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Abstract. Gastrointestinal (GI) cancer is characterized 
by its aggressiveness and tendency to metastasize at early 
stage. Epithelial-mesenchymal transition (EMT), commonly 
known as the preparing step of metastasis, may account for 
the aggressive phenotype of GI cancer cells. The process of 
EMT is finely orchestrated by multiple layers of regulators. 
Signal transducer and activator of transcription 3 (STAT3) 
is a transcription factor constitutively activated in diverse 
malignancies. Recent studies have suggested an involvement 
of STAT3 in GI cancer EMT. In this review, we first take an 
insight into the oncogenic functions of STAT3 in GI cancer, 
and then summarize the possible mechanisms by which 
STAT3 regulates the EMT process. Through the extensive 
interactions with EMT-inducing transcription factors and non-
coding RNAs, and crosstalk with other signaling pathways, 
STAT3 has been demonstrated to promote the mesenchymal 
and invasive phenotype of GI cancer, which provides ratio-
nales for specifically targeting STAT3 to prevent and reverse 
the progression of GI cancer.
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1. Introduction

Gastrointestinal (GI) cancer, which refers to the malignan-
cies of the GI tract and accessory organs of digestion, 

represents the most common cancer and the leading cause 
of cancer‑related death worldwide  (1). According to the 
American Cancer Society, a total of 304,930 new GI cancer 
cases and an approximate deaths of 153,030 are estimated to 
occur during 2016 (2). In China, cancers of stomach, liver, 
esophagus and colorectum are among the 5 leading causes of 
cancer death (3). Most patients with GI cancer have advanced 
tumors with regional or distant metastasis upon presentation, 
which precludes them for radical resection. Among those who 
have received intentionally curable surgery, some still failed to 
survive due to the occult dissemination of cancer cells.

The epithelial-mesenchymal transition  (EMT), first 
described by Elizabeth Hay in 1980s using a model of chick 
primitive streak formation, is integral in embryonic develop-
ment, tissue repairing and also, occurs as an unintentional 
behavior of cells during fibrosis and cancer progression (4,5). 
According to these distinct biological settings, EMT has been 
proposed to be categorized into three subtypes (6). The first, 
termed ‘type 1’, is associated with embryogenesis and organ 
development, such as gastrulation, neural crest formation and 
heart valve formation. The type 2 EMT, set in a context of 
trauma or inflammatory injury, is required for wound healing 
and tissue repairing. If the inflammation is persistent, however, 
this type of EMT also cause undesirable result-organ fibrosis. 
Different from these two types, the type 3 EMT, which exclu-
sively occurs in neoplastic cells, is completely detrimental. In 
tumors of epithelial origin, immotile epithelial cells under-
going type 3 EMT are converted to mesenchymal-like cells 
with migratory ability (Fig. 1). By conferring cancer cells with 
capacity to invade, EMT drives the progression of indolent 
cancer in situ to an aggressive metastatic one (4-6). In addition, 
emerging evidence has shown that type 3 EMT also contrib-
utes to induction of cancer stem cells (CSCs), drug resistance 
and immune escape during GI cancer progression (4,7,8).

Signal transducer and activator of transcription 3 (STAT3), 
which belongs to the STAT family, is in general transiently 
activated in normal cells but constitutively activated in a wide 
variety of blood malignancies and solid tumors, including 
breast cancer, prostate cancer, head and neck cancer, mela-
noma, brain cancer, as well as GI cancers (9-13). As one of the 
limited transcription factors that converge multiple oncogenic 
signaling pathways, STAT3 acts as the critical ‘switch’ and 
controls the expression program of tumor-associated genes, 
whereby STAT3 is extensively involved in biological processes 
of GI malignancies varying from cell cycle, apoptosis, angio-
genesis, stemness, metastasis to immune evasion (9).
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In this review, we aim to discuss the molecular processes 
of STAT3-mediated EMT in GI cancer. We first describe the 
basic mechanisms that regulate the EMT process, then outlines 
the extensive oncogenic function of STAT3 in GI cancer, in 
particular its potential role in tumorigenesis, metastasis and 
generation of CSCs. Based on the theory that EMT is the early 
step of metastasis and is intimately associated with tumor stem-
ness, we hypothesized that STAT3 may also exert an effect in 
EMT of GI cancer. Therefore, in the third section, we focus on 
the possible mechanisms by which STAT3 contributes to the 
initiation and resolution of EMT program. Through investi-
gating into its interactions with specific transcription factors, 
miRNAs and signaling pathways, a critical role of STAT3 in 
GI cancer EMT has been fundamentally established, which 
makes STAT3 a candidate for preventing and reversing the 
EMT process in GI cancer.

2. Molecular mechanism of EMT

Hallmark of EMT is the loss of E-cadherin, a dominant 
constituent of the adhesion junctions  (4-6,14). E-cadherin 
functions to maintain an intact cell-cell interaction and a 
stabilized cytoskeleton, thus preventing tumor cell mobility, 
invasion and subsequent dissemination. In GI cancer, reduced 
expression of E-cadherin is significantly correlated with 
poorly-differentiated phenotype, lymph node and distant organ 
metastasis (15,16). Therefore, repression of this determinant 
molecule is considered to be a central event during EMT. As 
such, the EMT-transcription factors (EMT-TFs) are basically 
classified according to their direct or indirect repression on 
E-cadherin. The zinc-finger binding transcription factor Snail1 
was first discovered to downregulate E-cadherin gene expres-
sion by directly binding to its promoter in epithelial tumor 
cells  (17). After the initial identification of the interaction 
between Snail1 and CDH1 gene (which encodes E-cadherin), 
many other EMT-TFs such as Snail2 (also known as Slug), 
zinc finger E-box-binding homeobox 1  (ZEB1) and ZEB2 
(also know as SIP1), the basic helix-loop-helix (bHLH) factor 
E47 (also known as TCF3), Krüppel-like factor 8 (KLF8) were 
successively discovered (4). While other factors, including 
Twist, fork-head box protein C2  (FOXC2), goosecoid and 
E2-2 (also known as TCF4), are demonstrated to induce EMT 
without direct binding to the promoter of CDH1 (4). Except for 

a dramatic change in E-cadherin expression, EMT is charac-
terized by the reduction of other epithelial molecules such as 
claudins, occludin, zona occludens-1 (ZO-1) and cytokeratins, 
as well as the concomitant increase in mesenchymal markers, 
including vimentin, N-cadherin, fibronectin, fibroblast specific 
protein-1 (FSP-1), α-smooth muscle actin (α-SMA) (4-6).

The mechanisms of EMT has been studied for decades 
and it is now generally thought to be transcriptionally regu-
lated (4,5,14). These EMT-associated transcription factors, 
as referred to above, are regulated by various signaling 
pathways, including those activated by transforming growth 
factor-β (TGF-β), Wnt, Notch, epidermal growth factor (EGF), 
fibroblast growth factor (FGF), hypoxia inducible factor (HIF), 
NF-κB and Sonic Hedgehog (Shh) signaling (5,14,18). These 
pathways signal through triggering intracellular kinase 
cascades, which then operate in crosstalk to form a regulator 
network of EMT (5). In addition to the EMT-inducing tran-
scription factors and their upstream signaling pathways, recent 
studies have further illustrated three additional regulatory 
mechanisms of EMT, including the expression of small non-
coding RNAs (ncRNAs), alternative splicing and translational 
and post-translational modification (14,18).

Intriguingly, a recent study by Rhim et al (19) has proposed 
that the EMT process seems to occur much earlier in tumor 
than expected. The lineage tracing system adopted by 
Rhim et al enables them to specifically label and track pancre-
atic epithelial cells in genetically engineered mouse model of 
pancreatic intraepithelial neoplasia (PanIN). To their surprise, 
the labeled pancreatic cells are detected in adjacent tissues and 
circulating system unexpectedly early, even before the forma-
tion of an identifiable primary tumor (19). The theory that 
EMT and the breach of basement membrane occurs prior to 
tumor formation probably shed some light on the aggressive-
ness of pancreatic cancer and other GI cancers, where many 
patients have already progressed to late stage upon presenta-
tion of the disease. This speculation underscores the urgency 
to better understand the mechanisms of EMT so as to manage 
the aggressiveness of GI cancer.

3. Oncogenic role of STAT3 in GI cancer

STAT3 was originally discovered as a latent cytoplasmic 
transcription factor that was activated by interleukin-6 (IL-6) 

Figure 1. Cellular changes associated with type 3 EMT. In tumors of epithelial origin, epithelial cells undergoing type 3 EMT are converted into mesen-
chymal‑like cells. This process is characterized by the loss or reduction of epithelial markers, in particular E-cadherin. More importantly, these converted cells 
acquire migratory abilities, which allow them to invade the basement membrane and further metastasize to distant organs.
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and EGF (20). Generally, activation of STAT3 relies on the 
phosphorylation of a conserved tyrosine residue (Y705) by 
upstream tyrosine kinases, including growth factor receptors, 
cytokine receptor-associated Janus kinase  (JAK), as well 
as cytoplasmic tyrosine kinases, such as Src and Abelson 
kinase (ABL) (9,21,22). Specifically, STAT3 can be activated 
by growth factor receptors that have intrinsic tyrosine kinase 
activity, such as epidermal growth factor receptor (EGFR) 
and platelet-derived growth factor receptor (PDGFR). Unlike 
receptor tyrosine kinases (RTKs), many cytokine receptors 
like IL-6 family cytokines, do not have intrinsic tyrosine 
kinase activity. In that case, the receptor-associated tyrosine 
kinases, typically JAK, are recruited upon ligand engagement 
and then activated to phosphorylate STAT3 (9,21). In addi-
tion to IL-6 receptors, recent studies have identified Toll-like 
receptors (TLRs) and G-protein-coupled receptors (GPCRs) as 
novel activators of JAK-STAT3 pathway (22), which also exert 
tumor-promoting effects. Once phosphorylated, these STAT3 
monomers form dimers through the reciprocal interactions of 
Src homology2 (SH2) domain and then translocate into the 
nucleus, where the dimer can directly regulate expression of 
the target genes by binding to specific DNA sequences (9).

Activation of STAT3 in normal cells is rapid and transient, 
mainly due to the negative regulation of STAT3 by suppressor 
of cytokine signaling (SOCS) and protein inhibitor of activated 
STAT (PIAS) (9). However, in contrast to that of normal cells, 
persistent activation of STAT3 has been frequently detected 
in a variety of human cancer cell lines and tissues, especially 
those of GI cancer (Table I), including gastric cancer (10,23), 
colorectal cancer (11), pancreatic cancer (12) and hepatocel-
lular carcinoma (HCC) (13). Despite the undefined mechanism 
of STAT3 constitutive activation in tumor, strong biological 
bases have supported this protein as an oncogenic driver, and 
consequently, have validated STAT3 as a promising target for 
cancer therapy (21,24).

Constitutive activation of STAT3 is required for tumori-
genesis of many GI cancers, including pancreatic cancer (25),  
HCC (26), gastric cancer and colon cancer (27). One of the 
earliest clues for the role of STAT3 in tumorigenesis was 

its association with malignant transformation. Compelling 
evidence was given when STAT3C, a constitutively activated 
mutant form of STAT3, transformed immortalized fibroblasts 
in vitro and caused tumor formation in mice (28). Other clues 
for its link with cancer came from the subsequent findings that 
STAT3 contributed to tumor growth and survival. As an onco-
protein, aberrant activation of STAT3 prevented apoptosis by 
upregulating the anti-apoptotic Bcl-2 family genes Bcl-xL 
and MCL1, as well as survivin, a member of the inhibitor of 
apoptosis (IAP) family (9). Also, STAT3 signaling has been 
implicated in the regulation of cellular proliferation, which 
is dependent on STAT3-induced expression of c-Myc and 
cyclin D1 (9). As a consequence, blocking STAT3 signaling 
was often sufficient to induce growth arrest and apoptosis in 
many different cancer types, in turn demonstrating the onco-
genic properties of STAT3 (21,24).

Notably, except for the classic oncogenic functions of 
STAT3 mentioned above, in recent years, the role of STAT3 in 
inflammatory-associated tumorigenesis, cancer metastasis and 
stemness have become topics of particular interest (Fig. 2). We 
then take closer look into these three parts.

Role of STAT3 in inflammatory-associated tumorigenesis of 
GI cancer. Inflammation virtually exists in every neoplastic 
lesion and contributes to tumorigenesis and progression by 
supplying immune factors that promote proliferation, survival, 
angiogenesis, invasion and metastasis. In particular, chronic 
inflammation is typically involved in tumorigenesis of gastro-
intestinal and hepatobiliary organs, including Helicobacter 
pylori (H. pylori) infection being a risk factor for gastric cancer 
and MALT lymphoma, inflammatory bowel diseases (IBD) 
for colorectal cancer, chronic virus hepatitis for HCC, Barrett's 
esophagus for esophageal cancer and chronic pancreatitis for 
pancreatic ductal adenocarcinoma (PDAC).

STAT3 is a transcription factor aberrantly activated in most 
GI cancers and has both potent pro-inflammation and onco-
genic properties. It is therefore conceivable that STAT3 plays 
an important role in facilitating a tumor-promoting inflam-
matory microenvironment in GI cancer (29). For example, 

Table I. Deregulated activation of STAT3 in GI cancer cell lines and tumor specimens.

GI cancer	 Cancer cell lines	 Tumor specimens	 Correlated genes	 Refs.

Pancreatic cancer	 SW1990, PANC-1,	 Pancreatic ductal	 Cyclin-D2, VEGF,	 (12,38,41,46,131)
	 BxPc-3, FG, Capan-1,	 adenocarcinoma	 MMP-2, ZEB1,
	 Capan-2, MiaPaCa		  E-cadherin
Gastric cancer	 AGS, MKN1, MKN7,	 Gastric adenocarcinoma	 Survivin, 	 (10,23)
	 MKN28, HCG 27		  VEGF, Bcl-2
Colorectal cancer	 HT-29, CoGa-1, SW480,	 Colorectal carcinoma	 MMP1, β-catenin,	 (11,49,121,159)
	 SW1116, LoVo		  ZEB1, E-cadherin, 
Liver cancer	 HCCLM3	 Hepatocellular carcinoma	 VEGF, survivin,	 (13,39)
			   MMP-2, MMP-9
Esophageal cancer	 EC9706, EC 109,	 Esophageal squamous	 β-catenin	 (161)
	 KYSE80, 150, 410, 510	 cell carcinoma

VEGF, vascular endothelial growth factor; MMPs, matrix metalloproteinases.



LI  and  HUANG:  Regulation of EMT by STAT3 in GI cancer756

chronic pancreatitis is a well-known risk factor for PDAC. The 
inflammatory mediator STAT3 has been demonstrated to be an 
essential component of the permissive environment provided by 
pancreatitis to drive the formation of KRAS-dependent PDAC 
precursor and its subsequent progression (30,31). In the setting 
of both acute and chronic pancreatitis, deletion of STAT3 
in transgenic mice expressing KRASG12D interferes with the 
acinar to ductal de-differentiation, resulting in fewer PanINs 
formation (30). Corresponding to the previous study that IL-17, 
mainly produced by Th17 and IL-17+/γδT cells recruited to the 
stroma of pancreatic cancer, can promote PanIN initiation and 
progression in cooperation with IL-6/STAT3 signaling (32), 
Loncle  et  al  (33) have recently discovered that STAT3 is 
also involved in a novel REG3β‑JAK2-STAT3 inflammatory 
signaling triggered by IL-17 and propels transitional process 
from chronic pancreatitis to PDAC.

However, this linking role played by STAT3 appears to 
be ubiquitous in GI cancer, not restricted solely to pancreatic 
cancer. Sphingosine-1-phosphate receptor 1 (S1PR1), a GPCR 
that responds to the lipid metabolic signaling, is upregulated 
by STAT3 in tumors and reciprocally activates STAT3. 
Recently, Liang et al (34) elegantly demonstrated that sphin-
gosine‑1-phosphate (S1P) drives a malicious amplification loop 
involving SIPR1 and NF-κB/IL-6/STAT3, which links chronic 
intestinal inflammation to the occurring of colitis-associated 
cancer (CAC). A crucial role of STAT3 in the development of 
CAC is also supported by the finding that IL-6/STAT3 functions 
as a pro-tumorigenic signaling in the model of CAC (35). In the 
CAC model induced by dextran sulphate sodium (DSS), IL-6 
activates STAT3 and promotes the survival of pre-malignant 
intestinal epithelial cells, which curbs their chance to further 
mutate or to subsequently form tumors (35). However, in gastric 
cancer, Ernst et al (36) demonstrated that it is IL-11, but not 
IL-6, that leads to abnormal activation of STAT3 and selec-
tively triggers gastric adenoma formation in gp130Y757F mice.

In conclusion, STAT3 may assume a central node and a 
checkpoint during inflammation-associated tumorigenesis, 
which has been demonstrated to be one of the most important 
pathogenic mechanisms of GI cancers.

Role of STAT3 in angiogenesis, invasion and metastasis of 
GI cancer. Tumors cannot sustain their growth or survive at a 
second site unless they are supplied with enough nutrients and 
oxygen from newly formed blood vessels. The role of STAT3 
in tumor angiogenesis was first identified when vascular 
endothelial growth factor  (VEGF), one of the most potent 
angiogenic factor, was demonstrated to be a target of STAT3 
in various cancers including pancreatic cancer, gastric cancer 
and HCC (23,37-39). An activated STAT3 mutant (STAT3C) 
was found to upregulate VEGF expression and stimulate 
tumor angiogenesis in pancreatic cancer, while interrupting 
STAT3 signaling with dominant-negative Stat3 protein signifi-
cantly abrogated this effect and suppressed tumor growth and 
metastasis in vivo  (38). In support of this, we have shown 
that silencing STAT3 by RNAi led to decrease of VEGF 
and matrix metalloproteinase-2  (MMP-2) at both mRNA 
and protein levels in pancreatic cancer cells (40). Besides, by 
analyzing 71 pancreatic adenocarcinoma specimens, we found 
that the expression of p-STAT3 was clinically correlated with 
microvascular density (MVD), tumor size, TNM stage and 
lymphatic metastasis of pancreatic cancer, which may be partly 
attributed to its relationship with VEGF and VEGF-C (41). 
Here we propose that via upregulating VEGF-C, which acts 
on lymphatic endothelial cells to promote their proliferation 
and migration, STAT3 also contributes to the early lymphatic 
metastasis (41). In addition to directly binding to the VEGF 
promoter, STAT3 promotes tumor vascularization indirectly 
by controlling the expression of HIF-1α (42), which acts as 
the final switch of VEGF expression. Furthermore, tumor-
associated myeloid cells that display activated STAT3 also 
contribute to the production of VEGF and bFGF  (43). By 
inducing these angiogenic factors, STAT3 activated in stroma 
cells functions to facilitate endothelium proliferation, migra-
tion and microtube formation (43).

Proteolytic enzymes such as MMPs are required for the 
degradation and remodeling of the extracellular matrix (ECM) 
and the basement membrane, which is a key step of tumor 
invasion and metastasis. It has been shown that STAT3 
signaling enforces MMP-7 expression in pancreatic cancer 

Figure 2. Oncogenic role of STAT3 in GI cancer. STAT3 acts as the critical ‘switch’ that controls the expression program of various tumor-associated genes, 
whereby it is involved in diverse biological processes of GI malignancies including proliferation, apoptosis, angiogenesis, invasion and metastasis. Notably, in 
recent years, STAT3 has been shown to possess great potential in inflammation-associated tumorigenesis, CSC generation and EMT induction.
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cells and that MMP-7 deletion limits tumor size and metas-
tasis in mice (30,44). Except for MMP-7, MMP-2 has been 
identified as another target of STAT3 and also contributes 
to tumor invasion and metastasis (45). In line with this, we 
reported a reduced expression of MMP-2 in pancreatic cancer 
cells caused by STAT3 inhibition, which may account for the 
impaired invasion ability observed in vitro and in vivo (46-48). 
Similarly, p-STAT3 was also shown co-localized with MMP-1 
in colorectal cancer and was later demonstrated to experimen-
tally regulate the expression of MMP-1 (49). Therefore, by 
inducing diverse MMPs such as MMP-1, MMP-2 and MMP-7, 
STAT3 plays a major role during the invasion and infiltration 
of GI cancers.

As we discussed above, a crucial role of STAT3 in cancer 
cell proliferation, survival, angiogenesis and invasion has been 
well documented. It is reasonable to speculate that STAT3 
also contributes to cancer metastasis since metastatic potential 
depends on multiple factors that determine the growth, apop-
tosis, angiogenesis, and invasion of cancer cells. For example, 
gain- and loss- of function model demonstrated that STAT3 
promoted brain metastasis in melanoma via dysregulated 
expression of bFGF, VEGF and MMP-2 (50). A study using 
an orthotropic mouse model of pancreatic cancer showed 
that blockade of STAT3 via ectopic expression of dominant-
negative STAT3 markedly reduced the incidence of liver 
metastasis as well as angiogenesis  (38). Similarly, in mice 
bearing orthotopically implanted HCC cells, inhibition of 
STAT3 with anti-sense oligonucleotide resulted in decreased 
vascularization, local transmission and lung metastasis, along 
with an impaired expression of VEGF, bFGF, MMP-2 and 
MMP-9 (39).

Furthermore, STAT3 abnormally activated in cancer 
microenvironment also contributes to the metastasis cascade. 
For example, STAT3 activated in immune cells has been 
well illustrated to play an immunosuppressive role during 
cancer development, which facilitates the dissemination and 
colonization of cancer cells  (51,52). Additionally, a recent 
study by Deng et al (53) suggests an involvement of S1PR1-
JAK2-STAT3 signaling in establishing pre-metastatic niches 
in various cancers. These pre-metastatic niches, are mainly 
comprised of immune cells including myeloid cells, provide a 
sanctuary for disseminated cancer cells to colonize and form 
metastases at the hostile distant sites. Of note, both the migra-
tion and outgrowth of myeloid cells at distant organs require 
the signaling of S1PR1-STAT3. As expected, inhibiting 
STAT3 in myeloid compartment disrupts the existing pre-
metastatic niches, as well as the subsequent metastasis (53). 
Taken together, constitutive activation of STAT3 in GI cancer 
functions to promote cancer progression by facilitating angio-
genesis, invasion and metastasis.

Role of STAT3 in CSC generation of GI cancer. CSCs are 
defined as a subpopulation of tumor cells that sustain self-
renewal and are particularly resistant to conventional therapies. 
Several lines of evidence have demonstrated that STAT3 plays 
an essential role in promoting and maintaining the stemness 
of GI cancers (22).

STAT3 is constitutively activated in colon cancer-initiating 
cells marked with aldehyde dehydrogenase (ALDH) and CD133 
positive (54). Except for these two molecular signatures, CD44 

has also been recognized as a marker for CSC of colon cancer 
which potentially links with STAT3. A recent study (55) has 
found that CD44, when internalized and translocated to the 
nucleus, interacts with acetylated STAT3 and together binds 
to the promoters of target genes, such as c-myc and twist. 
This nuclear CD44/acetylated-STAT3 complex then functions 
to reprogram cancer cells to CSC-like cells (55). Similarly, 
in liver cancer, CD24+ HCC cells possess characteristics of 
stem cells and CD24 has been found to drive tumor initia-
tion and self-renewal through STAT3-mediated upregulation 
of NANOG (56). In addition, it has also been shown that 
IL-6/STAT3 signaling upregulated expression of another CSC 
marker CD133 and promoted liver carcinogenesis (57).

Leukemia inhibitory factor (LIF)/STAT3 pathway has been 
extensively studied as a potent inducer of mouse embryonic 
stem cell self-renewal (22,58). Efforts to delineate the down-
stream effector of LIF signaling has identified Krüppel‑like 
factor 4 (KLF4) as a direct target of STAT3 (58), while KLF4 
is known as a reprogramming factor important for stem cell 
maintenance and prevention of differentiation. Except for 
LIF, IL-6 is also involved in promoting STAT3-mediated 
CSC expansion in several types of malignancies  (59,60). 
Furthermore, immunosuppressive cells, including myeloid 
derived suppressor cells  (MDSCs) and tumor-associated 
macrophages  (TAMs), enhanced CSC subpopulation and 
promoted tumorigenesis in pancreatic cancer and HCC 
mainly through IL-6/STAT3 signaling (61,62). More recently, 
Kryczek et al (63) have revealed a novel mechanism by which 
the IL-22/STAT3 signaling operates to increase cancer stem-
ness as well as tumorigenic potential in colorectal cancer. 
DOT1L, histone 3 lysine 79 (H3K79) methyltransferase, was 
induced by STAT3 activation and then operative to upregulate 
the expression of three core stem cell genes, namely NANOG, 
Sox2 and Oct4, through methylation of H3K79 (63). Thus, 
STAT3-mediated epigenetic regulation has also been impli-
cated in STAT3 induced CSC generation.

Collectively, these findings confirm that STAT3 indeed 
plays a critical role in cancer stemness during GI cancer 
development, though many mechanisms are still undefined. In 
recent years, it has been proposed that cancer cells enforced to 
undergo EMT process can simultaneously acquire CSC-like 
properties (8). Under that circumstance, our team has been 
seeking to determine whether STAT3 may assume one of 
the potential links between EMT and stemness in GI cancer, 
based on our findings and those of others of the extensive 
involvement of STAT3 in GI cancer EMT.

4. Role of STAT3 in regulating EMT of GI cancer

While STAT3 plays a critical role in the initiation and progres-
sion of GI cancer, it remains elusive whether the aberrant 
signaling also contributes to EMT, the early step of tumor inva-
sion and metastasis. Recent studies have shed some light on the 
puzzle, suggesting that STAT3 plays a role in stimulating and 
controlling the rapid transition of cells between epithelial and 
mesenchymal phenotype, both in physiological and pathological 
conditions. For example, during wound healing, keratinocytes at 
the border of the wound recapitulate part of the EMT process. 
Deficient in STAT3, cell migration of keratinocytes in response 
to injury is severely compromised (64). By upregulating zinc 
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transporter LIV-1, STAT3 is essential for the migration of 
zebrafish gastrula organizer cells during its gastrulation (65).

Importantly, STAT3 has been cumulatively associated 
with the type 3 EMT, where it acts as a transcription acti-
vator of EMT-related genes in human cancers, especially 
in GI cancers  (Table  II). In this regard, we have recently 
uncovered the function of STAT3 in regulating EMT of 
pancreatic cancer (66). Treatment of IL-6 resulted in STAT3 
abnormal activation and surprisingly, forced pancreatic cancer 
cells to experience typical EMT morphological changes, 
accompanied by an increased invasion ability and reduced 
E-cadherin expression (66,67). Targeting STAT3 signaling 
either by siRNA or JAK inhibitor AG490 counteracted this 
effect (46,66,67), indicating that activation of STAT3 is one of 
the prerequisites of IL-6-induced EMT in pancreatic cancer 
and it may comprise a target to combat EMT. Additionally, 
Liu et al (68) have recently demonstrated that aberrant activa-
tion of STAT3, but not the Akt or ERK, mediated Fos-related 
antigen-1 (Fra-1) upregulation in response to IL-6 in colon 
cancer cells. Fra-1 has been emerging as a central node of 
EMT and stemness in various cancer (69). By inducing Snail, 
Slug, ZEB1, as well as MMP-2 and MMP-9, the innovative 
IL-6/STAT3/Fra-1 signaling axis is responsible for EMT and 
metastasis of colorectal cancer (68).

Despite the above observations, the underlying mecha-
nisms of STAT3-induced EMT are not fully understood as 
yet. To explore this, in the following sections, we will first 
discuss the ever-expanding connections between STAT3 and 
a list of ‘master’ EMT transcription factors, such as Snail, 
Twist1 and ZEB1, then unveil its interaction with the EMT 

new player, non‑coding RNAs (Fig. 3). Since the regulatory 
network of EMT is rather complex and choreographed by 
multiple signaling pathways, we will finally look into cross-
talk between STAT3 and other selected signaling pathways, 
including TGF-β, Notch and Wnt signaling.

STAT3 and EMT-transcription factors
STAT3 and Snail. Snail, a zinc finger protein encoded by 

SNAI1, is one of the master governors of EMT during embryo-
genesis, fibrosis as well as cancer progression (17). The role of 
Snail has been defined in tumor invasion, stemness, recurrence 
and immune suppression (70-72). Thus, overexpression of Snail 
is correlated with lymph node metastases and poor prognosis 
of patients with GI cancer, such as pancreatic cancer (73), 
gastric cancer (74), colorectal cancer (75) and liver cancer (76). 
Repression of epithelial genes by Snail requires its C-terminal 
directly binding to the 5'-CACCTG-3' elements present in 
the E-box of epithelial genes and its further recruitment and 
interactions with other co-repressors. Specifically, the SIN3A, 
histone deacetylase 1 (HDAC1), HDAC2 and polycomb repres-
sive complex 2 (PRC2) are recruited by Snail upon its binding 
at E-cadherin promoter and then downregulate E-cadherin 
syngergistically through interacting with the SNAG sequence 
located at the N-terminal of Snail (77,78). Ubiquitin E3 ligase 
Ring1B and its paralog Ring1A also form repression complex 
with Snail, thereby promoting mesenchymal transformation of 
pancreatic cells through the C-terminal zinc finger domains 
of Snail (79).

As a master regulator of EMT, Snail is regulated by various 
signaling pathways, either at transcription or post-transcription 

Figure 3. Possible mechanisms of STAT3-mediated EMT in GI cancer. STAT3 participates in multiple layers of EMT regulatory network. By upregulating 
EMT-transcription factors, including Snail, Twist and ZEB1, STAT3 integrates signals from various extracellular stimuli and is sufficient to induce a mes-
enchymal phenotype in GI cancers. Additionally, STAT3 interacts with the new EMT players non-coding RNAs, especially microRNAs, such as miR-34a, 
miR-21 and let-7, to further shift the epithelial and mesenchymal balance of cancer cells.
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level. For example, SMAD3 and SMAD4 interact and form a 
complex with Snail to repress Occludin and E-cadherin during 
TGF-β-driven EMT  (80). Notch signaling is required for 
hypoxia-induced tumor cells EMT and invasion by controlling 
the expression of Snail (81). An important modification mech-
anism of Snail is the phosphorylation by glycogen synthase 
kinase-3β (GSK-3β), which leads to both nuclear export and 
ubiquitin-mediated degradation of Snail (82). Accordingly, 
several pathways, such as Wnt, PI3K/Akt and NF-κB, increase 
Snail activity by alleviating the phosphorylation by GSK-3β or 
disrupting the interaction between these two molecules (82,83).

Apart from the classic signaling pathways mentioned 
above, STAT3 has been emerging as a novel regulator of Snail 
in GI cancer. As mentioned before, STAT3 transactivates 
LIV-1 during gastrulation in zebrafish, which then medi-
ates the nuclear localization of Snail and the repression of 
E-cadherin (62). In addition to embryonic development, 76.4% 
pancreatic cancer tissues (84) and 61% liver cancer tissues (85) 
showed abnormal expression of LIV-1, which was clinically 
correlated with tumor size and lymphatic metastases. An 
investigation  (86) into breast cancer cell lines has further 
confirmed the association between STAT3 and LIV-1. It 
proposed that the Zn2+ influx triggered by the zinc transporter 
LIV-1 and STAT3 functioned to inactivate GSK-3β, rendering 
it unable to phosphorylate Snail, which in turn stabilizes the 
Snail protein (86). However, whether the same mechanism 
exists in GI cancer has not been reported yet. Therefore, our 
team has been working on it, hoping to further explain the 
mechanism by which STAT3 enhances the expression of Snail.

Additionally, Snail is also directly targeted by transcription 
factor STAT3 in diverse epithelial cancers  (66,87,88). IL-6 
promotes head and neck tumor EMT via JAK/STAT3/Snail 
signaling (87). Consistently, we have previously shown that 
activation of STAT3 in response to IL-6 caused a series of 
EMT-related changes in pancreatic cancer, mainly by targeting 
Snail (66). STAT3 can also act as a mediator that converges 
the signals of TGF-β and Ras and is thus indispensable for the 
induction of Snail during pancreatic cancer progression (88). 
NDRG2, a member of N-myc downstream regulated gene 2 
(NDRG) family, has been reported as a tumor suppressor gene 
in various GI cancers including colon, liver and pancreatic 
cancer (89). It was shown that upregulation of NDRG2 inac-
tivated STAT3‑Snail signaling and thus impaired the EMT 
potential of cancer cells (90,91), in turn demonstrating that 
STAT3/Snail signaling is critical for the invasion of cancer cells.

Furthermore, this malicious STAT3/Snail axis is also 
associated with CSC genes (92,93). For example, STAT3/Snail 
signaling could be operative in HCC cells co-expressing Oct4 
and NANOG, to empower HCC cells with mesenchymal 
phenotype as well as CSC properties  (92). Yao et  al  (93) 
recently identified insulin-like growth factor (IGF) and its 
downstream STAT3 as signaling pathway controlling the 
expression of NANOG in colorectal cancer  (CRC) cells, 
which then activate Slug to impinge upon the EMT program. 
Inhibition of STAT3 in CRC cells not only attenuated migra-
tion and invasion abilities, but also impaired the self-renewal 
of CRCs due to the reduced expression of NANOG (93). The 
potential link of the key stem cell genes and STAT3/Snail or 
STAT3/Slug established here may further confirm the obscure 
association between stemness and EMT in GI cancer.

Except for tumor cell itself, the surrounding stroma 
functions and constantly communicates with tumor cells to 
promote an invasive and drug-resistant phenotype. In partic-
ular, the release of interleukins by immune cells, endothelial 
cells and fibroblasts instruct tumor cells to undergo the EMT 
program (94). Recently, an attempt to characterize the role of 
immune-related cytokines in tumor microenvironment has 
identified IL-8 derived from macrophage as the chief one that 
dominates EMT process in HCC (95). The JAK2/STAT3 lies 
downstream of this IL-8 signaling, conveys the extracellular 
stimuli into the nuclear, and switches the epithelial phenotype 
of HCC cells into mesenchymal one via activating Snail (95). 
It has also been shown that pancreatic cancer cells treated 
with conditioned medium of pancreatic stellate cells (PSCs) 
exhibited enhanced migration ability and expression of mesen-
chymal markers  (96,97). This effect was attributed to the 
enriched IL-6 secreted by PSCs and subsequent activation of 
STAT3 and Snail within cancer cells (96), whereas a possible 
role of TGF-β in this process was excluded (97).

STAT3 and Twist. As a bHLH transcription factor, Twist 
forms homo- or hetero-dimers to repress epithelial genes and 
activate mesenchymal genes that define the EMT phenotype, 
leading to disassembly of epithelial junctions and disruption 
of cellular polarity (98). Overexpression of Twist is responsible 
for the poor prognosis of GI tumors, including hepatocellular 
carcinoma (76), esophageal squamous cell carcinoma (99), 
gastric cancer  (100), colorectal cancer  (75) and pancre-
atic cancer  (101). Recently, EMT and its reverse process, 
mesenchymal-epithelial transition (MET) has received much 
attention. Interestingly, this reversible EMT pattern contributing 

Table II. Molecular changes associated with STAT3-mediated EMT in GI cancer.

GI cancer	 Epithelial markers↑	 Mesenchymal markers↓	 Downstream factors	 Refs.

Pancreatic cancer	 E-cadherin	 N-cadherin, vimentin,	 Snail	 (66,88,96)
		  fibronectin
Colorectal cancer	 E-cadherin, ZO-1	 N-cadherin, vimentin,	 Fra-1, Slug, 	 (67,93,121,129)
		  fibronectin	 ZEB1, Snail
Liver cancer	 E-cadherin, β-catenin	 N-cadherin, vimentin	 Snail, Twist, LncTCF7	 (92,95,110,143)
Gastric cancer	 E-cadherin, ZO-1,	 Vimentin	 Twist, ZEB1, Slug	 (149,155)
	 claudin-1
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to different stages of metastasis was implemented by dynamic 
expression of Twist (102). Turning on Twist conferred cancer 
cells with invasive properties, facilitating delamination and 
intravasation, while shutdown of Twist and the resultant initia-
tion of MET program allowed the disseminated cells to restore 
an epithelial phenotype, acquiring capacities to proliferate and 
further form macrometastases in distant sites (102).

Among the multiple upstream signaling pathways, HIF-1α 
is a critical one that binds to the hypoxia-response element 
in the Twist promoter and enhances its expression, thereby 
initiating the metastatic cascade in response to intratumoral 
hypoxia (103). Twist is also subject to posttranscriptional modi-
fication. Activation of MAPK, either by TGF-β or Ras signaling, 
has been shown to phosphorylate Twist at Ser68, preventing it 
from ubiquitination and degradation (104). Moreover, phos-
phorylated Twist by Akt/protein kinase B (PKB) can target 
TGF-β2 transcriptionally and further promotes metastasis 
by enhancing TGF-β receptor signaling (105). As with Snail, 
Twist interacts with several components of the Mi2/nucleo-
some remodeling and deacetylase (Mi2/NuRD) complex to 
repress E-cadherin synergistically (106). Of note, the stemness 
factor Bmi1 has been identified as a transcriptional target of 
Twist (107). Once activated by Twist, Bmi1 acts in a concerted 
fashion with Twist to repress E-cadherin and the cell cycle 
inhibitor p16 (also known as INK4α) simultaneously, thus 
conferring tumor with migrating and self-renewing abili-
ties (107).

Except for the signaling pathways mentioned above, 
the STAT3/Twist signaling has also been recognized to 
orchestrate EMT in diverse malignancies including GI 
cancer. The interaction was first discovered in breast cancer 
cells (108,109). Activation of STAT3 induced Twist expression 
at mRNA and protein levels and promoted migration, invasion 
and colony formation of breast cancer cells. Mechanistically, 
activated STAT3 can directly bind to the second proximal 
STAT3-binding site on Twist promoter and transcriptionally 
upregulate its expression (108). IL-6 functions as an inducer 
of EMT phenotype in breast cancer through activating 
STAT3 and Twist (109). Furthermore, enforced expression 
of Twist augments the production of IL-6, giving rise to 
an autocrine activation of STAT3 and positive feedback of 
EMT (109). Conceivably, this cooperation between STAT3 
and Twist also exists in GI cancer. For example, Twist has 
been found to be transcriptionally activated by STAT3 in 
HCC (110). Furthermore, STAT3-mediated Twist expression 
and EMT process can be triggered by EGF/EGFR signaling 
as well  (111,112). During this process, STAT3 induces 
Twist directly or indirectly via stabilizing HIF-1α protein, 
which is another important stimulator of Twist expres-
sion (103). Clinical evidence has shown the level of Twist 
correlates strongly with that of p-STAT3 in late stage tumor 
tissues (108,112), underscoring the significance of STAT3/
Twist signaling during tumor progression.

STAT3 and ZEB1. Abnormal expression of ZEB1 has 
been observed in many GI cancers, such as pancreatic cancer, 
gastric cancer, colon cancer, and liver cancer (113). The two 
zinc-finger clusters contained by ZEB1 are highly conserved 
and critical for its binding ability at the promoter of target 
genes, such as CDH1, the gene encoding E-cadherin (113). 
Like Snail and Twist, ZEB1-mediated transcription repression 

of epithelial genes also involves recruitment of co-repressors, 
such as C-terminal-binding protein (CtBP) (114) and SWI/SNF 
chromatin remodeling protein BRGI (115). Additionally, ZEB1 
has been shown to recruit HDAC1 and HDAC2 specifically to 
the CDH1 promoter in pancreatic cancer, resulting in histone 
deacetylation and repression of the gene (116).

In the hierarchical structure of EMT-TFs, Snail controls 
ZEB1 expression at different levels and cooperates with Twist 
during the induction of ZEB1  (117). Additionally, diverse 
signaling pathways have already been shown to activate ZEB1 
expression during embryonic development and tumorigenesis, 
such as TGF-β, Wnt, NF-κB, HIF signaling (113). Of note, 
the reciprocal regulation between ZEB proteins and miR-200 
family has been well established in recent years (118,119). 
miR-200 members were first found to maintain an epithelial 
phenotype of tumor cells by directly targeting ZEB1 and 
ZEB2  (118). Later study, however, identified miR-200 as 
targets of ZEB1 as well (119). Thus miR-200 and ZEB1 form 
a double-negative feedback loop that finely tunes the EMT 
process. Strikingly, via suppressing stemness-inhibiting 
miRNA such as miR-200c, miR-203 and miR-183, the EMT 
activator ZEB1 also contributes to the stem cell properties of 
tumor cells indirectly by rescuing the expression of stem cell 
factors, primarily Bmil, Sox2 and KLF4, which are otherwise 
inhibited by these miRNAs (120).

Likewise, ZEB1 has also been shown to be transcription-
ally regulated by STAT3. A STAT3/ZEB1/E-cadherin cascade 
is uncovered in several malignancies, particularly in colorectal 
cancer (CRC) (121-123). Xiong et al (121) found that activation 
of STAT3 dramatically increased CRC cell invasiveness and 
resistance to apoptosis. Mechanistically, STAT3 enhance the 
expression of ZEB1 and as a result, triggered the EMT program 
in CRC. In support of this, a recent study has confirmed the 
existence of STAT3/ZEB1 axis in colorectal cancer, proposing 
that blocking STAT3/ZEB1 signaling by IL-32θ can inhibit 
EMT as well as stemness in tumor cells  (123). Although 
IL-32 was previously shown to promote gastric cancer metas-
tasis (124), IL-32θ, the newly discovered isoform of IL-32, was 
demonstrated to reduce the metastatic potential by directly 
binding to STAT3 and interfering with its nuclear transloca-
tion. An impaired self-renewal ability has also been observed 
in the IL-32θ-overexpressing cells, which was then attributed 
to the downregulation of ZEB1 and Bmi1 (123). The expres-
sion of p-STAT3 and ZEB1 are significantly correlated with 
tumor size and metastasis stages of CRC patients (121), further 
supporting the clinical association between STAT3 and ZEB1.

However, research in this field is relatively insufficient, and 
most efforts are restricted to colorectal cancer. Whether this 
collaboration between STAT3 and ZEB1 also exists in other 
GI cancers needs to be further explored.

Interactions between STAT3 and non-coding RNA. 
Non-coding RNAs (ncRNAs) refer to a group of RNAs that 
are not translated into proteins. ncRNAs are highly abundant 
and contain many functionally important RNAs. For example, 
transfer RNA (tRNA), ribosomal RNA (rRNA), small nuclear 
RNAs (snRNAs), and small nucleolar (snoRNAs) are required 
for critical biological processes, such as protein synthesis, 
RNA splicing and nuclear organization. Importantly, some 
other ncRNAs, specifically microRNAs  (miRNAs), long 
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non‑coding RNAs (lncRNAs) and circular RNAs (circRNAs), 
have been reported to play regulatory roles in cancer pathogen-
esis, including cancer proliferation, apoptosis, angiogenesis and 
invasion.

Compelling evidence has shown the interactions between 
STAT3 and the regulatory ncRNAs during GI cancer initia-
tion and progression (125). Herein we mainly focus on their 
contribution to EMT and metastasis, by summarizing which 
we further conclude to have the role of STAT3 in coordinating 
the regulatory circuit of EMT-related transcription factors and 
ncRNAs.

Interaction with microRNA. miRNAs are now commonly 
recognized as potent modifiers of gene expression profiles 
in many biological and pathological processes. These small 
non-coding RNA molecules, generally single strands of 
nucleotides <22, regulate genes expression by binding to the 
3'-untranslated regions (3'-UTR) of their target mRNAs and 
then inducing translation repression and/or mRNAs degrada-
tion. In particular, emerging evidence has shown that some 
miRNAs are able to define the cellular phenotype through 
interactions with transcription regulators of EMT (18). Among 
these miRNAs, miR-200 family and miR-34 are undoubtedly 
the most characteristic ones. As mentioned above, miR-200 
family members are described as gatekeepers of epithelial 
phenotype by reciprocally repressing ZEB family of tran-
scription factors (118,119). Similarly, miR-34 and Snail also 
form a double negative feedback loop to control cellular 
plasticity (126). Both miR-200s and miR-34 are positively 
modulated by p53 (127,128). Therefore, loss of p53 function, 
which occurs frequently during cancer development, leads 
to repression of these miRNAs and further facilitates the 
transition of epithelial cells into mesenchymal, migratory 
ones (127).

Interact ion with tumor suppressing microRNA 
miR-34. Recently, Rokavec et al  (129) proposed an IL-6/
STAT3/miR-34a feedback loop that drives mesenchymal 
phenotype in various carcinomas, including CRC. Upon 
exposure to IL-6, CRC cells underwent a typical EMT 
process, which was mechanistically attributed to the activa-
tion of STAT3 and its direct repression on miR-34a, one of the 
most characteristic miRNAs that impeded the EMT process. 
It was then found that miR-34a also targeted the IL-6 receptor 
and thus interrupted the IL-6/STAT3/miR34a signaling. 
Therefore, the repression of miR-34 by STAT3 activation 
in turn reinforced the feedback loop  (129). Rokavec et al 
then provided in vivo evidence by knocking down miR-34a 
in a mouse model of colitis-associated cancer. Deficiency 
in miR-34a further facilitated the IL-6-STAT3-mediating 
tumorigenesis and strikingly, enabled the tumor progress to 
an invasive one, which has not been observed in the same 
CAC model with intact expression of miR-34a (35).

Let-7. In addition to miR-34, STAT3 has also been shown 
to downregulate miR-200 and let-7 (130). STAT3 was acti-
vated upon oncostatin M (OSM) treatment and mediated the 
phenotypic transition by driving two circuits, namely STAT3/
lin-28/let-7/HMGA2 and STAT3/miR-200/ZEB1 (130). While 
the relationship between miR-200 and ZEB1 has been well 
interpreted above, let-7 is another tumor suppressor shown 
to interact with STAT3 extensively. STAT3 inhibited let-7 by 
transactivating lin-28 (125,130), whereas let-7 downregulated 

STAT3 by increasing SOCS3 expression  (131), one of the 
negative regulators of STAT3. Studies showed that upregula-
tion of let-7 restored the sensitivity to cisplatin in esophageal 
squamous cell carcinoma (132) and impaired migration of 
pancreatic cancer cells (131), both due to the interrupted acti-
vation of STAT3. Notably, re-expressing let-7 and miR-200 
reversed the EMT phenotype of gemcitabine-resistant pancre-
atic cancer cells (133). Since STAT3 has been shown to induce 
EMT via repressing let-7 and miR-200 (130), it is tempting 
to posit that targeting STAT3 in GI cancer may restore the 
expression of these two miRNAs and achieve the same favor-
able effect.

Interaction with oncogenic microRNA miR-21. miR-21 
is overexpressed in a variety of GI tumors, including 
pancreatic cancer, esophageal cancer, colon cancer and chol-
angiocarcinoma (134,135). It is generally considered to be 
oncogenic miRNA that targets tumor suppressor genes, such 
as programmed cell death 4 (PDCD4) and tissue inhibitor 
of metalloproteinase 3 (TIMP3) (135). Importantly, miR-21, 
containing 2 conserved STAT3 binding sites in its enhancer, is 
a typical miRNA lying downstream of STAT3 signaling (136). 
It is recently reported that miR-21 mediates the promoting 
effect of LIF/STAT3 on EMT and metastasis (137). LIF, via 
binding to its receptor complex LIF-R/gp130, can trigger 
distinct signaling pathways including JAK/STAT3, MAPK, 
ERK and AKT. Herein, LIF was shown to promote tumor cell 
acquisition of mesenchymal features depending on the induc-
tion of miR-21 by STAT3 (137). In line with this, STAT3/
miR-21 activation by IL-6 was also shown to be required 
for arsenite-induced EMT of human bronchial epithelial 
cells (138), highlighting the association between STAT3 and 
its oncogenic partner miR-21 during EMT process.

miR-155. Previous study has indicated that miR-155 is 
overexpressed in PDAC cell lines and acts as an oncogenic 
miRNA by repressing tumor protein 53-induced nuclear 
protein  1  (TP53INP1)  (139). We have recently found that 
the expression of miR-155 was correlated with lymph node 
metastases and clinical stages of pancreatic cancer  (140). 
Furthermore, overexpression of miR-155 in pancreatic cancer 
cells played a causable role in the downregulation of SOCS1 
and subsequent upregulation of STAT3, which then promoted 
emergence of EMT-related features, as enhanced invasion 
and migration. This is in tandem with another study showing 
that miR-155 can promote STAT3-mediated tumorigenesis in 
breast cancer by targeting SOCS1, one of the major suppressing 
factors of STAT3 activation (141).

Interaction with long non-coding RNA. lncRNAs are defined 
as non-protein coding transcripts longer than 200 nucleotides. 
Recently, an lncRNA activated by TGF-β (lncRNA-ATB) was 
demonstrated to promote invasion and metastasis in HCC. 
By competitively binding miR-200 family, lncRNA‑ATB 
upregulated ZEB1 and ZEB2, and thus induced the EMT 
process (142). Subsequently, an aberrant IL-6/STAT3/IncTCF7 
signaling was observed in HCC, which also contributes to the 
aggressiveness of the HCC via triggering EMT (143). These 
studies well present a new direction for future study by illus-
trating the novel involvement of lncRNA in EMT process and 
their possible association with EMT key regulators such as 
TGF-β and STAT3.
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Interaction with circular RNA. circRNAs are a novel class of 
endogenous non-coding RNAs that also participates in the 
gene expression regulation. Unlike miRNAs and lncRNAs 
that are terminated with 5' caps and 3' tails, circRNAs form a 
covalently closed loop without accessible termini, rendering it 
stable and resistant to exonuclease-mediated degradation (144). 
Despite circRNAs being abundant in eukaryocytes, it was not 
noted until recent reports revealed that circRNAs could act as 
a miRNA sponge to inhibit its activity and thus regulate gene 
expression (145).

ciRS-7, presented with >70 conserved miR-7 binding 
sites, was able to bind to miR-7 efficiently and suppress its 
activity, which in turn increased levels of miR-7 targets (145). 
As a tumor‑suppressing miRNA, miR-7 has been shown 
to reverse EMT and impair metastasis in gastric cancer by 
targeting insulin-like growth factor receptor 1 (IGFR1) and 
indirectly downregulating Snail (146). In addition, miR-7 is 
severely depressed in colorectal cancer and serves as a tumor 
suppressor by targeting the oncogenic transcription factor 
Yin Yang 1 (YY1) (147). Therefore, it is tempting to speculate 
that ciRS-7 or some unknown circRNAs contribute to the 
silencing of tumor-suppressing miRNAs like miR-7 in GI cancer, 
thus giving rise to the expression of oncogenic transcription 
factors. For example, circRNA_001569 was recently identified 
as a sponge of miR-145 and functioned to upregulate miR-145 
targets E2F5, BAG4 and FMNL2, resulting in enhanced prolif-
eration and invasion of colorectal cancer cells (148).

From this perspective, we have recently noted a correla-
tive expression of STAT3 and one of the circRNAs in diverse 
pancreatic cancer cell lines and tissues (data not shown). Our 
following experiments are aimed to find the possible link 
miRNAs between these two factors and to further define their 
exact function in EMT process of pancreatic cancer. Obviously, 
the emerging circRNAs and their mysterious interactions with 
miRNAs and transcription factors have prompted new and 
promising avenues to uncover the highly complex network of 
EMT regulation.

Crosstalk with other signaling pathways
Crosstalk between STAT3 and TGF-β signaling pathways. 

TGF-β is a poten inducer of EMT through both Smad-
dependent transcriptional events and Smad-independent 
signaling (149). Given the bi-directional role of TGF-β in 
carcinogenesis, alterations in TGF-β signaling that shift 
the tumor-promoting and tumor-suppressing balance is 
rather critical. Deletion of Smad4, one of the Smad family 
of signal transducers from TGF-β, occurs in up to 50% 
advanced pancreatic cancer, making it candidate for further 
investigation. Zhao et al  (150) restored Smad4 expression 
in pancreatic cancer cells and observed an impaired ability 
in invasion and metastasis, which was later attributed to a 
Smad4-dependent suppression of STAT3Tyr705 phosphory-
lation. The researchers first established cross-talk between 
Smad4-independent TGF-β signaling and STAT3 in pancre-
atic cancer where the persistent activation of STAT3 due to 
the loss of Smad4 cooperated with TGF-β to promote an 
invasive lineage (150). The same synergistic effect of IL-6/
STAT3 and TGF-β in inducing EMT was also observed 
in lung carcinomas in vitro, albeit here STAT3 was shown 
necessary for the canonical TGF-β/Smad signaling (151).

Another study has shown that Snail expression was selec-
tively induced by TGF-β in pancreatic cells harboring mutated 
KRAS (88). Through this process, STAT3 acted as a crucial 
node that TGF-β and Ras signals converged on. Treatment of 
TGF-β relieved the interaction between STAT3 and its antago-
nist PIAS3, which instead bound to Smad3 and consequently, 
intensified the TGF-β signaling. Interestingly, the dissociated 
STAT3 enhanced Snail expression and triggered EMT in some 
manner without binding to its canonical DNA-binding sites at 
Snail promoter (88). Taken together, there is tight crosstalk 
between STAT3 and the classic EMT-inducing signaling 
TGF-β, which may contribute to the EMT and invasion of GI 
cancers.

Crosstalk between STAT3 and Notch signaling pathways. 
Notch, one of the embryonic pathways of epithelial plasticity, 
has been associated with tumor recurrence and stemness 
partially by inducing EMT (152). Similar to TGF-β, Notch 
signaling is tightly involved in initiation and progression of 
GI cancer. Investigation on elevated Notch-2 and its ligand 
Jagged-1 in gemcitabine-resistant cancer cells uncovered that 
Notch signaling was mechanistically linked with acquisition 
of a mesenchymal phenotype in pancreatic cancer  (153). 
Targeting both Notch and JAK2/STAT3 pharmacologically 
showed efficacy on cell growth and epithelial plasticity in 
pancreatic cancer, suggesting a favorable interplay between 
these two oncogenic pathways during cancer progression (154). 
Of note, in vitro and in vivo studies demonstrated the involve-
ment of a novel Notch/STAT3/Twist cascade in gastric cancer 
cell growth and metastasis, where the interaction between 
p-STAT3 and the promoter of Twist was enforced by Notch1 
receptor intracellular domain  (N1IC)  (155). Therefore, the 
Notch/STAT3/Twist cascade has been demonstrated to 
promote colony formation, migration and invasion in gastric 
cancer (155).

How does the activated Notch1 receptor promote STAT3 
phosphorylation? One mechanism may be explained by 
the direct phosphorylation of STAT3 in the presence of 
Hes1 (155,156), the most characteristic target of Notch signaling. 
Alternatively, Notch1 signaling may promote expression of 
cytokines that can subsequently activate STAT3. For example, 
Notch was reported to stimulate IL-6 expression in breast 
cancer cells and then drive both autocrine and paracrine JAK/
STAT3 signaling via a non-canonical mode, independent of 
Hes1 (157). Notably, the activation of jagged1/Notch by IL-6/
STAT3 was also identified in the development of trastuzumab 
resistance in gastric cancer cells (158). Prolonged treatment by 
trastuzumab induced EMT-like and drug-resistant phenotype 
in gastric cancer, which was attributed to the compensatory 
activation of STAT3 and its reciprocal activation of Notch 
signaling  (158). Collectively, this reciprocal interaction 
between STAT3 and Notch signaling may be responsible for 
the invasion, stemness as well as drug resistance of GI cancers.

Crosstalk between STAT3 and Wnt signaling pathways. Wnt 
signaling is another signaling that potentially interacts with 
STAT3 to elicit the EMT process in GI cancer. In the absence 
of Wnt signals, β-catenin is phosphorylated by a complex of 
GSK-3β, Axin and adenomatous polyposis coli (APC), which 
renders β-catenin sequestered in the cytoplasm. However, in 
canonical Wnt signaling, activation of the receptor Frizzled 
by Wnt ligands disrupts the formation of the complex and 
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thus enables β-catenin to translocate into the nucleus, 
where β-catenin forms complex with T cell factor/lymphoid 
enhancing factor (TCF/LEF) family transcription factors and 
jointly binds to the promoter of their target genes, such as 
Snail, Slug and Twist (5).

Intriguingly, it has been suggested that activation of 
STAT3 may participate in the canonical Wnt signaling in GI 
cancer. For example, co-expression of p-STAT3 and β-catenin 
was observed in colorectal cancer tissues and was associated 
with worse prognosis (159). Subsequent in vitro experiment 
demonstrated that STAT3 activation is required for the nuclear 
accumulation of β-catenin, which is the commonly recognized 
key event for the development of colorectal cancer  (159). 
Furthermore, a recent study has shown that STAT3 overex-
pression significantly increased the levels of β-catenin and 
TCF1, and further promoted the proliferation and survival of 
pancreatic cancer cells (160). Additionally, STAT3 was also 
regulated by β-catenin/TCF signaling (161). A functional TCF 
binding element was detected in the promoter of STAT3, and 
transfected β-catenin in esophageal cancer cells enhanced the 
expression of STAT3. It was then proposed that STAT3 is a 
target of β-catenin/TCF signaling and by upregulating STAT3, 
β-catenin/TCF promoted the esophageal tumorigenesis (161).

Apart from the mechanisms mentioned above, STAT3 has 
been recently implicated in a noncanonical Wnt signaling that 
regulates EMT in a wide range of solid tumors (162). Wnt 5a/b 
and their cognate receptor Fzd2 were found to be gener-
ally elevated in late-stage mesenchymal type malignancies 
including HCC and colon cancer. Following study revealed 
an unconventional mechanism of STAT3 activation process 
in these Wnt5-Fzd2-expressing tumor cells. Wnt receptor 
Frizzled2, when activated by its ligands, recruited tyrosine 
kinase Fyn, a Src family kinase, to phosphorylate STAT3 
on Tyr705, and thus initiated the transcriptional program 
that ultimately drove the process of EMT, cellular migration 
and invasion (162). In brief, despite it is evident that STAT3 
interacts with Wnt signaling in various GI cancers, it remains 
largely unknown how this crosstalk contributes to the cancer 
invasion and metastasis. Apparently, this needs to be further 
investigated.

5. Conclusion and outlook

Aberrant activation of STAT3 has been detected at high 
frequency in a majority of epithelial malignancies, including 
those of GI cancer. However, excessive STAT3 activation 
usually occurs in the absence of genetic mutation. Instead it 
often results from the autocrine and paracrine production of 
IL-6 family cytokines derived from tumor cells and stroma 
cells. These multiple oncogenic signaling pathways are 
responsible for the abnormal activation of STAT3 and are 
targets for further investigation. However, regardless of the 
undefined mechanisms of STAT3 activation in tumor cells, 
strong biological bases have supported it as an oncogenic 
driver involved in the initiation and progression of GI cancer.

In this review, we first summarized the role of STAT3 in 
GI cancer pathogenesis, particularly focusing on the processes 
of inflammatory-associated tumorigenesis, angiogenesis, 
invasion and metastasis, and CSCs generation. After that, 
we looked into the possible mechanisms of STAT3-mediated 

EMT in GI cancer. On the basis of its extensive interaction 
with EMT-inducing transcription factors, miRNAs and other 
signaling pathways, a critical role of STAT3 in GI cancer 
EMT has been fundamentally established. However, studies 
of this part are not abundant. New players in EMT regula-
tory network such as miRNAs, lncRNAs and circRNAs are 
emerging quickly and more importantly, some of them can 
be therapeutically manipulated. Therefore, a comprehensive 
understanding of the aberrant STAT3 signaling cascade in GI 
malignancies and its association with these classic and novel 
regulators of EMT may hold great promise for the identifica-
tion and validation of therapeutic targets that can effectively 
repress and control the aggressiveness of GI cancer.
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