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Abstract. The catalytic subunit of telomerase, human telom-
erase reverse transcriptase (hTERT), plays an essential role in 
telomere maintenance to oppose cellular senescence and, is 
highly regulated in normal and cancerous cells. Regulation of 
hTERT occurs through multiple avenues, including a unique 
pattern of CpG promoter methylation and alternative splicing. 
Promoter methylation affects the binding of transcription 
factors, resulting in changes in expression of the gene. In 
addition to expression level changes, changes in promoter 
binding can affect alternative splicing in a cotranscriptional 
manner. The alternative splicing of hTERT results in either 
the full length transcript which can form the active telomerase 
complex with hTR, or numerous inactive isoforms. Both 
regulation strategies are exploited in cancer to activate telom-
erase, however, the exact mechanism is unknown. Therefore, 
unraveling the link between promoter methylation status and 
alternative splicing for hTERT could expose yet another level 
of hTERT regulation. In an attempt to provide insight into 
the cellular control of active telomerase in cancer, this review 
will discuss our current perspective on CpG methylation of 
the hTERT promoter region, summarize the different forms 
of alternatively spliced variants, and examine examples of 
transcription factor binding that affects splicing.
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1. Telomeres and telomerase

Each round of DNA replication results in the shortening of 
DNA strands due to the inability of the replication complex to 
completely replicate the lagging strand. This process in turn 
eventually results in genomic instability and loss of genetic 
information after multiple rounds of replication. To solve this 
end-replication problem, chromosome ends are capped by telo-
meres, which consist of six nucleotide repeats and specialized 
binding proteins that buffer replication losses (1). The repeats 
can be regenerated by the telomerase enzyme complex, which 
consists of a non-coding RNA, hTR, serving as the hexamer 
repeat template, and the catalytic subunit, reverse transcriptase 
(hTERT). By counteracting the telomere shortening incurred 
by the DNA replication process, the telomerase complex 
lengthens telomeres, thereby prolonging cell survival and 
allowing continued proliferation (2).

2. Telomerase regulation

Telomerase activity is low to absent in somatic cells, though 
highly expressed in embryonic and stem cells. Telomerase is 
also upregulated in cancer, as over 90% of human malignan-
cies show telomerase expression, considered an early event 
in cancer progression (3,4). In cancer, the main mechanism 
of telomerase activation is through regulation of hTERT 
transcription, through genetic changes such as mutations 
altering transcription factor binding, by epigenetic changes 
such as histone modification and chromatin remodeling or 
promoter methylation, and by alternative splicing of the tran-
script (2,5‑7). As explored below, a connection between the 
promoter methylation and the alternative splicing is emerging 
in the field as a means by which cancer cells turn on hTERT 
expression, resulting both in active telomerase and telomere 
elongation.
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3. Gene regulation by methylation

In higher eukaryotes, DNA methylation at CpG sites in and 
around gene promoter regions controls and regulates gene 
expression. CpG methylation is directed by DNA methyl-
transferases (DNMTs) which methylate the fifth carbon of the 
pyrimidine ring of cytosine (8). The principal methyltrans-
ferase, DNMT1, adds methyl groups during DNA replication 
and de novo methylates DNA in cancer (9). Many CpG sites are 
clustered into CpG islands that are typically 1,000 base pairs 
long and have high GC content. Approximately 80% of CpG 
sites are methylated in mammals, largely in intergenic regions 
known as heterochromatin, while most sites in promoters 
and first exons remain unmethylated (10,11). The promoter 
and transcription start site (TSS) tends to be unmethylated in 
actively transcribed genes, since methylated DNA is associated 
with gene silencing through both interference of transcription 
factor binding and, by affecting chromatin architecture (12). 
Importantly, aberrant DNA methylation is a hallmark of cancer 
cells, and tends to occur early in cancer development (13). In 
cancer, characteristic changes in methylation patterns involve 
both genome-wide CpG hypomethylation, which occurs 
predominantly in intergenic regions, and hypermethylation of 
CpG islands at promoters. Promoter hypermethylation may 
result in silencing of tumor suppressors, and promoter hypo-
methylation can result in activation of proto-oncogenes (14). 
Intergenic hypomethylation may also lead to expression of 
dormant non-coding RNA species and otherwise suppressed 
genetic elements transcribed from normally silent regions of 
the genome (15-17).

4. hTERT promoter methylation in cancer

The hTERT promoter is located in a 4 kb CpG island -1800 to 
+2200 (relative to TSS), and has a GC content of 70% (18). The 
precise pattern of promoter methylation that results in activa-
tion of hTERT in cancer is still under investigation. However, 

a methylation pattern does emerge from many studies of the 
promoter, including extensive bisulfite sequencing of telom-
erase positive cancer cell lines. The promoter region of the 
actively transcribed hTERT is demethylated at the TSS [-200 
to +100], while the promoter region further upstream of the 
TSS [-650 to -200] is hypermethylated (19). Studies examining 
specific sections of the hTERT promoter corroborate this in 
a myriad of cancer cell lines as well as hematological malig-
nancies and solid tumor types, as depicted in Fig. 1 (5,19-26). 
Its methylation status is also considered a biomarker; in pedi-
atric brain tumors, one methylated CpG site in the promoter 
(cg11625005) is used as a reliable marker for tumor progres-
sion and prognosis (5).

5. Transcription factor regulation by methylation of 
hTERT promoter

It is known that the hTERT methylation pattern plays a major 
role in transcription factor binding, which in turn alters the 
expression of hTERT. This is demonstrated by experimental 
evidence pointing to a ‘minimal promoter’ corresponding to 
transcription factor binding sites, e.g. c-Myc for hTERT at 
-258 to -78, that must be unmethylated in order for hTERT 
expression to occur (27). Methylation also plays a significant 
role further upstream in the hTERT promoter where many 
repressor binding sites are located. These sites are hypermeth-
ylated in cancer to prevent binding of repressors such as the 
Wilms' tumor protein (WT1) and the transcriptional repressor 
CCCTC-binding factor (CTCF) that binds to CpG rich regions 
at the TSS (21,25,27-29). Perturbing the methylation status of 
the promoter with 5aza-2'-deoxycytidine (DAC), which glob-
ally reduces DNA methylation by DNMT inhibition, results in 
reduced levels of hTERT transcription, which may be due to 
demethylation of the repressor binding sites (30).

c-Myc. Hypomethylation at the minimal promoter of hTERT 
allows c-Myc, a key positive regulator of hTERT expression, 

Figure 1. hTERT promoter exhibits a distinct methylation pattern in cancer cells positive for telomerase activity. hTERT promoter is -1876 to +335 relative to 
the transcription start site (TSS), with section -600 to +200 depicted above. Transcription factors (WT1, c-Myc, HIF-1, CTCF) and their relative binding sites 
at the promoter are shown. The methylation status of the hTERT promoter in several cell lines (CL) and/or patient blood or tumor samples (PS) are shown, 
with black boxes indicating methylated CpG sites, and white boxes indicating unmethylated CpG sites. In glioblastoma the CpG site at -555 is methylated.
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to bind 242 bases upstream of the TSS at the E-box. Studies 
have shown that c-Myc binding is methylation-sensitive and 
that binding is greatly reduced or absent when the site is 
methylated (31). This control of hTERT expression by E-box 
methylation is also seen in human embryonic teratocarcinoma 
cells. The undifferentiated embryonic cells have higher expres-
sion of hTERT and telomerase activity with hypomethylation 
of the minimal promoter. Conversely, during the process of 
differentiation of these cells there is a significant increase in 
methylation at the E-box, resulting in inactivation of hTERT 
expression. This mode of repression of hTERT can be reversed 
by treatment of late differentiating cells with DAC, high-
lighting the importance of c-Myc binding and regulation by 
methylation (27).

WT1. In contrast to the minimal promoter being hypometh-
ylated to allow c-Myc binding, the promoter region further 
upstream, corresponding to the binding sites of multiple 
repressors, is hypermethylated in cancer. For example, the 
repressor WT1, with its binding site from -358 to -349, is known 
to suppress hTERT transcription (27). This is supported by a 
study in clear cell renal cell carcinoma, in which WT1 is over-
expressed, and direct binding of WT1 to the promoter results 
in repression of hTERT (32). WT1 binding is also known to 
be methylation sensitive, with binding interference assays 
showing reduced binding when one or more methylated bases 
are present in the binding sequence (33). The WT1 binding 
site of hTERT exhibits increased CpG methylation in cancer, 
resulting in blocking the repressive effects of the factor for 
hTERT expression (20,34).

CTCF. Similar to WT1, as a repressor of hTERT, CTCF binds 
adjacent to the transcription start site, near the beginning of 
exon one (+4 to +39), and near the beginning of exon two 
(+422 to +440). Studies have shown that CTCF binding at the 
first site represses hTERT transcription and that this binding 
is blocked in cancer (35). Blocking is established by methyla-
tion as CTCF's binding affinity is inversely correlated with the 
degree of methylation; CTCF is unable to bind fully methyl-
ated DNA. Cancer cells have aberrant methylation in the first 
CTCF binding site, typified by HPV-transformed cervical 
cancer cells showing increased methylation and activated 
hTERT expression (23). Conversely, in colon cancer cell lines, 
downregulating DNTM1, and the resultant demethylation of 
the CTCF binding site, causes increased CTCF binding and 
repression of hTERT (36,37). Furthermore, in breast cancer 
cells, hTERT transcript levels increase with a concomitant 
decrease in cellular apoptosis when CTCF is downregulated 
by siRNA (38).

6. Role of transcription factor binding on splicing

While it is known that transcription factors binding to the 
promoter regulate gene expression, it is becoming evident that 
such binding also affects splicing. Proteins with a cis regulatory 
role in both transcription and splicing have been demonstrated 
in multiple genes. The regulation is believed to act through 
the kinetic coupling model, where the rate of transcription 
elongation affects alternative splicing (39,40). Experiments 
assessing alternative splicing in a promoter swapping system 

have established promoter specificity in controlling alterna-
tive splicing (41). This splicing role is consistent with splicing 
occurring co-transcriptionally as splicing factor assembly 
arises during transcription. As detailed below, manipulation 
of splicing through transcription factors can be accomplished 
either by the factor directly influencing the spliceosome or, by 
recruitment of additional factors (42,43).

Direct splicing role of WT1 with U2AF and RBM4. WT1, a 
negative regulator of hTERT, promotes splicing of multiple 
transcripts by both interacting directly with several splicing 
factors and through incorporation into spliceosomes. In the 
nucleus, the regulator co-localizes with the splicing machinery, 
specifically with U2AF and RBM4. The U2AF heterodimer is 
essential for binding upstream of the splice site and helps the 
U2 snRNA anneal at the branch point. Interaction with WT1 
affects U2AF binding and therefore splice site selection (44). 
Also in splice site selection, RBM4 influences alternative 
splicing during selection of the 5' exon splice site, and interacts 
with WT1 in nuclear speckles, thought to be compartments 
for spliceosome assembly (45). Recruitment of these splicing 
factors by WT1 highlights the link between the transcription 
factor binding and spliceosome assembly.

Indirect splicing role of WT1 with SRPK1. While WT1 interacts 
with the splicing machinery as discussed above, it also plays an 
indirect role in splicing by transcriptionally repressing SRPK1, 
a splicing factor kinase. As shown in acute myeloid leukemia, 
where it is often overexpressed, WT1 causes alternative exon 
usage events commonly seen in the disease (46). Conversely, 
when WT1 is knocked down in hematopoietic progenitor cells, 
vascular endothelial growth factor (VEGF) exhibits an atyp-
ical splicing pattern (47). In studying the relationship between 
WT1 and VEGF, an important growth factor in cancer, loss of 
WT1 results in increased abundance of isoform VEGF-a120, 
while transfection of WT1 results in exon inclusion and loss of 
the 120 isoform. This demonstrates that WT1 is essential for 
controlling the splicing of VEGF-a (48). Studies of the VEGF-b 
isoform have also shown alteration of splicing patterns with 
WT1 manipulation. Transfection of various cell lines with 
WT1 results in an increase of VEGF165b. Furthermore, inclu-
sion of the WT1 KTS sequence, which plays a role in RNA 
binding, shows no effect on splicing, while a single nucleotide 
change that alters DNA binding of WT1 changes the splicing 
of VEGF. Thus, splicing correlates with the ability of the tran-
scription factor WT1 to stably bind DNA, rather than WT1 
acting post-transcriptionally (49).

Splicing role of HIF-1 and hypoxia on hTERT. Hypoxia is 
known to enhance hTERT expression through activation of 
the hTERT promoter in stem cells as well as in cancer (50,51). 
In hypoxic tumor conditions, HIF-1 is overexpressed and 
activates the hTERT promoter by binding at two sites between 
-165 and +51. If the HIF-1 binding sites are mutated, hTERT 
promoter activity decreases even in normoxic conditions and 
under hypoxic conditions, the HIF-1 induced overexpression of 
hTERT is lost. It has been shown that in hypoxia, cell survival 
is increased through maintenance of an undifferentiated state, 
and this correlates with increased hTERT expression and 
telomerase activity compared to normoxic conditions (51,52). 
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Furthermore, the splicing pattern of hTERT is quite variable 
at differing levels of oxygenation. Overall, the hTERT splicing 
pattern is altered in hypoxia, with an increased expression of 
the full length active form, while the β deletion and α/β double 
deletion splice variants remain unchanged. Additionally, 
blocking α and β splicing results in spontaneous human embry-
onic stem cell differentiation (50). In hypoxia, HIF-1 increases 
the association of RNA Pol II with transcription initiation 
factors, resulting in more effective and efficient transcription. 
It has been proposed that modulation of hTERT transcription 
by HIF-1 in hypoxia controls splicing by affecting Pol II rates 
of transcription and enhancing expression of the active full 
length transcript (53).

Direct splicing role of CTCF intragenic binding with Pol II 
pausing. The direct role of CTCF modulating alternative 
splicing in a co-transcriptional manner has recently emerged. 
Shukla and colleagues  (56) showed that CTCF binding 
at actively transcribed DNA causes RNA polymerase II 
pausing, resulting in recognition of weak splice site signals 
and therefore inclusion of ‘weak’ exons in CD45. They also 
demonstrated that the pausing was methylation dependent; 
when CTCF cannot bind the methylated site, weak exons are 
not included in the final spliced transcript (Fig. 2A) (55,56). 
Multiple additional genes have been shown to have promoter-
proximal CTCF binding (100 bases downstream of the TSS) 
that results in longer Pol II pausing compared to genes without 
promoter-proximal binding sites. This effect is dependent on 
the binding site position relative to the TSS, with less pausing 
associated with sites at greater distance from the TSS (57). 
RNA polymerase II pausing due to CTCF results in decreased 
processivity and contributes to promoter proximal pausing, 
thereby directly modulating the dynamics of transcription and 
splicing (57,58).

Indirect splicing role of CTCF by facilitation of long range 
interactions. CTCF is well known for its architectural role in 
establishing boundaries based on topologically associating 

domains (TADs) that link distant enhancers with promoters and 
other regulatory sequences. This chromatin looping by CTCF 
allows for architectural reorganization resulting in co-location 
of factors to influence transcription. Indeed, approximately 
15% of CTCF binding sites are located in promoters, while 
over 40% of CTCF binding sites are located in the 5'UTR, 
introns, and other intragenic regions. For example, the murine 
Myb locus has a CTCF binding site in the first intron, which 
loops to the promoter during differentiation, and a second 
CTCF site in a regulatory element further upstream. This 
CTCF interaction allows for juxtaposition of necessary tran-
scription factors to regulate Pol II and modulate expression of 
Myb. After differentiation, the expression of the gene is halted 
due to CTCF architecture reorganization. This highlights the 
ability of CTCF to regulate initiation of transcription as well as 
elongation and Pol II pausing during transcription by looping 
together promoter, upstream enhancer elements and intronic 
sequences. Influencing the elongation of Pol II, as well as the 
juxtaposition of regulatory factors, are known to be important 
for splicing, as discussed above regarding the elongation rate 
of Pol II and CD45 splicing (59,60).

7. Telomerase regulation by alternative splicing in hTERT

While in many genes transcription factor binding has been 
shown to play a role in splicing, the mechanism of hTERT 
splicing is not as clearly defined. hTERT splicing plays a 
crucial role in dictating the activity of telomerase, since only 
the full-length transcript is catalytically active in the telom-
erase ribonucleoprotein complex. Furthermore, many cancers 
show changes in hTERT splicing patterns.

hTERT splicing switch in cancer. Modulation of alterna-
tive splicing is detected in multiple types of cancers, where 
cancer cells utilize an alternative splicing switch that results 
in discernible isoform signatures (61). This switching is non-
random and also seen in tissue development, including the 
hTERT splice switch, well characterized in kidney develop-

Figure 2. Intragenic binding of CTCF affects transcript splicing. (A) The well-established mechanism of exon 5 inclusion in CD45. Binding of exon 5 by CTCF 
to its unmethylated binding site causes pausing of polymerase II and inclusion of exon 5 in the final mRNA. When the site is methylated, CTCF cannot bind 
and the final transcript skips exon 5. (B) Hypothetical (*) mechanism of long range CTCF interactions influencing hTERT splicing. Common exon deletions 
in hTERT splice variants with the CTCF binding sites at exon 1 and exon 2. CTCF binding at exon 1 is known to affect hTERT expression, while its potential 
role in splicing is unknown.
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ment and various cancer cell types  (62-74). This mode of 
hTERT regulation has been proposed to be necessary due to 
the difficulty to completely cease transcription, since even 
very small amounts of transcript may have significant cellular 
effects, given the limited number of cellular targets, i.e., 92 
telomeres in the normal human cell  (2). Cancer cells with 
active telomerase have an average of 20 hTERT transcripts 
per cell resulting in 100-500 active telomerase complexes (75). 
Alternative splicing yielding inactive and/or inhibitory forms 
of hTERT allows for downregulation of telomerase activity 
without complete repression of transcription.

Mechanism of hTERT alternative splicing. Studies on the 
mechanisms of alternative splicing of hTERT so far have 
revealed regulation primarily by long range interactions, not 
at nearby splice sites as seen in other genes. One proposed 
mechanism is via variable number tandem repeats (VNTR), 
that are located in intronic regions over 1 kb from the splice 
site, regulating splicing of the β deletion form. The mechanism 
of VNTR control over splicing is not understood, but could 
involve recruitment of RNA binding factors to the repeats. 
These RNA binding factors would then interact and form a 
specific landscape with other proteins conducive to spliceo-
some recruitment (2,75). The mechanism for the dependence 
on VNTR for splicing of the β deletion needs further exami-
nation, as do additional splicing mechanisms for the other 
isoforms.

Over twenty different isoforms of hTERT have so far been 
reported, with the most common being various deletions in 
the reverse transcriptase domain, such as the α deletion, 
β deletion and α/β deletion shown in Fig.  2B  (76). Other 
important isoforms have been identified, such as intron 2 and 
14 retention in lung and colon cancer as well as exclusion of 
exon 2 in normal cells (77,78). All known isoforms result in 
an inactive telomerase complex. For example, the α deletion 
is a dominant negative variant while the β deletion results in a 
truncated protein targeted for nonsense-mediated decay (75). 
While normal cells express mainly inactive hTERT isoforms, 
a splicing switch occurs in cancer cells, resulting in produc-
tion of the full length active transcript (79). The cause of the 
splicing switch is unknown, but is likely due to changes of 
binding factors, possibly similar to changes to long range 
interactions through VNTR in the case of the β deletion or, as 
stated above, from the ability of certain transcription factors to 
bind and affect transcription elongation rates.

8. Concluding remarks

Human telomerase reverse transcriptase expression has many 
facets of regulation, including promoter methylation and 
alternative splicing, as outlined above. These two methods of 
regulation can become intertwined by the co-transcriptional 
nature of mammalian pre-mRNA splicing. This allows tran-
scription factors bound to the gene, including the promoter, to 
influence alternative splicing of the transcript. Understanding 
the regulation of hTERT is crucial to understanding telom-
erase activity in normal cells as well as in cancer. Elucidating 
the mechanism of cellular control of hTERT transcription will 
further our knowledge of the intricate instructions directing 
activation of this essential genome maintenance machinery.

Study of hTERT transcription is a unique opportunity to 
understand the control of a low abundance transcript with a 
prominent role in cancer. Insight into how cancer comman-
deers the regulatory control, be it through methylation or 
through the splicing machinery, to produce full length hTERT 
and resulting in active telomerase would be highly beneficial 
clinically. Currently, therapeutic telomerase inhibitors are not 
well tolerated by patients. The therapy must be continually 
administered for multiple replication cycles to have an effect, 
resulting in the need for extended periods of treatment, which 
can be challenging due to significant drug toxicity. Promising 
anticancer therapeutics such as imetelstat, an antisense 
oligonucleotide binding to hTR, target the active telomerase 
complex, or consist of small molecule inhibitors inhibiting 
active TERT binding to the RNA (80). Alternatively, therapies 
inhibiting TERT from being activated before the telomerase 
complex forms, by altered expression or splicing, could 
provide a new mechanistic avenue for effective anticancer 
therapeutics.
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