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Abstract. Global cancer burden increased to 14.1 million new 
cases in 2012; and breast cancer is the most common cancer in 
women worldwide, with nearly 1.7 million new cases diagnosed 
in 2012. Curcumin is the major bioactive ingredient extracted 
from the rhizome of the plant Curcuma  longa (turmeric). 
Paclitaxel is a microtubule-stabilizing agent originally isolated 
from the bark of Taxus brevifolia. Curcumin and paclitaxel 
were evaluated with two human breast cancer cell lines as 
the luminal MCF-7 and the basal-like MDA-MB-231 that are 
either positive or negative for hormonal receptors estrogen 
receptor, progesterone receptor and HER2, respectively. 
Results indicated that curcumin combined with paclitaxel 
decreased c-Ha-Ras, Rho-A, p53 and Bcl-xL gene expression 
in comparison to control and substances alone in MCF-7 cell 
line. These two substances alone and combined decreased 
gene expression of Bcl-2 and NF-κB. However, CCND1 
increased when both substances were combined in MCF-7 
cells. Such substances decreased Bcl-2 and increased Bax 
protein expression. However, curcumin alone decreased IκBα 
and Stat-3 gene expression. Paclitaxel alone and combined 
increased IκBα and Stat-3. Curcumin alone and combined with 
paclitaxel increased p53, Bid, caspase-3, caspase-8 and Bax 
gene expression in MDA-MB-231, whereas Bcl-xL decreased 
such expression in MDA-MB-231 cells. When paclitaxel and 
curcumin were combined the expression of Bcl-2 protein was 
decreased. However, either substance alone and combined 
increased Bax protein expression corroborating the apoptotic 
effect of these substances. It can be concluded that curcumin 
may be of considerable value in synergistic therapy of breast 
cancer reducing the associated toxicity with use of drugs.

Introduction

Global cancer burden was reported as 14.1 million new cases 
in 2012; breast cancer is the most common cancer in women 

worldwide, with nearly 1.7 million new cases were diagnosed 
in 2012. This represents ~12% of all new cancer cases and 25% 
of all cancers in women (1).

Curcumin is the major bioactive ingredient extracted from 
the rhizome of the plant Curcuma longa Linn (turmeric). 
Curcumin has chemopreventive properties against various 
malignancies, and extensive biological and pharmacological 
function, for example, anticancer, antioxidant, anti-inflamma-
tory, antibacterial, antispasmodic and anticoagulant, without 
any major side effects (2,3). As a pharmacologically safe agent, 
curcumin could be used alone to prevent cancer and in combi-
nation with chemotherapy to treat cancer. Different molecular 
targets are modulated by curcumin. It induces apoptosis by 
means of the inhibition of NF-κB activity through downregu-
lation of upstream kinases, IKK-β and IKK-α (4).

Paclitaxel is a microtubule-stabilizing agent originally 
isolated from the bark of Taxus brevifolia. It is a potent agent 
which inhibits neoplastic growth in several malignancies 
including ovarian, breast, non-small cell lung cancer, head 
and neck cancers (5-7). As with the majority of anticancer 
agents, paclitaxel causes cancer cell death with signs of 
apoptosis and also it is supposedly associated with mitotic 
catastrophe (8,9).

c-Ha-ras is an oncoprotein corresponding to a GTP-binding 
protein (10). DNA transfection studies have suggested that an 
activated c-Ha-ras oncogene can convert human breast cancer 
cells to a more aggressive, estrogen-independent phenotype 
(11). Ras homolog gene family member A (Rho-A) is a small 
(~22 kDa) G protein/guanosine triphosphatase that is part of 
the Ras-related C3 botulinum toxin substrate (Rac) subfamily 
of the Rho family (12). Rho-A can reorganize the cell cyto-
skeleton and regulate cell migration by activating effector 
proteins such as Rho-associated coiled-coil kinase (ROCK) 
(13); such changes are associated with tumor invasion and 
migration in several types of carcinoma cells (14,15). p53, 
the tumor suppressor protein plays a key role with respect to 
apoptosis but also senescence, growth arrest and DNA repair 
(16,17).

Apoptosis is a process of programmed cell death that 
occurs in response to environmental stimuli and appropriated 
strategy for prevention and treatment of cancer (18). Gene 
and protein expression of Bax in breast cancer cells increase 
sensitivity to apoptotic stimuli and decrease tumor growth. 
Apoptosis is a phenomenon usually linked to the presence of 
functional p53 (19). Bcl-2 protein family plays an important 
role in the survival or death of a cell and it is a target of many 
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antitumor drugs (20,21). The Bcl-2 protein family, of which 
Bax is a member, plays a critical role in determining either cell 
death or survival (22,23). Bax is a pro-apoptotic protein that 
acts as an enhancer of apoptosis while Bcl-2 has anti-apoptotic 
properties as Bcl-xL that inhibits apoptosis and stimulates the 
progress of breast cancer (20,24). In particular, the balance 
between Bax (pro-apoptotic) and Bcl-2 (anti-apoptotic) 
protein levels is important for the regulation of apoptosis (25). 
Overexpression of Bax leads to apoptosis in the absence of 
any stimulus, suggesting that tight regulation of Bax, from 
transcription to post-translation, is necessary for cell survival 
(26). Anti-apoptotic Bcl-2 family members are overexpressed 
in a variety of cancers through genetic alterations, such as 
chromosomal translocation (Bcl-2) or amplification (Bcl-xL 
and Mcl-1) (27-29).

The nuclear factor κ-light-chain-enhancer of activated 
B cells (NF-κB) is a pro-inflammatory and pro-survival tran-
scription factor and it is known to be highly involved in the 
initiation and progression of breast cancer (30). NF-κB dereg-
ulation of activity alters the expression of cell death-regulating 
genes, leading to the upregulation of anti-apoptotic and 
pro-survival genes, such as members of the Bcl-2 family (31). 
Protein inhibitors of κB (IκB) suppress activation of NF-κB 
including IκBα, IκBβ, IκBε and IκBζ (32-40). The aim of this 
study is to demonstrate the effect of curcumin and paclitaxel 
on gene and protein expression related to apoptosis in human 
breast cancer cell lines to provide new therapeutic potential of 
curcumin combined with paclitaxel on human breast cancer 
and to establish whether paclitaxel acquired chemoresistance 
in breast cancer cells.

Materials and methods

Cell culture conditions. Human breast carcinoma cell lines 
MDA-MB-231 (ATCC® HTB26™) and MCF-7 (ATCC® 
HTB22™) were maintained in a culture medium at 37˚C in a 
humidified atmosphere of 5% CO2 in air. The culture medium 
consisted of basic medium supplemented with 10%  fetal 
bovine serum (Life Technologies, Grand Island, NY, USA). 
The basic medium was RPMI-1640 for MDA-MB‑231 and 
minimum essential media (Life Technologies) for MCF-7 with 
10 µg/ml of human insulin (Sigma-Aldrich, St. Louis, MO, 
USA), both supplemented with 1% penicillin-streptomycin 
(Life Technologies). Curcumin and paclitaxel were obtained 
from Sigma-Aldrich. Both substances were dissolved in 
dimethylsulfoxide (0.1%). Cells were seeded after 24  h 
prior to treatment with curcumin (15 and 30 µM), paclitaxel 
(10-240 nM) and combination of these two drugs. All the 
treatments were performed at 37˚C. Cells were harvested and 
seeded at 4x104 cells/ml of culture medium into 24-well plates 
(Corning Costar, Corning, NY, USA). After a 24-h pre-incu-
bation period allowing cells to attach, the culture medium was 
replaced by either culture medium without drugs or medium 
with one of tested treatments of curcumin and/or paclitaxel at 
desired concentrations for 48 h and it was replaced by culture 
medium without drugs for 96 h. Cells were stained with trypan 
blue (Sigma-Aldrich) with a 1:9 ratio of trypan blue for cell 
suspension. Cells were counted in TC20™ Automated Cell 
Counter (Bio-Rad Laboratories, Hercules, CA, USA). Dark 
blue cells were evaluated as dead cells.

Doubling time (DT). Cell growth was observed and counted at 
0, 24, 48 and 96 h to determine doubling time (h). Upon treat-
ment, both control and treated cells were replated as described 
above. Their growth was measured by determining the total 
number of doublings by applying the formula: Total doublings: 
Td = ln2/µ where µ = ln (N1/N0) / (t1-t0) where N1 and N0 are the 
number of cells at times t1 and t0. N1 is the total number of cells 
counted at confluence and N0 is the initial plating density. Total 
doublings were evaluated over multiple passages. The number 
of doublings was determined by dividing the total number of 
doublings by the number of days which each particular sample 
was followed. Based upon these values, the time required for 
the total cell number to double from any reference point, or 
doubling time, was calculated (41).

Reverse transcription quantitative polymerase chain reaction 
(RT‑qPCR). Total RNA was extracted with Trizol (Invitrogen, 
Carlsbad, CA, USA), and the concentration and purity of RNA 
were determined using a UV spectrophotometer (Thermo 
Scientific, Rochester, NY, USA). Total RNA was reverse 
transcribed into cDNA using high capacity cDNA Reverse 
Transcription kit (Applied Biosystems, Carlsbad, CA, USA) 
and 10 U of RNase inhibitor (Applied Biosystems) according 
to the manufacturer's protocol. A CFX 96 Touch Real-Time 
PCR Detection systems (Bio-Rad Laboratories) was used with 
an aliquot of cDNA (2 µl) in 20 µl qPCR reaction containing 
SYBR Green PCR Master Mix (Agilent, La Jolla, CA, USA) 
for measurement of target genes such as c-Ha-ras, Rho-A, p53, 
Bax, Bcl-xL, CCND1, NF-ĸB, IκBα, Stat-3, Bid, caspase-3 
and caspase-8; and β-actin as reference to obtain the relative 
fold change for target genes using the comparative Ct method 
and using Bio-Rad CFX Manager 2.1 software. Table I shows 
the primers for the genes selected to develop cDNA probes. 
Relative expression was normalized to the average of controls.

Western blot analysis. Cells were lysed with 1 ml lysis buffer 
(pH 7.2) [Tris Base (50 mM), NaCl (100 mM), EDTA (1 mM), 
Ortovanadate (1 mM), PMSF (1 mM), Triton X-100 (0.1%) 
and centrifuged (13,200  rpm x 15 min)]. The supernatant 
with cellular proteins was dissolved in SDS-PAGE sample 
solution (60 mM) Tris, pH 6.5, 10% (w/v) glycerol, 5% (w/v) 
β-mercaptoethanol, 20% (w/v) SDS, and 0.025% (w/v) bromo-
phenol blue and denatured by boiling (2x5 min), and vortex 
mixing (2x30 seg). The total amount of protein was 30 µg in each 
lane with standard protein markers (Bio-Rad Laboratories). 
After fractionation by SDS-PAGE on gels (7x14 cm), proteins 
were electro-blotted onto PVDF membrane (Amersham, 
Biosciences, Amersham, UK) using a blotting apparatus 
(Bio-Rad Laboratories). Prestained SDS-PAGE (Standards) 
blots were blocked for 2 h in 10% defatted dry milk-TBS-0.1% 
Tween and then incubated for 2 h at room temperature with 
corresponding primary antibodies [1:200, Bcl-2 (sc-7382), Bax 
(sc-7480), and β-actin (Sigma A-5316) followed by incubation 
with secondary peroxidase-conjugated mouse IgG (1:5,000) 
(Cell Signaling, CA, USA) in 5% defatted dry milk-TBS-0.1% 
Tween]. All steps were performed at room temperature, and 
blots were rinsed between incubation steps with TBS-0.1% 
Tween. Cell blots were probed with mouse anti-β-actin 
antibody as control. Immunoreactive bands were visualized 
by using the ECLTM Western Blotting Detection Reagent 
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detection method (Amersham, Dübendorf, Switzerland) and 
exposure of the membrane to X-ray film (Kodak, Rochester, 
NY, USA). Protein determination was performed using the 
Bicinchoninic Acid Method (Bio-Rad Laboratories) and BSA 
as the standards. Experiments were performed in triplicates.

Statistical analysis. Data were expressed as the average ± 
standard error of the mean (SEM). Comparisons of multiple 
groups were performed between treated groups and controls 
carried out by ANOVA and Dunnet's test with GraphPad 
Prism 5 software. A P<0.05 was considered to be significant. 
Assays were performed at least three times independently.

Results

Effect of curcumin and paclitaxel on DT of tumor cell lines. 
The DT of curcumin and paclitaxel was evaluated with two 
cell lines that are either positive or negative for hormonal 

receptors (ER+ PR+ and HER2+) as the luminal MCF-7 and 
the basal-like MDA-MB-231, respectively. Fig. 1 indicates that 
curcumin at 15 µM and paclitaxel at 120 nM had significantly 
(P<0.05) longer DT than control and substances alone with 
other combinations in MCF-7 cell line. On the other hand, 
these results showed that MDA-MB-231 cell line had signifi-
cantly (P<0.05) longer DT with curcumin at 15 µM combined 
with paclitaxel at 10, 20 and 240 nM as well as curcumin at 
30 µM with paclitaxel at 10 nM than control and curcumin 
at 15 µM alone. Therefore, these combinations were used for 
determining several important gene targets in malignancy and 
apoptosis. All the doses used significantly decreased the rate 
of growth of cells above its controls as indicated by the DT 
after several passages.

Effect of curcumin and paclitaxel on gene expression in MCF-7 
breast cancer cells. Gene expression analyzed by RT-qPCR 
indicated that curcumin combined (15 µM) with paclitaxel 

Table I. Selected primers for target genes to develop cDNA probes.

Gene name	 Product length (bp)a	 Primer sequenceb

c-Ha-ras	 112	 F: CACCAGTACAGGGAGCAGAT
		  R: GAGCCTGCCGAGATTCCACA
Rho-A	 140	 F: CCATCATCCTGGTTGGGAAT
		  R: CATGTACCCAAAAGCGCCA
p53	 128	 F: CCTCAGCATCTTATCCGAGTGG
		  R: TGGATGGTGGTACAGTCAGAGC
Bax	 143	 F: GCGAGTGTCTCAAGCGCATC
		  R: CCAGTTGAAGTTGCCGTCAGAA
Bcl-xL	 211	 F: CTGAATCGGAGATGGAGACC
		  R: TGGGATGTCAGGTCACTGAA
CCND1	 60	 F: GTGGCCTCTAAGATGAAGGA
		  R: GGTGTAGATGCACAGCTTCT
NF-κB	 114	 F: ATCTGCCGAGTGAACCGAAACT
		  R: CCAGCCTGGTCCCGTGAAA
IκBα	 135	 F: CTCCGAGACTTTCGAGGAAATAC
		  R: GCCATTGTAGTTGGTAGCCTTCA
Stat-3	 163	 F: GGTTGGACATGATGCACACTAT
		  R: AGGGCAGACTCAAGTTTATCAG
Bid	 199	 F: GCTTCCAGTGTAGACGGAGC
		  R: GTGCAGATTCATGTGTGGATG
Caspase-3	 192	 F: CAGAACTGGACTGTGGCATTG
		  R: GCTTGTCGGCATACTGTTTCA
Caspase-8	 128	 F: CATCCAGTCACTTTGCCAGA
		  R: GCATCTGTTTCCCCATGTTT
β-actin	 569	 F: ACTACCTCATGAAGATCCTC
		  R:TAGAAGCATTTGCGGTGGACGATGG

aLength of cDNA product amplified by gene-specific RT-qPCR analysis. bPCR primer sequences used to generate a product of the indicated 
size, listed in 5'-3' orientation. F, forward; R, reverse.
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Figure 2. Effect of curcumin (15 µM) and paclitaxel (120 nM) on gene expression analyzed by RT-qPCR on (A) c-Ha-Ras, (B) Rho-A, (C) p53, (D) Bax and 
(E) Bcl-xL gene expression in MCF-7 cell line. Bars represent the mean ± SEM of three independent experiments (*P<0.05).

Figure 1. Doubling time of (A) MCF-7 and (B) MDA-MB-231 cell lines exposed to different doses of curcumin (0, 15 and 30 µM) and paclitaxel (0, 10, 20, 120 
and 240 nM). Bars represent the mean ± SEM of three independent experiments.
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Figure 3. Effect of curcumin (15 µM) and paclitaxel (120 nM) on gene expression analyzed by RT-qPCR on (A) CCND1, (B) NF-κB, (C) IκBα, (D) Stat-3 gene 
expression in MCF-7 cell line. Bars represent the mean ± SEM of three independent experiments (*P<0.05 versus control cells).

Figure 4. Western blot analysis of (A) Bcl-2 and (C) Bax protein expression in MCF-7 cell line treated with paclitaxel (120 nM) and curcumin (30 µM). β-actin 
was used as control for loading. Western blotting results were quantified with Adobe Photoshop program and were expressed as average density to β-actin. 
(B and D) Bars represent the mean ± SEM of three independent experiments (*P<0.05).
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Figure 5. Effect of curcumin (30 µM) and paclitaxel (10 nM) on gene expression analyzed by RT-qPCR on (A) p53, (B) Bid, (C) caspase-3, (D) caspase-8, 
(E) Bax and (F) Bcl-xL gene expression in MDA-MB-231 cell line. Bars represent the mean ± SEM of three independent experiments (*P<0.05).

Figure 6. Western blot analysis of (A) Bcl-2 and (C) Bax protein expression in MDA-MB-231 cell line treated with paclitaxel (10 nM) and curcumin (30 µM). 
β-actin was used as control for loading. Western blotting results were quantified with Adobe Photoshop program and were expressed as average density to 
β-actin. (B and D) Bars represent the mean ± SEM of three independent experiments (*P<0.05).
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(120 nM) significantly (P<0.05) decreased c-Ha‑Ras, Rho-A, 
p53 and Bcl-xL gene expression in comparison to control and 
substances alone in MCF-7 cells as seen in Fig. 2A-D. Gene 
expression indicated that curcumin (15 µM) and paclitaxel 
(120 nM) alone significantly (P<0.05) increased Bax expres-
sion in comparison to control and substances alone in MCF-7 
as seen in Fig. 2D.

Curcumin and paclitaxel alone and both combined 
significantly (P<0.05) decreased CCND1 (Fig. 3A) and NF-κB 
(Fig. 3B), whereas curcumin alone decreased IκBα and Stat-3 
gene expression (Fig. 3C) and paclitaxel alone and combined 
increased them (Fig. 3D) in MCF-7 cells in comparison to 
control.

Effect of curcumin and paclitaxel on protein expression by 
western blot analysis in MCF-7 breast cancer cell line. 
Results indicated that either paclitaxel at 120 nM or curcumin 
at 30 µM alone and combined (Fig. 4A and B) significantly 
decreased Bcl-2 and increased Bax protein expression (Fig. 4C 
and D) in MCF-7, in comparison to control corroborating the 
apoptotic effect of these substances. Normalized fold protein 
expression is presented in graphs of Fig. 4B and D.

Effect of curcumin and paclitaxel on gene expression in 
MDA-MB-231 breast cancer cell line. Gene expression 
analyzed by RT-qPCR in MDA-MB-231 cells is shown in 
Fig. 5 where results indicate that curcumin at 30 µM alone 
and combined with paclitaxel at 10 nM significantly (P<0.05) 
increased p53 (Fig. 5A), Bid (Fig. 5B), caspase-3 (Fig. 5C), 
caspase-8 (Fig.  5D) and Bax (Fig.  5E) gene expression, 
whereas Bcl-xL decreased such expression (Fig.  5F) in 
comparison to control.

Effect of curcumin and paclitaxel on protein expression by 
western blot analysis in MDA-MB-231 breast cancer cell 
line. Results indicated that paclitaxel at 10 nM and curcumin 
at 30 µM combined significantly (P<0.05) decreased Bcl-2 
protein expression in comparison to control and either 
substance alone. However, either substance alone and 
combined increased Bax protein expression in MDA-MB-231 
corroborating the apoptotic effect of these substances (Fig.  
6A and C). Normalized fold protein expression is presented in 
graphs of Fig. 6B and D.

Discussion

Chemotherapy in breast cancer fails due to resistance to drugs. 
Chemotherapeutic strategies are now making use of combined 
active compounds where they are believed to be more active 
as compared to the single agent itself. Therefore, the efficacy 
of treatment would increase and the possibility of toxic effect 
might be lowered due to the extremely low usage of drug (42). 
A phytochemical such as curcumin can be used in a thera-
peutic modality as it elicits antitumor effects. Curcumin is a 
natural compound derived from turmeric (Curcuma longa) 
and exhibits an antitumorigenic effect on various cancers. 
Curcumin and paclitaxel effect was evaluated with the luminal 
MCF-7 and the basal-like MDA-MB-231 cells, respectively, 
these cell lines are positive and negative for hormonal recep-
tors (ER+ PR+ and HER2+), respectively.

MCF-7 cells had longer DT when paclitaxel was combined 
with curcumin at low doses than control, indicating that a 
therapeutic modality like this would benefit the response 
of patients to treatment. Similar results were observed with 
MDA-MB-231 cells with low and high doses of paclitaxel in 
combination with low and high doses of curcumin. All the 
doses used significantly decreased the rate of growth of cells 
above its controls as indicated after several passages. Since 
growth inhibitory effect from combining paclitaxel with 
curcumin was more effective than either agent alone it seems 
that curcumin potentiates the apoptotic effects of paclitaxel in 
MCF-7 and MDA-MB-231 cell lines.

Curcumin combined with paclitaxel decreased c-Ha-Ras, 
Rho-A and p53 gene expression in comparison to control and 
substances alone in MCF-7 cell line. This is the first report that 
demonstrated that an antioxidant as curcumin and a chemo-
therapeutic drug reduces c-Ha-Ras, Rho-A and p53 gene 
expression. Gene expression levels supported the idea that 
paclitaxel induces changes in important signaling pathways.

Studies have indicated that curcumin is a pharmacologi-
cally safe compound, it has a therapeutic potential in preventing 
breast cancer metastasis possibly through suppression of 
NF-κB (43). Since curcumin suppresses NF-κB activation 
and most chemotherapeutic agents activate genes that medi-
ates cell survival, proliferation, invasion, and metastasis (43), 
we analyzed whether curcumin would potentiate the effect 
of chemotherapy in breast cancer cell lines. Thus, curcumin 
decreased expression of NF-κB supporting the conclusion of 
other reports (44) that the mechanism of growth inhibition 
induced by combined effect of paclitaxel and curcumin is 
through NF-κB inhibition. It was demonstrated that curcumin 
suppressed the paclitaxel-induced NF-κB pathway in breast 
cancer cells by inhibiting lung metastasis of human breast 
cancer in nude mice (43).

Curcumin combined with paclitaxel decreased Bcl-xL gene 
expression in comparison to control and either substance alone 
in MCF-7 cell line. Other authors reported on the capability 
of inducing apoptosis in MCF-7 by several drugs (45). On the 
other hand, either substance alone increased Bax expression 
in comparison to control and either substance alone in MCF-7 
cells. Curcumin, paclitaxel and combination of both decreased 
CCND1, whereas either substance alone decreased IκBα and 
Stat-3 gene expression in MCF-7 cells in comparison to control. 
Results indicated that either substance alone as curcumin and 
paclitaxel as well as combined decreased Bcl-2 and increased 
Bax protein expression in comparison to control in MCF-7 
cells, corroborating the apoptotic effect of these substances. It 
has also been suggested that inhibition of activity of proteins 
may improve the efficacy of chemotherapeutic agents (44).

It has been shown that curcumin induced apoptosis in breast 
cancer cells and delayed the outgrowth of mammary tumors in 
neu transgenic mice (46). The combination of docosahexaenoic 
acid and curcumin inhibited 7,12-dimethylbenz(a)anthracene 
(DMBA)-induced mammary tumorigenesis in mice (47). In 
addition, curcumin can reverse multidrug resistance in human 
colon carcinomas and lung cancer cells in vitro and in vivo 
(48,49). Authors have shown that curcumin can inhibit epithe-
lial mesenchymal transition by affecting transcription factors 
as E-cadherin and Vimentin genes and invasive capabilities in 
breast cancer cell lines (50,51).
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When MDA-MB-231 cell line was analyzed it was found 
that curcumin alone and combined with paclitaxel increased 
p53, Bid, caspase-3, caspase-8 and Bax gene expression, 
whereas Bcl-xL decreased such expression in comparison 
to control. Results indicated that paclitaxel and curcumin 
combined decreased Bcl-2 protein expression in comparison 
to control and either substance alone. However, either 
substance alone and combined increased Bax protein expres-
sion in MDA-MB-231 corroborating the apoptotic effect of 
these substances. Curcumin decreased expression of apoptotic 
genes such as caspase-3, caspase-8, and other genes such as 
cyclin D1.

We demonstrated that curcumin increased the sensitivity 
of MCF-7 and MDA-MB-231 cells to chemotherapeutic drugs 
as paclitaxel. It has been proposed that combined effect of 
natural products may improve the effectiveness of treatment in 
the process of proliferation of cancer cells (42).

Several studies have aimed to delineate the complex 
molecular background of breast cancer, which has advanced 
personalized treatment approaches and enabled the develop-
ment of several agents that target specific molecular aberrations 
associated with breast cancer. Nevertheless, tumor heteroge-
neity poses obvious impediments to the successful clinical 
development of targeted agents. The combined anticancer 
activities of a compound of natural origin such as curcumin 
has been examined in combination with a chemotherapy 
drug such as paclitaxel and it was observed that paclitaxel-
curcumin compound exhibited synergistic growth inhibition 
and induced significant apoptosis in MCF-7 and MDA-MB-
231 cell lines. In conclusion, curcumin may be of considerable 
value in synergistic therapy of cancer since it may reduce the 
associated toxicity and it has a therapeutic potential with a 
drug such as paclitaxel in breast cancer.
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