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Abstract. Long non-coding RNA (lncRNA) is a variety of 
the human transcriptome that does not code for proteins and 
plays an important role in the development and progression 
of multiple solid malignant tumors. However, the roles of 
lncRNAs in the development of pancreatic ductal adenocarci-
noma (PDAC) remain unknown. In this study, we investigated 
the expression patterns of lncRNAs in three PDAC tumor 
samples (T) relative to those of matched adjacent non-tumor 
tissues (N) via a microarray with 30,586 lncRNA probes and 
26,109  mRNA probes. The lncRNA microarray revealed 
27,279  lncRNAs in PDAC samples, of which 2,331 were 
significantly upregulated (P<0.05; T/N>2.0) and 1,641 were 
downregulated (P<0.05; N/T>2.0) compared with matched 
adjacent non-tumor samples. In addition, 19,995 mRNAs 
were detected, of which 1,676 were significantly upregulated 
(P<0.05; T/N>2.0) and 1,981 were downregulated (P<0.05; 
N/T>2.0). Pathway analysis indicated that 41 pathways 
corresponded to upregulated transcripts and 25 pathways 
corresponded to downregulated transcripts (P-value cut-off 
is 0.05). Gene ontology (GO) analysis showed that the highest 
enriched GOs targeted by upregulated and downregulated 
transcripts were tissue homeostasis. The validation results 
from quantitative reverse transcription polymerase chain 
reaction (qRT-PCR) analysis and microarray analysis were 

consistent. Furthermore, the expression level of long intergenic 
non-coding RNA HOTAIRM1 was upregulated in 12 PDAC 
tissues samples compared with matched adjacent non-tumor 
samples by qRT-PCR. The results showed that the lncRNA 
and mRNA expression profiles differed significantly between 
the PDAC tissues and their adjacent non-tumor tissues, and 
the revelation of an association between HOTAIRM1 expres-
sion and PDAC is especially noteworthy. These findings may 
provide new potential molecular markers for diagnosis and 
treatment of PDAC.

Introduction

Pancreatic ductal adenocarcinoma (PDAC), a common diges-
tive system cancer, is highly malignant and has a poor disease 
outcome. Despite the progress in the understanding of the 
molecular and genetic basis of this disease, the 5-year survival 
rate has remained low and usually does not exceed 5%. Only 
20-25% of the patients present with potentially resectable 
disease, and surgery represents the only chance for a cure (1,2). 
PDAC is considered as a systemic disease because of the high 
rate of relapse after curative surgery in patients with resect-
able disease at diagnosis. Enormous efforts have been made to 
identify the special molecular markers for PDAC, which show 
vast application prospect as targets for the disease treatment. 
The research fields of molecular markers for PDAC include 
proteins, such as K-Ras, p16, and SMAD4 (3-5); miRNAs, 
such as miR-210 and miR-221 (6-8); and the recently research 
hotspot the lncRNAs.

Long non-coding RNAs (lncRNAs) refer to a group of 
RNAs that are usually more than 200 nucleotides and are 
not involved in protein generation (9). Recent studies have 
begun to associate subsets of lncRNAs to specific regulatory 
mechanisms of important biological processes, including 
cell proliferation, survival, differentiation, and chromatin 
remodeling both in cis and in trans (10-19). Many functional 
lncRNAs have been shown to play key roles in organ devel-
opment and cancer. Some lncRNAs act as tumor suppressor; 
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others participate in cellular replicative immortality, or even 
regulate angiogenesis and metastasis (20,21). Previous studies 
have reported several lncRNA, such as HOTAIR, MALAT1 
and PVT1 (22-24), which revealed the significance of lncRNAs 
in the regulation of multiple biological processes at different 
levels that may served as molecular markers for several cancer. 
However, the roles of lncRNAs in the progression of PDAC 
remain not well identified.

To evaluate the expression profile and identify the special 
lncRNAs in PDAC, we interrogated the differentially expres-
sion profiles of lncRNAs and mRNAs between 3 PDAC 
samples and their matched adjacent non-tumor samples via 
microarray. Gene ontology (GO) analysis, pathway analysis 
and network analysis was done for further investigation. 
Quantitative reverse transcription polymerase chain reaction 
(qRT-PCR) was used to validate several random upregulated 
and downregulated lncRNAs in the 3 PDAC tissues. Further, 
HOTAIRM1, one of thousands of deregulated lncRNAs we 
identified, was further evaluated in 12 pairs of matched tumor 
/non-tumor (T/N) tissues via qRT-PCR. This study uncovers 
the aberrant expression of lncRNAs in PDAC tissues, and 
may contribute to understanding of the mechanism of PDAC 
progression and provide new potential molecular markers for 
diagnosis and treatment of PDAC.

Materials and methods

Patients and tissue samples. A total of twelve PDAC tissue 
samples and their matched adjacent non-tumor samples 
were obtained with informed consent from PDAC patients at 
Department of Surgery, Sichuan Provincial People's Hospital. 
The diagnosis of all patients was confirmed based on the 
WHO classification and staged according to the tumor node 
metastasis classification and were reviewed by two patholo-
gists. Clinical parameters were recorded for each sample, 
included age, gender, location of tumor, vascular permeation, 
TNM stage and differentiation. Samples were taken during 
surgery, immediately frozen in liquid nitrogen, and stored 
at -80˚C for further analysis. Paired tumor and non-tumor 
tissues from three PDAC patients were used for the micro-
array assay. Twelve paired PDAC tissues (not including 
the 3 paired tissues used for microarray) were used for the 
qRT-PCR validation assay. The analysis of human tissues 
were approved by the Human Research Ethics Committee of 
Sichuan Provincial People's Hospital, and all PDAC patients 
gave written informed consent for the use of clinical samples 
for medical research.

RNA isolation. Total RNA was isolated from the 15 PDAC 
tissues and paired non-tumor tissues using TRIzol reagent 
(Invitrogen, CA, USA), and quantified using a NanoDrop 
ND-1000 spectrophotometer (NanoDrop, DE, USA). The 
integrity of RNA was assessed by standard denaturing agarose 
gel electrophoresis, and the purity was estimated by the ratio 
of absorbance at 260-280 nm.

Microarray. Arraystar Human LncRNA Microarray V3.0 
is designed for the global profiling of human lncRNAs and 
protein-coding transcripts, which is updated from the previous 
Microarray V2.0. Approximately 30,586 lncRNAs and 26,109 

coding transcripts can be detected by our third-generation 
lncRNA microarray. The lncRNAs are carefully constructed 
using the most highly respected public transcriptome databases 
(including Refseq, UCSC known genes, and Gencode), as well 
as landmark publications. Each transcript is represented by a 
specific exon or splice junction probe, which can identify indi-
vidual transcript accurately. Positive probes for housekeeping 
genes and negative probes are also printed onto the array for 
hybridization quality control.

RNA labeling and array hybridization. Sample labeling and 
array hybridization were performed according to the Agilent 
One-Color Microarray-Based Gene Expression Analysis 
protocol (Agilent Technology) with minor modifications. 
Briefly, mRNA was purified from total RNA after removal 
of rRNA (mRNA-ONLY™ Eukaryotic mRNA Isolation kit, 
Epicentre). Then, each sample was amplified and transcribed 
into fluorescent cRNA along the entire length of the transcripts 
without 3' bias utilizing a random priming method (Arraystar 
Flash RNA Labeling kit, Arraystar). Each labeled cRNA 
(1 µg) was fragmented by adding 5 µl 10X blocking agent 
and 1 µl of 25X fragmentation buffer, then heated the mixture 
at 60˚C for 30 min, finally 25 µl 2X GE hybridization buffer 
was added to dilute the labeled cRNA. Hybridization solution 
(50 µl) was dispensed into the gasket slide and assembled 
to the lncRNA expression microarray slide. The slides were 
incubated for 17 h at 65˚C in an Agilent Hybridization Oven. 
The hybridized arrays were washed, fixed and scanned with 
using the Agilent DNA Microarray Scanner (part number 
G2505C).

Data analysis. Data analysis were performed by KangChen 
Biotech (Shanghai, China). Agilent Feature Extraction 
software (version 11.0.1.1) was used to analyze acquired 
array images. Quantile normalization and subsequent data 
processing were performed with using the Gene Spring GX 
v12.1 software package (Agilent Technologies). After quantile 
normalization of the raw data, lncRNAs and mRNAs of ≥3 out 
of 6 samples have flags in Present or Marginal (All Targets 
Value) were chosen for further data analysis. Differentially 
expressed lncRNAs and mRNAs with statistical significance 
between the two groups were identified through P-value/
FDR filtering. Differentially expressed lncRNAs and mRNAs 
between the two samples were identified through fold-change 
filtering. Hierarchical clustering and combined analysis were 
performed using in-house scripts.

Quantitative real‑time PCR (qRT‑PCR). Total RNA was 
isolated using TRIzol reagent (Invitrogen) and then reverse 
transcribed using PrimeScript® RT Reagent kit with gDNA 
Eraser (Perfect Real Time) (Takara, Dalian, China) according 
to the manufacturer's instructions. The expression levels of 
seven upregulated and seven downregulated lncRNAs in the 
3 patients included in the microarray study were measured by 
qRT-PCR using SYBR Green assays (Takara). The expression 
levels of HOTAIRM1 in twelve PDAC specimens and their 
paired adjacent non-cancerous tissues were also measured by 
qRT-PCR. The lncRNA expression differences between the 
matched cancer and non-cancerous samples were analyzed 
using Student's paired t-test with the IBM SPSS Statistics 
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version 20.0 (IBM Corp., New York, NY, USA). A probability 
value of P<0.05 was considered statistically significant.

Results

Differentially expressed lncRNAs in PDAC. The clinical 
parameters of all patients are shown in Table I. The lncRNA 
expression profile data from the microarray analysis 
contained a total of 21,558 lncRNAs that were expressed 
in PDAC tissue samples. To determine the relationships 
among the specimens, hierarchical clustering analysis was 
used to group the specimens according to their expression 
levels (data not shown). Volcano Plots and the scatterplot 
of lncRNA expression profile are useful for assessing the 
variation or reproducibility (Fig. 1A and B). We identified 
hundreds of significantly differentiated lncRNAs (fold 
change ≥2.0, P≤0.05) between 3 human PDAC tissue samples 
and the matched adjacent non-tumor samples. In total, there 
were 2,331 upregulated lncRNAs and 1,641 downregulated 
lncRNAs found in the 3 PDAC patients (Fig. 1C). Upregulated 
lncRNAs were more common than downregulated 
lncRNAs in our microarray data. Among these lncRNAs, 
ASHGA5P050875 (fold change, 91.4095293) was the most 
upregulated lncRNA, and ASHGA5P044551 (fold change, 
75.9252755) was the most downregulated lncRNA.

Further analysis proceeded by classifying and stratifying 
the lncRNAs into subgroups. Subgroups such as antisense 
lncRNAs, enhancer lncRNAs and lincRNAs are thought to 
participate in numerous diseases such as cancers. We found 
69 antisense RNAs, 82 enhancer RNAs and 147 lincRNAs were 
upregulated in PDAC samples, respectively, and 50 antisense 
RNAs, 70 enhancer RNAs and 236 lincRNAs were downregu-
lated in the adjacent non-tumor samples, respectively (data not 
shown). The changes of lncRNAs subgroup between the PDAC 
samples and adjacent non-tumor samples play an important 

role in the regulation of PDAC tumor progression and we will 
focus on subgroup lncRNAs and their related mRNA in PDAC 
samples in our further study.

Differentially expressed mRNAs in PDAC. The mRNA expres-
sion profile data from the microarray analysis contained a 
total of 14,609 mRNAs that were expressed in the PDAC 
tissue samples. Volcano plots and the scatterplot of lncRNA 
expression profile are useful for assessing the variation or repro-
ducibility (Fig. 2A and B). Among them, 1,676 mRNAs were 
significantly upregulated and 1,981 mRNAs downregulated 
(fold change ≥2.0, P≤0.05) in the PDAC samples (Fig. 2C). The 
most significantly deregulated mRNAs were ASHGA5P012017 
(upregulated, fold change, 89.8272773) and ASHGA5P033632 
(downregulated, fold change, 463.3570246).

GO analysis. Gene Ontology (GO) analysis was performed 
to determine the transcripts with terms under the biological 
process, cellular component, and molecular function ontology 
in this study. Fisher's exact test was applied to find if there 
were more overlap between the differentially expressed list 
and the GO annotation list than would be expected by chance. 
The P-values were used to estimate the significance of GO 
terms enrichment in the differentially expressed lncRNAs 
and mRNAs; the lower the P-value, the more significant the 
GO term (P-values ≤0.05 is recommended). We found that the 
highest enriched GO terms for the upregulated transcripts were 
purine nucleoside catabolic process (Fig. 3A; GO:0006152 
under biological process, P=8.072E-06), cytoplasm (Fig. 3B; 
GO:0005737 under cellular component; P=1.158E-09), and 
protein binding (Fig.  3C; GO:0005515 under molecular 
function; P=1.014E-09). The most highly enriched GO terms 
targeted by the downregulated transcripts were establishment 
of localization (Fig. 3D, GO:0051234 under biological process; 
P=1.968E-05), cytoplasmic part (Fig. 3E, GO:0044444 under 

Table I. Clinical parameter of 15 PDAC patients.

Sample nos.	 Age (years)	 Gender 	 Location of tumor	 Vascular permeation	 TNM stage	 Differentiation

  1	 46	 Male	 Head	 Present	 T2N1M0	 Poorly
  2	 53	 Female	 Body and tail	 Absent	 T3N1M0	 Moderately
  3	 67	 Female	 Head	 Absent	 T2N0M0	 Poorly
  4	 72	 Male	 Head	 Absent	 T3N1M0	 Moderately
  5	 61	 Male	 Body and tail	 Present	 T1N0M0	 Moderately
  6	 42	 Female	 Body and tail	 Absent	 T2N1M0	 Poorly
  7	 55	 Male	 Head	 Absent	 T1N0M0	 Well
  8	 56	 Male	 Head	 Absent	 T2N0M0	 Well
  9	 75	 Male	 Head	 Absent	 T4N1M0	 Moderately
10	 52	 Female	 Head	 Absent	 T2N0M0	 Poorly
11	 60	 Male	 Head	 Absent	 T1N1M0	 Moderately
12	 65	 Male	 Body and tail	 Absent	 T3N1M0	 Well
13	 71	 Female	 Head	 Present	 T2N1M0	 Poorly
14	 52	 Male	 Body and tail	 Absent	 T1N0M0	 Moderately
15	 49	 Male	 Body and tail	 Present	 T3N1M0	 Poorly
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cellular component; P=1.394E-09), and protein binding 
(Fig. 3F, GO:0005515 under molecular function; P=9.546E-09).

Pathway analysis. Pathway analysis indicated that 41 path-
ways corresponded to the upregulated transcripts (Fig. 4A). 

Figure 1. (A) Volcano plots of lncRNA expression profile. The vertical lines correspond to 1.5 FC up and down and the horizontal line represents a P-value 
of 0.05. (B) The scatterplot of lncRNA expression profile, which is useful for assessing the variation (or reproducibility). (C) The top 20 differentially expressed 
lncRNAs determined by microarray.
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The most enriched network was ‘B cell receptor signaling 
pathway (human)’ (Fisher P=9.08198E-06, Fig. 4C) with 18 

transcripts annotated with this term. Twenty-five pathways 
corresponded to the downregulated transcripts (Fig. 4B) and 

Figure 2. (A) Volcano plots of mRNA expression profile. The vertical lines correspond to 1.5 FC up and down and the horizontal line represents a P-value 
of 0.05. (B) The scatterplot of mRNA expression profile, which is useful for assessing the variation (or reproducibility). (C) The top 20 differentially expressed 
mRNAs determined by microarray.
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the most enriched network was ‘Pertussis-Homo sapiens 
(human)’ (Fisher P=0.0002931875, Fig. 5) with 18 transcripts 
annotated with this term. P-values ≤0.05 were taken as the 
cut-off. Among these pathways, the gene category ‘Wnt 
signaling pathway’, has been reported to be involved in metas-
tasis of pancreatic carcinogenesis (25), and the gene category 
‘MAPK signaling pathway’ has been shown to participate in 
the progression of pancreatic cancer though multiple mecha-
nisms (26-28). The gene categories ‘FoxO signaling pathway’ 
have been reported to suppress or activate pancreatic cancer 
progression by different drugs or compound (29,30). The gene 
categories ‘Ubiquitin mediated proteolysis’ participate in 
pancreatic cancer cell growth in vitro and in vivo (31).

Quantitative real-time PCR validation. We used qRT-PCR 
to validate the expression levels of the altered lncRNAs in 
the PDAC patients. We randomly selected ten upregulated 

lncRNAs and five downregulated lncRNAs among the differ-
entially expressed lncRNAs. We found that ASHGA5P022276, 
ASHGA5P029774, ASHGA5P028603, ASHGA5P014632, 
ASHGA5P043753, ASHGA5P036884, ASHGA5P016768, 
ASHGA5P032173, ASHGA5P051732 and ASHGA5P014130 
were upregulated, and ASHGA5P055771, ASHGA5P044524, 
ASHGA5P039672, ASHGA5P017734 and ASHGA5P018902 
were downregulated in the PDAC samples compared with 
adjacent non-tumor samples. Thus, the results from the 
qRT-PCR analysis and the microarray data analysis were 
consistent (P<0.05; Fig. 6A and B).

Moreover, we found a significant increase of the expression 
level of HOTAIRM1 (fold change, 6.9263288, P=0.00282) in 
PDAC samples compared with adjacent non-tumor samples 
via microarray analysis. To examine whether upregulated 
expression of HOTAIRM1 is pathologically specific, a total of 
12 PDAC samples and matched adjacent non-tumor samples 

Figure 3. The most highly enriched GO terms for the differentially expressed transcripts. (A-C) Most highly enriched GO terms for the upregulated transcripts. 
(A) Biological process (BP); (B) Cellular component (CC); (C) Molecular function (MF). (D-F) Most highly enriched GO terms for downregulated transcripts: 
(D) Biological process (BP); (E) Cellular component (CC); (F) Molecular function (MF).
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were subjected to qRT-PCR. The level of HOTAIRM1 expres-
sion was 2.92-8.53-fold higher in PDAC samples than the 
mean level in matched adjacent non-tumor samples (Fig. 6C). 
However, the sample size of this study is limited and we will 
further collect more samples and investigate the function of 
HOTAIRM1 in PDAC.

Discussion

In this study, we used a microarray to test the lncRNAs expres-
sion profiles in PDAC tissues. The lncRNA expression profiling 
data showed that there were lncRNAs that were differentially 
expressed between the PDAC tissues and matched adjacent 
non-tumor tissues. Previous studies showed that dysregula-
tion of lncRNAs expression such as HOTAIR (32,33), HULC 
(34-36) and GAS5 (37,38), is a potential molecular marker for 
diagnostic and therapeutic purposes in several human cancers. 
There are still lncRNAs as potential novel candidate molecular 
markers for clinical diagnosis and therapy of PDAC that need 
to be further identified.

Although special lncRNAs as molecular markers in other 
digestive tumors, such as hepatocellular carcinoma and gastric 
cancer (39,40) have been reported, there is no direct evidence 
shown that special lncRNAs are molecular markers for PDAC. 
Moreover, several lncRNAs have been reported to be signifi-
cantly correlated with PDAC outcome and are involved in cancer 
progression. HOTAIR is a negative prognostic factor for breast, 
colon and liver cancer patient survival, and increased HOTAIR 
expression in patients has been correlated with enhanced 
breast and colon cancer metastasis (41-45). Kyounghyun et al 
(46) showed that HOTAIR expression was increased mark-
edly in pancreatic tumors compared to non-tumor tissues, 
and was associated with more aggressive tumors. MALAT1 
(47,48), also known as nuclear-enriched abundant transcript 2 
(NEAT2), regulates gene expression and post-transcriptionally 
modifies primary transcripts and is found to be upregulated in 
a variety of human cancers of the breast, prostate, colon, liver, 
and uterus (49). Recently, MALAT1 mRNA level was found 
significantly higher in PADC tissues and some PC cell lines. 
A high expression of MALAT1 was detected in PDAC tumors 

Figure 4. Pathway analysis for the differentially expressed transcripts and schematic diagrams of two gene categories. (A) Pathways corresponding to the 
upregulated transcripts. (B) Pathways corresponding to downregulated transcripts. (C) Schematic diagram of the gene category ‘B cell receptor-signaling 
pathway .̓
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of larger size, advanced tumor stage and deeper invasion. In 
addition, the overexpression of MALAT1 was associated 
with poor prognosis of PDAC patients (50). The HOTTIP 
lncRNA, located at the 5'-end of the HOXA cluster, was 
significantly expressed in anatomically distal human fibro-
blasts (51). Recent study demonstrates that HOTTIP, which 
is significantly overexpressed in PDAC, plays a significant 
role in PDAC progression and gemcitabine chemoresistance 
(52). H19 was characterized as an oncogenic lncRNA in 
some tumors and upregulated remarkably in primary PDAC 
tumors that subsequently metastasized, compared to those 
with non-metastasis. H19 also promoted PDAC cell invasion 
and migration at least partially by increasing HMGA2-
mediated epithelial-mesenchymal transition (EMT) through 
antagonizing let-7 (53). The previous studies also reported 
several other lncRNAs related to PDAC, such as HULC, 
PVTI, MAP3K14, PPP3Cb, DAPKI and LOC285194 (54-57). 
In the present study, we also examined the expression of 
some most studied lncRNAs in PDAC, such as MALAT1, 
HOTTIP, H19, HULC, PVTI, MAP3K14, PPP3Cb, DAPKI 
and LOC285194 in the combination data set of 3 pairs of 

microarrays, showing that MALAT1 and HOTTIP were 
significantly upregulated 16.22- and 23.48-fold in PDAC 
tissues compared with paired non-tumor tissues respectively; 
however, other lncRNAs were not significantly differentially 
expressed between PDAC tissues and paired non-tumor 
tissues.

The microarray expression profiles revealed 21,558 
lncRNAs that were expressed in those samples; 2,331 lncRNAs 
were significantly upregulated and 1,641 lncRNAs were 
significantly downregulated in 3 PDAC samples compared 
with the paired non-tumor tissues. We then randomly selected 
14 lncRNAs for validation by qRT-PCR in other 12 PDAC 
samples and paired non-tumor tissues. Additionally, the 
results from the qRT-PCR analysis and the microarray data 
analysis were consistent. In these deregulated lncRNAs, we 
then analyzed the subgroup lncRNAs, including the antisense 
lncRNAs, the enhancer lncRNAs and the lincRNAs, and their 
related mRNA that may play an important role in the regula-
tion mechanism of PDAC progression. Antisense lncRNAs 
have been recognized to regulate expression of corresponding 
coding genes at post-transcriptional level (58), and therefore 

Figure 5. Schematic diagram of the gene category ‘Pertussis-Homo sapiens”.
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participate in carcinogenesis by regulation of oncogenes as 
well as anti-oncogenes. Enhancer RNAs are required for effi-
cient transcriptional enhancement of interacting target genes 
and also are required for p53-dependent enhancer activity and 

gene transcription (59-62). LincRNAs play pivotal roles in 
cancer-related gene regulatory system, and the disorder of 
their gene expression is thought to promote cancer cell prolif-
eration, invasion and metastasis (63-67). In the present study, 
our data showed that 69 antisense RNAs, 82 enhancer RNAs 
and 147 lincRNAs were upregulated in PDAC tissues, and 
50 antisense RNAs, 70 enhancer RNAs and 236 lincRNAs 
were downregulated in adjacent non-tumor tissues. In our 
additional study, we focused on the function and regulation 
mechanism of the interesting subgroup lncRNAs in PDAC 
progression.

We performed GO and pathway analyses to predict the 
biological functions and potential mechanisms of the differen-
tially expressed lncRNAs in PDAC progression. In this study, 
we found that the highest enriched GO terms for the upregu-
lated transcripts were purine nucleoside catabolic process, 
cytoplasm, and protein binding and the most highly enriched 
GO terms targeted by the downregulated transcripts were 
establishment of localization, cytoplasmic part, and protein 
binding. The GO project is a collaborative effort that addresses 
the need for consistent descriptions of gene products in terms 
of their ‘biology’ in a species-independent manner (68). To 
gain insight into the underlying biology of the differentially 
expressed transcripts, we performed pathway analysis and 
found that the upregulated transcripts were associated with 
41 pathways; the downregulated transcripts were associated 
with 25 pathways. Among these pathways, the gene category 
‘B cell receptor signaling pathway (human)’ is involved in the 
initiation and growth of human pancreatic ductal adenocarci-
noma (69). The gene category Wnt signaling pathway, has been 
reported to be involved in metastasis of pancreatic carcino-
genesis (25), and the gene category MAPK signaling pathway 
has been shown to participate in the progression of pancreatic 
cancer though multiple mechanisms (26-28,70). The gene cate-
gories FoxO signaling pathway have been reported to suppress 
or activate pancreatic cancer progression by different drugs 
or compound (29,30). The gene categories ‘Ubiquitin medi-
ated proteolysis’ participates in pancreatic cancer cell growth 
in vitro and in vivo (31). The result of pathway analysis using 
bioinformatics to find the specific regulation mechanisms in 
PDAC progression is important for our further studies.

Moreover, we found a significant increase of the expression 
level of HOTAIRM1 in PDAC samples comparing with the 
non-tumor tissues via microarray analysis. To examine whether 
the upregulated expression of HOTAIRM1 is pathologically 
specific, a total of 12 PDAC samples and paired non-tumor 
tissues were subjected to qRT-PCR. HOTAIRM1 expression 
level was higher in PDAC samples than the mean level in 
paired non-tumor tissues. HOTAIRM1 is a long intergenic 
non-coding RNA located at the 3'-end of the HOXA cluster, 
upregulated during myeloid maturation (71). HOTAIRM1 may 
affect cell fate by regulating cell cycle progression and serving 
as a link in the coordinated regulation of an extensive gene 
expression program. Although, the expression of HOTAIRM1 
was previously shown to be specific to the myeloid lineage 
of hematopoietic cells (72), a recent study reported that the 
HOTAIRM1 was overexpressed in the basal-like subtype of 
breast cancer (73). Together with our present study in PDAC 
tissues by microarray and qRT-PCR, the long intergenic non-
coding RNA HOTAIRM1 may participate in the development 

Figure 6. Comparison and distributions of lncRNAs expression levels between 
the microarray and qRT-PCR results. (A) Comparison of the expression 
levels of lncRNAs. Fifteen differentially expressed lncRNAs were validated 
by qRT-PCR. The Y-axis represents the log-transformed median fold changes 
(T/N) in expression across 15 samples (P<0.05). The qRT-PCR results were 
consistent with the microarray data. (B) Distributions of lncRNAs expression 
levels (P<0.05). Fifteen differentially expressed lncRNAs were validated by 
qRT-PCR in 12 PDAC and paired non-tumor tissue samples. (C) Relative 
expression levels of HOTAIRM1 evaluated by qRT-PCR in 15 PDAC and 
paired non-tumor tissue samples.
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and progression of several cancers. Thus, further studies are 
needed to clarify its role in the regulation effect of PDAC.

This study revealed differential expression patterns of 
lncRNAs in 3 PDAC patients, in which 2,331 upregulated 
and 1,641 downregulated lncRNAs were found in PDAC 
tissues relative to paired non-tumor tissues. In addition, the 
study helped us to understand the potential mechanisms of the 
carcinogenesis of PDAC preliminarily through ‘GOʼ analysis, 
signaling pathway analysis and lncRNA classification analysis. 
Furthermore, this study is the first on the long intergenic non-
coding RNA HOTAIRM1 in PDAC, which may be used as a 
molecular marker in the future to predict response to treatment 
as well as patient outcome of PDAC.
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