olympus, Tokyo, Japan). After washing with 
cold chelation buffer, the isolated crypts were incubated with 
TrypLE Express (Invitrogen) including 2,000 U/ml DNase 
(Sigma-Aldrich, St. Louis, MO, USA) for 60 min at 37˚C, 
passed through 40 µm cell strainers, treated with BD Pharm 
Lyse (BD Biosciences, San Jose, CA, USA) for the lysis of red 
blood cells and then washed with cold chelation buffer.

Flow cytometry. Dissociated intestinal crypt cells were blocked 
with FcR blocking reagent (BD Biosciences) and incubated 
with antibodies as follows; anti-human CA9 (APC-conjugated; 
R&D Systems, Minneapolis, MN, USA), anti-human CD31 
(FITC-conjugated; eBiosciences, San Diego, CA, USA), anti-
human CD44 (PE-conjugated) and lineage cocktail 1 (Lin1) 
(FITC-conjugated) (both from BD  Biosciences). 7-AAD 
(BD Biosciences) was used to eliminate dead cells. Cells were 
analyzed and isolated by using FACSAria II equipped with 
FACSDiva software (BD Biosciences). The live single epithe-
lial crypt base cells  (21,22) (7-AAD-/CD31-/Lin1-/CD44+) 
were evaluated for the CA9 expression and sorted accordingly.

RNA preparation and quantitative real-time-polymerase 
chain reaction (qRT-PCR). Total RNA was isolated using 
TRIzol reagent (Invitrogen). In all cases, 400 ng of total RNA 
was reverse-transcribed with High Capacity RNA-to-cDNA 
Master Mix (Applied Biosystems, Foster City, CA, USA) 
following the manufacturer's instructions. For quantitative 
assessments, quantitative real-time reverse transcriptase 
analysis was performed with the LightCycler TaqMan master 
kit (Roche Diagnostics, Tokyo, Japan) and the LightCycler 480 
system (Roche Applied Science, Indianapolis, IN, USA). 
Primers are listed in Table I.

Statistical analysis. The relationships among gene expressions, 
cell counts, and tumor volume were analyzed using ANOVA. 
All tests were analyzed with GraphPad Prism 6 software 
(GraphPad Software, San Diego, CA, USA). A value of P<0.05 
was taken as statistically significant.

Results

CA9 protein expression in human intestinal crypt base. To 
assess anatomical pattern of CA9 expression in human normal 

Table I. Primer sequences and TaqMan probes used for quantitative real-time RT-PCR.

Gene	 Primer	 UPL probe

GAPDH (NM_002046.3)	 5'-AGCCACATCGCTCAGACAC-3'	 60
	 5'-GCCCAATACGACCAAATCC-3'
ENO2 (NM_001975.2)	 5'-ACTTTGTCAGGGACTATCCTGTG-3'	 27
	 5'-TCCCTACATTGGCTGTGAACT-3'
AXIN2 (NM_004655.3)	 5'-AGAGCAGCTCAGCAAAAAGG-3'	 88
	 5'-CCTTCATACATCGGGAGCAC-3'
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intestinal epithelia, formalin-fixed paraffin-embedded serial 
sections of ileum, right colon and left colon were stained with 
H&E, CA9, CD68 and NSE (Fig. 1). The CA9 expression was 
confined to cell membrane and was mainly observed in slender 
cells at the bottom of small intestinal and in colon crypts with 
mosaic pattern. CA9+ cells commonly contained eosinophilic 
structure in basal cytoplasm. Among those evaluated, none of 
the CA9+ cells located in the intestinal epithelia were positive 

for CD68, a marker for macrophage, which means that although 
intestinal lamina propria contains abundant macrophages (23), 
macrophages were not the source of CA9+ cells. Almost all of 
the CA9+ cells in the crypt base were also stained with NSE.

Frequency of CA9+ intestinal epithelial cells in association 
with their position. To quantify the frequency of the CA9+ 
intestinal epithelial cells in association with their position 

Figure 1. CA9 expression pattern in the human ileum and colon. Representative staining patterns of human ileum (a-d), right colon (e-h) and left colon (i-l). 
(a, e and i) Hematoxylin and eosin (H&E) staining. (b, f and j) Immunohistochemical (IHC) staining with anti-CA9 antibody. (c, g and k) IHC staining with anti-
CD68, a macrophage marker. (d, h and l) Ιmmunofluorescent staining with antibodies to CA9 (green), neuron specific enolase (NSE) (red) and counterstained 
with DAPI (blue). Larger magnification views of the crypt base boxed in yellow are shown at the bottom on the right. IHC staining sections were visualized 
with diaminobenzidine (brown) and counterstained with hematoxylin. Arrowheads point to cells which express CA9. White solid lines demarcate epithelial-
mesenchymal boundary, and dashed lines mark the apical epithelial surface in (d, h and l). Scale bar, 25 µm. Original magnification, top, x20; bottom, x40.
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relative to crypt bottom, the counting of CA9- and CA9+ cells 
of intestinal epithelia in ileum, right colon and left colon was 
performed (Fig. 2a-c). Total frequency of CA9+ cells was 
13.5±0.2, 7.0±0.1 and 5.9±0.1%, the maximal frequency of 
CA9+ cells in relation to cell position was 56.0±9.0% (cell 

position  3), 33.8±2.9% (cell position  4), 25.8±0.3% (cell 
position 5) and the ratio of CA9+ cells in crypt base (cell 
position 0-8) was 77.7±0.5, 53.1±0.4 and 53.5±0.4 in ileum, 
right colon and left colon, respectively (Fig. 2d-f). These data 
indicate that CA9+ cells are mainly located in the crypt base, 

Figure 2. The frequency of CA9+ cells in the human ileum and colon. The frequency of CA9+ cells appeared at specific positions relative to the crypt bottom in 
human ileum (a), right colon (b) and left colon (c). The overall frequency of CA9+ (d), maximal frequency of CA9+ cells at a position (e) and the ratio of CA9+ 
cells located in crypt base region (f) in ileum, right colon and left colon. Most of the CA9+ cells were found to be almost alternately positioned at the base of 
crypts, and rarely found in distal positions.
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and ileum contains more CA9+ cells in the crypt base than 
right or left colon.

CA9+ intestinal epithelial cells in fresh human clinical 
samples. To investigate the biological function of CA9+ cells 
in intestinal epithelial crypt base, flow cytometric analysis 
was performed on freshly isolated human intestinal epithelial 
cells. The percentage of CA9+ cells was 0.23±0.06, 0.20±0.00 
and 0.20±0.00%, in ileum, right colon and left colon, respec-
tively, without significant difference among the locations 
(P=0.4226) (Fig. 3).

Correlation of CA9 and the Wnt pathway gene AXIN2. To 
elucidate the characteristic of the CA9+ cells in intestinal 
epithelial cells, expression of AXIN2, a direct target gene of 
Wnt pathway  (24), was analyzed on freshly isolated CA9- 
and CA9+ dissociated human intestinal epithelial cells by 
qRT-PCR. The expression of AXIN2 in CA9+ cell population 
was significantly higher than that of CA9- (P=0.048) (Fig. 4).

CA9 protein expression in adenoma and T1 CRC. To 
investigate the relationship between CA9 expression and 
tumorigenesis, formalin-fixed paraffin-embedded sections 
were stained with CA9 in adenoma (3 samples) and T1 CRC 
(3 samples). Three (100%) and 3 (100%) were positive for CA9 
in adenoma and T1 CRC, respectively. In adenomas, the CA9 
expression was confined to cell membrane and was observed 
with mosaic-like pattern at the bottom of crypt-like structures 
where PTBP1, a hypoxia-related protein (25), is abundantly 
observed (Fig. 5a and c). In T1 cancer, CA9 expression was 
also confined to cell membrane but almost all cells were posi-
tive for CA9, and there was no apparent difference of staining 
positivity in the same tumor tissue (Fig. 5b and d).

Discussion

In this study, we precisely revealed that CA9+ cells exist in 
human adult crypt base of ileum, right colon and left colon 
epithelia, and we also showed that the CA9+ cells in the crypt 
base are suspected to be associated with intestinal stem cells 
morphologically and functionally. We also showed possible 
association of CA9 expression with carcinogenesis.

In human adult normal intestinal epithelial crypt, CA9+ cells 
were slender and mainly distributed with mosaic pattern, which 
is consistent with morphological characteristic of previously 
reported intestinal epithelial stem cells (2-8). It is noteworthy 
that the CA9 expressed in normal colorectal epithelia is 
reported to be a splicing variant lacking C-terminal part of the 
catalytic domain and it is different from the full‑length form 
expressed in CRC and increased by hypoxia (26). This may 
explain the reason CA9+ cells are arranged in intestinal crypt 
bases with mosaic pattern regardless of the distance from blood 
vessels. The antibodies, which we used in this study, can also 
used in flow cytometry under non-denatered condition. Since 
the reported splicing variant of CA9 is lacking trans-membra-
nous domain, the C-terminal of the full-length protein, the 
CA9 protein levels which we analyzed in this study contains 
both forms of CA9. Although NSE is commonly considered 

Figure 3. Flow cytometry analysis of human intestinal epithelia with CA9. (a) Representative image of an isolated intestinal epithelial crypt. (b) Representative 
dot plots of human CRC cell lines incubated with an anti-CA9 antibody. (c) Frequency of CA9+ cells detected by flow cytometry in ileum, right colon and left 
colon. Scale bar, 25 µm. The frequency of CA9+ cells was smaller than that of IHC.

Figure 4. Comparison of the expression of AXIN2 in CA9- and CA9+ human 
intestinal epithelial cells. The expression of AXIN2, a Wnt pathway-associ-
ated gene, was evaluated by the ratio normalized to GAPDH expression in 
human intestinal epithelial CA9- and CA9+ cells as determined by qRT-PCR. 
CA9+ cells showed significantly higher level of AXIN2 than CA9- cells.
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to be a marker for enteroendocrine cells (27,28), intestinal 
quiescent stem cells were recently shown to be the precursors 
which were committed to mature into differentiated secre-
tory cells of the Paneth and enteroendocrine lineage  (29). 
In addition, NSE functions as a glycolytic enzyme by 
converting 2-phospho‑D‑glycerate into phosphoenolpyruvate 
and exhibits proliferative and protective effects on cultured 
neuron cells (30). These facts imply that it is reasonable for 
the morphologically stem-like cells in the intestinal crypt base 
to express NSE in this study. It was notable that CA9+ cells 
in crypt base expressed AXIN2, a direct target gene of Wnt 
pathway (24), which indicates that they have increased activity 
of Wnt pathway, a critical pathway for intestinal epithelial 
stem cells (2). Based on these findings, it can be supposed that 
the CA9+ cells in human adult normal intestinal epithelia are 
associated with stemness, although CA9 has been associated 
with hypoxia in embryonic and fetal intestinal epithelia (14), 
and CA9 per se is not imperative in the development or main-
tenance of intestinal epithelia under normal condition (31).

In the process of carcinogenesis and progression, cancer 
cells are required to overcome hypoxia and acidosis caused 
by over-population and increased distance from blood 
vessels (32). CA9 is induced by hypoxia (33-35) and regulates 
pH of microenvironment  (36). In addition, CA9 has been 
shown to support carcinogenesis itself, promote cell migra-
tion, invasion angiogenesis and metastasis (37-41) and to be 
associated with cancer stemness (42) and resistance to the 
therapies (41-44). All these aspects are consistent with our 
results yielded from clinical samples and data, where the 
expression of CA9 is mostly associated with poor prognosis or 
progressed stage (16-19,44‑49). In this study, we showed that 

the colorectal adenomas had mosaic pattern of CA9 expres-
sion in basal region, similar to but more aberrant than normal 
epithelia, and that T1 CRC had CA9 expression in entire area 
of the tumor, contrary to the normal intestinal epithelia which 
CA9+ ratio is as low as 10%. Thus, it could be reasonable to 
suspect that the CA9+ cells are associated with carcinogenesis.

This study have some limitations as follows. First, we 
analyzed the CA9+ cells only in immunohistrochemistry and 
flow cytometry. In addition, analyzed sample number is small 
for reading strong evidence. Second, although the morphology 
of CA9+ cells were same as the CBC cells which were reported 
as the stem cells of mouse small intestine, there has not been 
any evidence that the same event was also justified in human 
samples. Third, although there was a gap of the ratio of 
CA9+ cells among the anatomical location, we were unable 
to explain its meaning. The gaps of the ratio of CA9+ cells 
between IHC and flow cytometry may be explained by the fact 
that the sensitivity of the antibodies used for flow cytometry 
and those for IHC was different (50) and that the methodology 
of calculation of positivity was two-dimensional in IHC and 
three-dimensional in flow cytometry. Forth, although in flow 
cytometry, we could detect CA9 high cells in mucosal epithe-
lial cells, in immunohistochemistry, we could not classify the 
epithelial cells according to CA9 staining intensity. However, 
accoding to Fig. 1b, epithelial cells on villi were weakly posi-
tive and CBC cells were highly positive for CA9 suggesting 
that CA9+ cells would be morphologically identical for CBC 
cells. Further studies would be needed for understanding the 
CA9 fuctions. This study propose the possibility that CA9 
could be a new marker of human adult intestinal epithelial 
stem cells and that it is associated with carcinogenesis in CRC.

Figure 5. CA9 expression pattern in adenoma and T1 colorectal cancer tissue. (a and c) Immunofluorescent-staining merged images of tubular adenoma with 
antibodies to CA9 (red), polypyrimidine tract-binding protein (PTBP1) (green) and counterstained with DAPI (blue). (b and d) IHC staining images of T1 
adenocarcinoma with anti-CA9 antibody, visualized with diaminobenzidine (brown) and counterstained with hematoxylin. Larger magnification views of the 
typically stained pattern boxed in yellow (a and b) are shown (c and d). Scale bar, 100 µm. Original magnification (a and b) x20; (c and d), x40.
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