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Abstract.  Osteopont in (OPN) is a mat r icel lula r 
phosphoglycoprotein overexpressed in several tumor types 
and can activate several aspects of cancer progression 
in solid and non‑solid tumors. In the present review, the 
roles of OPN in mediating resistance to chemotherapy and 
radiotherapy and their main associated signaling pathways 
were summarized and discussed. Furthermore, it was detailed 
how OPN expression may be able to modulate resistance 
to these therapies by controlling epithelial cell plasticity, 
stemness potential and cell survival. Based on these data, the 
use of OPN and associated signaling was then proposed as 
potential molecular targets in order to sensitize resistant cells 
to main current therapeutic approaches. Finally, based on 
experimental evidence obtained by our group, the importance 
of investigating the specific roles OPN splicing isoforms have 
and how their properties may specifically control resistance 
to therapy was highlighted. These data elucidate a better 
understanding of how total OPN and their splicing isoforms, 
as well as their associated signaling, may contribute to main 
aspects of chemoresistance and radioresistance, such as those 
controlling cell survival, apoptosis, autophagy, stemness, 
epithelial cell plasticity and associated cell receptors.
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1. Introduction

Cancer therapy resistance is mediated by several mechanisms, 
including intrinsic and extrinsic factors, and those originating 
from the tumor microenvironment  (TME)  (1). Most of the 
widely used chemotherapeutic agents and γ‑radiation utilize 
apoptosis or autophagy as common death pathways. Thus, a 
better understanding of the molecular mechanisms behind 
tumor biology and cancer therapy resistance is a mandatory step 
to propose novel approaches aiming to bypass chemotherapy 
and radiotherapy resistance and associated gene products. 
Among several markers associated with response to therapy, 
osteopontin (OPN) has been identified as a key molecule (2,3).

OPN is a multi‑functional chemokine‑like matricellular 
phosphoglycoprotein. Depending on its intracellular or 
extracellular localization, OPN is involved in a series of 
physiological roles, including inflammation, cell adhesion and 
migration, differentiation, cell survival and apoptosis, as well 
as regulation of bone matrix mineralization. These diverse 
biological roles are partly due to its capacity to interact with 
several molecules, including cell surface receptors, such as 
integrin and cluster of differentiation (CD44), intracellular 
signaling molecules, calcium and heparin. OPN is produced 
by distinct cell types, such as epithelial, stromal, immune 
system, bone and endothelial cells (4). High OPN expression 
has also been detected in adipose tissues and body fluids (4).

In multiple cancer types, OPN expression is upregulated (3). 
In tumors, OPN regulates tumorigenesis, tumor progression and 
metastasis formation (5), by activating cell migration, inhibiting 
apoptosis (6,7), stimulating angiogenesis (8) and metabolism (9), 
and modulating the tumor microenvironment  (10) and the 
immune system  (11). Notably, OPN can also promote cell 
survival by negatively regulating apoptosis in response to stress 
conditions, including exposure to anticancer agents effect (12). 
OPN performs these roles by binding to cell surface receptors, 
including integrin and CD44 cell receptors (13).
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Several aberrantly activated signaling pathways can activate 
OPN expression in cancer cells, such as activator protein‑1, 
mycA, phosphatidylinositol 3 kinase (PI3K), serine/threonine 
kinase  (AKT) and nuclear factor‑қB (NF‑қB)  (14, 15). 
Notably, OPN has been described as a key modulator of cancer 
hallmarks, by regulating the main aspects of tumor progression 
in several tumor models (16,17). OPN is able to promote tumor 
cell migration by interacting with integrin receptors, especially 
αvβ3 integrin, stimulating cell adhesion and tumor cell 
migration properties (3). It has been demonstrated previously 
that OPN downregulation in breast cancer cell lines inhibits 
OPN interaction with αvβ3 integrin, thereby impairing cell 
migration, invasion and apoptosis (18). It was demonstrated that 
these effects have been mediated by PI3K/AKT/mechanistic 
target of rapamycin  (mTOR) signaling, promoting the 
upregulation of light chain  3 and beclin‑3, then favoring 
apoptotic cell death, while inhibiting aggressive phenotype 
of these breast cancer cells. It has also been demonstrated 
that alteration of OPN expression levels may influence tumor 
growth, migration and cell cycle in human nasopharyngeal 
CNE‑2 carcinoma cell lines (18). When downregulating OPN 
expression, diminished levels of matrix metalloproteinase 
MMP‑2 and MMP‑9 have been observed, evidencing that 
OPN may also induce MMP expression levels through the 
activation of NF‑қB signaling in this tumor model (19). OPN 
expression levels can also modulate mitochondrial mediated 
apoptotic cell death, involving cytochrome  c, apoptotic 
protease activating factor  1, cleaved caspase‑3 and B  cell 
lymphoma  (Bcl)‑2/Bcl‑2‑associated  X protein, resulting 
in lower expression levels of proteins associated with cell 
invasion, such as MMP‑2 and urokinase‑type plasminogen 
activator (uPA) (20). Then, downregulation of OPN expression 
levels can promote apoptotic cell death and cell invasion 
properties in a mitochondrial‑dependent pathway (20). OPN 
can also promote tumorigenesis and tumor progression by 
evading apoptotic cell death, mainly by interacting with CD44 
cell receptors (21). Furthermore, OPN interactions with immune 
and inflammatory cells from the TME perform essential 
roles on tumor development and progression. Besides being 
produced by tumor cells, OPN can also be secreted by stromal 
and infiltrating inflammatory cells that can affect the TME 
and its corresponding cell roles. Stromal fibroblasts can also 
be influenced by OPN (22,23). Given its roles in angiogenesis, 
extracellular matrix remodeling and metastasis, their presence 
and influence by OPN can also favor tumor growth (22,23). It has 
been reported that when interacting with α9β1, OPN activates 
p38 and extracellular signal‑regulated kinase (ERK) signaling, 
which then can promote the expression of cyclooxygenase‑2 
and prostaglandin E (PGE), favoring melanoma tumor cell 
migration (24). In addition, macrophages from the TME, when 
activated by OPN can promote angiogenesis via PGE2 and 
stimulate the expression of MMP‑9, consequently promoting 
tumor progression in this tumor model (24). When recruiting 
macrophages to the tumor inflammatory environment, OPN 
can also stimulate tumorigenesis (25).

OPN also induces the expression and activity of MMPs, 
which can contribute to tumor metastasis by degrading the 
extracellular matrix  (ECM) and promoting cell invasion. 
Conversely, OPN biological activity can also be modulated 
by MMP‑induced cleavage (26). It is well‑known that OPN 

stimulates tumor cell invasion and migration possibly by 
inhibiting apoptotic cell death and by regulating the activity 
of MMP‑2 and MMP‑9 that degrade the ECM (27). OPN 
can stimulate the activity of MMP‑9, modulating multiple 
signaling pathways, such as focal adhesion kinase (FAK), ERK 
and NF‑қB, which then can regulate cytoskeleton architecture, 
cell growth, motility and extracellular matrix (ECM) (28,29). 
By activating PI3K/AKT signaling, OPN can similarly regu-
late hypoxia‑inducible factor (HIF)‑1α expression via αvβ3 
integrin interaction and promoting ECM degradation through 
uPA and MMP‑9, further mediating metastasis formation in 
ovarian cancer cells (30).

Also in the context of OPN roles on modulating the 
TME and the immune system, OPN has been described 
as a multifactorial cytokine activated by T  lymphocytes, 
monocytes, macrophages, epithelial cells, fibroblasts and a 
promoter of cell‑mediated immune responses (15,28).

Similarly, OPN is a typical angiogenesis stimulating factor, 
sustaining tumor progression and metastatic growth. The role of 
OPN in angiogenesis is mainly associated with OPN interaction 
with αvβ3 integrin, a central angiogenesis marker (31), but is 
also associated with several other factors, including vascular 
endothelial growth factor (VEGF) (32,33). OPN interactions 
with VEGF are also mediated by aberrant signaling pathways, 
such as PI3K/AKT and ERK1/ERK2 (32,33). It has also been 
demonstrated in acute leukemia that the expression of OPN 
and VEGF are strongly correlated with the occurrence and 
development of this non‑solid tumor. In this model, OPN 
can regulate VEGF expression and promote angiogenesis 
besides favoring disease progression (31). It was also found 
that OPN interaction with αvβ3 activates signaling pathways, 
such as breast tumor kinase/NF‑қB/activating transcription 
factor  (TF)‑4, promoting cell migration, tumor growth, 
endothelial cell migration and angiogenesis (34). Our group 
also demonstrated that OPNb and OPNc splicing isoforms 
favored tumor growth, cell proliferation, invasion and migration 
by modulating VEGF, MMP‑2 and MMP‑9 expression levels 
through PI3K signaling (35).

It has also been demonstrated that OPN can modulate 
metabolism by signaling through the activation of 
oxidoreductase gene expression, associated with the 
mitochondrial respiratory chain, the hexose monophosphate 
shunt or the regulation of the hexose monophosphate shunt (9). 
Furthermore, it has been reported that OPN can disrupt liver 
cholesterol metabolism (36).

The majority of the data regarding the role of OPN in 
cancer cell refers to total OPN, which includes the sum of 
all OPN isoforms, including those generated by alternative 
splice, post‑translational modifications and alternative transla-
tion (17,37).

OPN primary transcript suffers alternative splicing, 
generating at least five splice variants, named OPNa (which 
contain all coding exons), OPNb (exon 5 is deleted), OPNc 
(exon 4 is deleted), OPN4 (in which both exon 4 and exon 5 
are deleted) and OPN5 (which contains an additional exon 
originated from inclusion of a region from intron 3; Fig. 1). 
OPN splicing isoforms (OPN‑SI) are aberrantly expressed in 
cancer cells (17). Particularly, the expression and functional 
roles of OPNa, OPNb and OPNc have been broadly studied 
in distinct tumor models, in which they were demonstrated 
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to present tissue and tumor specific roles (17,37). Notably, the 
same OPN‑SI might activate or inhibit tumor progression, 
depending on the tumor type (17,37). However, data regarding 
the expression and functional roles of OPN4 and OPN5 in 
tumor cells are scarce. One previous report described that 
these recently described OPN‑SI are frequently co‑expressed 
in esophageal carcinoma tissues (38), but functional studies 
evaluating these splice variants are still lacking.

In the present review, among the broadly known OPN roles 
on activating tumor progression, additional features involved 
in tumor resistance are highlighted. These typically include 
OPN functions on modulating cell survival, apoptosis and 
autophagy, as well as cell plasticity and sustaining stem‑like 
properties of cancer cells (39), which are key factors associated 
with tumor resistance.

A molecular mechanism frequently associated with failure 
in the treatment of malignant carcinomas is the biological 
reprogramming of epithelial cells called epithelial mesenchymal 
plasticity. More recently, it has been defined as a dynamic process 
implicated in epithelial‑mesenchymal transition (EMT) and 
its reverse program, mesenchymal‑epithelial transition (MET) 
or intermediate phenotypes, known as partial or intermediate 
EMT (40,41). EMT renders cancer cells the ability to lose 
epithelial traits, while gaining mesenchymal features. During 
EMT, cells also acquire stem cell‑like properties and are able 
to disseminate and colonize to distant organ sites, where they 
may exhibit elevated resistance to cancer therapies (42,43). 
Aberrant activation of oncogenic signaling pathways, 

including Wnt/β‑catenin, hedgehog, Notch , PI3K‑AKT, tumor 
necrosis factor‑α and transforming growth factor (TGF)‑β 
has a critical role in EMT (44) and occurs during acquisition 
of EMT phenotype and resistance to therapy. Furthermore, 
induction of resistance is also mediated by several genes 
regulated by the TF NF‑κB, including Bcl‑2, Bcl‑xL, X‑linked 
inhibitor of apoptosis (XIAP), survivin and AKT, which have 
been reported to mediate chemoresistance and radioresistance 
in numerous types of tumor cells (45).

In the present report, current knowledge regarding the OPN 
roles on mediating chemoresistance and radioresistance were 
reviewed, which are the primary cancer treatment approaches 
that are currently used. The distinct mechanisms by which 
OPN can promote resistance to specific drugs and their associ-
ated signaling pathways are also explored. Based on these data, 
putative treatment approaches targeting OPN that have been 
proposed to overcome resistance or inhibit tumor progression, 
and the particular contribution of OPN splice variants on the 
resistant phenotype are then discussed.

2. OPN and resistance to chemotherapy

OPN is able to mediate resistance to distinct chemotherapeutic 
drugs and in several cancer types. Table I summarizes these 
data and the corresponding signaling pathways and molecular 
mechanisms involved.

In non‑solid tumors, such as leukemia, OPN has been 
reported to mediate resistance to parthenolide and sorafenib. 

Figure 1. Structure of OPN isoforms. Exonic regions represented by white cylinders correspond to 5’ and 3’ untranslated regions. Each translated Ex is 
represented by orange cylinders. Ex total lengths are also presented. OPN functional domains are also presented above each Ex, such as RGD, SVVYGLR 
and calcium binding domain, as well as post‑translational modifications, such as phosphorylation and glycosylation sites. Also presented are protein cleavage 
sites for thrombin and MMPs. The initiation translation codon (AUG) and the stop codon are also represented. OPNa, the full length isoform, contains Ex 2‑7, 
whereas OPNb and OPNc lack Ex 5 and 4, respectively. Ex 4 and 5 are deleted in the OPN4 isoform, whereas OPN5 contains an extra Ex resulting from 
an inclusion of an intronic region located between Ex 3 and 4, corresponding with the longer isoform. Total length of each isoform of each isoform is also 
presented. OPN, osteopontin; aa, amino acids; MMP, metalloproteases; Ex, exon.
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The natural compound parthenolide was demonstrated 
to induce apoptosis in daunorubicin‑resistant stem‑like 
leukemic cells through OPN downregulation and modulation 
of AKT, mTOR and β‑catenin signaling  (46). Particularly 
in acute myeloid leukemia, OPN was demonstrated to be 
upregulated in leukemic blasts, being correlated with a poor 
clinical outcome (47). Consistently, OPN promoted resistance 
to sorafenib by binding to αvβ3  integrin and by inducing 
β‑catenin expression in an AKT and glycogen synthase kinase 
(GSK)3β‑dependent manner (48).

Furthermore, there are several examples in which OPN 
mediates resistance in solid tumors, most of which focused 
on the roles of OPN in hepatocellular carcinomas (HCC). In 
these tumors, high OPN expression level is correlated with 
increased metastatic potential and resistance to taxanes or 
cisplatin. In lung cancer cells, intracellular OPN upregulation 
promotes cisplatin resistance by inducing the expression of 
anti‑apoptotic protein Bcl‑2 and by blocking caspase‑3 and 
caspase‑9 from activation (5). Also, OPN is able to stimulate 
HCC cell survival and autophagy, which then can favor stem 
cell‑like properties and the resistant phenotype in response to 
epirubicin and cisplatin via binding with its receptor integrin 
αvβ3 and sustaining Forkhead box (Fox)O3a stability (42). 
It has been proposed that OPN may promote a cancer stem 
cell  (CSC)‑like phenotype via the αvβ3‑NF‑κB‑HIF‑1α 
pathway (49).

Other studies using human samples with oral squamous 
cell carcinoma demonstrated that OPN expression levels 
are correlated with therapy response and shorter overall 
survival. OPN upregulation in these tumors promoted 
resistance to cisplatin and to 5‑fluorouracil and also involved 
the OPN‑integrin αvβ3 axis (50). In addition, several reports 
described the association between upregulated OPN expression 
and chemoresistance in patients treated with oxaliplatin in 
colorectal cancer (51), cisplatin in lung cancer (5), temozolomide 
and cisplatin in glioma  (52), cyclophosphamide in breast 
cancer  (53) and vinorelbin, etoposide and gemcitabine in 
malignant pleural mesothelioma (54). Similarly to other tumor 
models, resistance to these chemotherapeutic drugs mainly 
involves the regulated expression of octamer‑binding TF 4 and 
sex determining region Y‑box (SOX)2 (modulators of stemness), 
Bcl‑2, caspase‑3 and caspase‑9 (apoptosis regulators) (5,52), 
as well as NF‑κB, AKT and p38/mitogen‑activated protein 
kinase (MAPK) signaling (49,51). Furthermore, it has been 
demonstrated in malignant pleural mesothelioma that OPN 
could regulate chemosensitivity to vinorelbine, etoposide 
and gencitabin through the alteration of CD44 binding to 
hyaluronate  (HA)  (54). HA is a linear glycosaminoglycan 
that interacts with cell surface receptors, including CD44, 
facilitating cell adhesion, cell motility, cellular proliferation 
and tumor progression  (54). OPN is strongly involved in 
multidrug resistance in this tumor by enhancing the CD44 
binding to HA and PI3K/AKT signaling, thereby promoting 
cell survival and chemoresistance (54).

3. OPN and association to radioresistance

In addition to OPN roles in mediating chemoresistance, 
reports describing the functional association between OPN 
and radiotherapy resistance are scarce (Table I). However, 

a number of reports have described the roles of OPN as a 
marker of response to radiotherapy (55,56). OPN expression, 
in conjunction with the epidermal growth factor receptor 
pathway, have been associated with radiation resistance 
and poor prognosis in lung cancer, particularly in patients 
presenting tumors with KRAS mutations (57). It has also been 
reported in lung cancer that OPN is an indicator of resistance 
to radiotherapy. In a previous study, overexpression of beclin‑1 
induced cell death by autophagy in human lung cancer cells, 
reversing radioresistance (58). Radioresistance in these tumors 
has been associated with a stem cell‑like phenotype and 
invasive potential (57). In cervical cancer, high OPN and low 
E‑cadherin expression levels correlate with a radiation‑resistant 
phenotype (59), further implicating OPN as a key molecule in 
the interface of radioresistance and cellular plasticity. Stem 
cell‑like features and radioresistance in glioma cells can be 
promoted by OPN possibly via activation of CD44 signaling 
through its intracellular domain by enhancing HIF‑2α 
activity (60). Fig. 2 summarizes the mechanisms and signaling 
pathways activated by OPN on promoting chemoresistance 
and radioresistance.

4. OPN in the interface of epithelial plasticity and thera-
peutic resistance

EMT corresponds with the dynamic transdifferentiation of 
epithelial into mesenchymal cells, in which cells lose their 
epithelial features and become more motile mesenchymal 
cells  (44). Increasing evidence has demonstrated that 
there is a close association between EMT and resistance to 
therapy (59,60), which may be caused by an enhancement of 
cancer cell survival, cell fate transition, and/or upregulation of 
drug resistance‑related genes during the EMT transition.

The EMT process is mediated by several EMT‑inducing 
TFs  (EMT‑TF), including TWIST1/2, SNAIL1/2 and zinc 
finger E‑box binding homeobox (ZEB)1/2. In addition to these 
established EMT‑TFs, other TFs have been demonstrated 
to induce or regulate EMT, including Fox TFs, GATA 
family, SOX, ovo‑like transcriptional repressor  1/2 and 
grainyhead‑like 2 (61,62). Mechanistically, EMT‑TFs suppress 
the expression of key epithelial markers, such as E‑cadherin, 
while activating the expression of mesenchymal genes, such 
as those coding for vimentin and fibronectin. Collectively, 
these regulatory networks control the integrity of and the 
balance between the epithelial and mesenchymal phenotypes. 
In chemoresistant cells, EMT‑TFs increase cell survival 
in response to therapy‑induced programmed cell‑death by 
upregulating anti‑apoptotic genes, while downregulating 
gene products performing pro‑apoptotic roles (52). Certain 
EMT‑TFs can also contribute to hormone therapy resistance 
by modulating the expression of their corresponding 
receptors  (61). These findings make the EMT process an 
attractive target for reducing chemotherapy resistance (61).

It has also been demonstrated that EMT‑TFs act 
cooperatively with changes at the RNA level that regulate 
EMT progression, such as alternative splicing and 
microRNA (miRNA or miR) and long non‑coding RNA 
mediated control of EMT (61‑64). EMT process is further 
controlled by multiple signaling pathways, in which multiple 
morphogenetic and environmental signals, such as TGF‑β, 
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WNT, epidermal and platelet‑derived growth factors, 
inf lammatory cytokines and integrin receptor ligands, 
have been demonstrated to promote EMT in response to 
extracellular signals (61). Among these molecules, NF‑κB 
and matrix MMPs have also been identified as specific 
inducers of EMT. NF‑κB has been described as a contributor 

to EMT, by combining with oncogenic gene products, such 
as RAS in order to protect cells from apoptosis (65). MMPs 
induce EMT associated with malignant transformation via 
a pathway dependent upon production of reactive oxygen 
species (ROS) and degrading matrix proteins, then favoring 
tumor cell migration and motility (65).

Figure 2. Cancer treatment resistance mechanisms mediated by OPN. Numerous and intricate mechanisms developed by cancer cells have been described 
at different levels in response to intracellular or extracellular OPN. Upon OPN binding to integrin receptors, especially by αV/β3 heterodimers, the 
PI3K/AKT/mTOR/β‑catenin signaling pathway is triggered, leading to cell survival and chemotherapeutic resistance. OPN can also confer stem cell‑like 
features to cancer cells by sustaining FoxO3a stability‑induced autophagy as well as activating the αv/β3/NF‑κB/HIF‑1α pathway. Accordingly, OPN can 
modulate cancer stemness by altering CD44 receptor binding to hyaluronate and inducing AKT phosphorylation via CD44, thereby promoting cell survival 
and chemoresistance. In conjunction with the EGFR pathway, OPN expression, has been associated with radiation resistance particularly in tumors presenting 
KRAS mut, which was closely associated with the modulation of BIM and CRMP1 expression and thus, stem cell phenotype. Consistently, intracellular OPN 
was demonstrated to regulate the expression of Oct4 and Sox2, well known modulators of stemness. OPN expression levels have been demonstrated to negatively 
regulate p38 MAPK and correlate with caspase‑3 and ‑9 blocking and expression of Bcl‑2 anti‑apoptotic protein, further contributing towards an apoptosis 
inactivation phenotype. Therefore, OPN has been demonstrated to modulate signaling pathways associated with chemoresistance and radioresistance, through 
promoting cell survival and inhibiting apoptosis as well as modulating autophagy and stemness in tumor cells. OPN, osteopontin; PI3K, phosphoinositide 
3‑kinase; AKT, protein kinase B; mTOR, mechanistic target of rapamycin; Fox, Forkhead box; NF‑κB; nuclear factor‑κB; HIF‑1α, hypoxia‑inducible factor‑1α; 
Oct4, octamer‑binding transcription factor 4; CD, cluster of differentiation; EGFR, epidermal growth factor receptor; mut, mutations; Bcl‑2, B cell lym-
phoma‑2; BIM, Bcl‑2‑like protein 11; CRMP1, collapsin response mediator protein 1; Sox2, sex determining region Y‑box 2; MAPK, mitogen‑activated protein 
kinase; GSK3β, glycogen synthase kinase 3β; CBP, cAMP response element binding protein binding protein.
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TGF‑β, mostly TGF‑β1 isoform, is the most well‑studied 
cytokine in the induction of EMT. As reviewed elsewhere (61), 
TGF‑β mediates EMT through mothers against decapen-
taplegic homolog (SMAD)‑dependent or SMAD‑independent 
pathways The SMAD‑dependent pathway is initiated by 
binding of TGF‑β1 to TGF‑β receptor  (TβR)II and TβRI, 
which then activate SMAD protein complex, which then enter 
the nucleus to induce the expression of lymphoid enhancer 
binding factor‑1 TF. This TF binds to β‑catenin, suppressing 
transcription of epithelial markers, while promoting the 
expression of mesenchymal markers. SMAD complexes not 
only activate the expression, but also increase the activity of 
EMT‑TFs. Other changes in gene expression during EMT 
occur without directly requiring EMT‑TFs, but are rather 
controlled by TGF‑β‑activated SMADs, which can directly 
activate the expression of certain mesenchymal genes. TGF‑β 
also induces signaling through cytoplasmic expression of 
β‑catenin, which is also modulated by the Wnt pathway. 
In addition to TGF‑β‑activated SMAD signals, TGF‑β 
also induces EMT signaling through RHO‑like GTPases, 
PI3K/AKT and MAPK pathways. Activation of RHO, RAC 
and cell division control protein 42 homolog GTPases drives 
actin reorganization, and lamellipodia and filopodia formation. 
PI3K signaling activation by TGF‑β promotes the activation of 
mammalian TOR complex (mTORC1 and mTORC2). Notably, 
mTORC1 and mTORC2 modulate cell size, protein synthesis, 
motility and invasion. AKT decreases the level of SNAIL1 
expression, attenuating E‑cadherin repression and the activa-
tion of MMP‑9 expression. AKT also phosphorylates GSK3β, 
resulting in SNAIL‑1 stabilization. TGF‑β also activates ERK, 
p38 and JUN N‑terminal kinase/MAPK pathways, which 
then also increases TGF‑β‑induced transcription, leading to 
increased E‑cadherin repression and activation of N‑cadherin 
and MMP expression. EMT signaling has been demonstrated 
to induce the expression of genes coding for MMP‑2 and 
MMP‑9, which cleave Type IV collagen in the basal lamina 
to promote post‑EMT invasion of underlying tissues. MMP‑3 
has also been demonstrated to directly induce EMT through 
activation of RAC1 GTPase‑reactive oxygen species signaling, 
which promotes SNAIL1 expression. Additionally, SNAIL1/2 
can also promote breakdown of the ECM via upregulation of 
MMPs (61). Furthermore, MMPs are capable of degrading 
E‑cadherin in the cell membrane. All these processes enable 
cells to acquire a mesenchymal phenotype (61).

In this context, OPN has previously been reported as 
a master regulator of epithelial‑mesenchymal plasticity, 
once it has an important regulatory role in the expression 
of key EMT regulators (66‑71). OPN expression also shares 
functional interplay with the previously mentioned traditional 
EMT activators, such as TGF‑β, TWIST 1/2, ZEB1/2 and 
SNAIL‑family members. Importantly, OPN is able to guide 
EMT through specific cellular signaling pathways and by 
restructuring the TME to modify EMT processes (66‑71).

OPN overexpression induces TWIST phosphorylation 
and/or activation through MAPK, AKT and/or RAC/AKT 
signaling pathways (71,72). Besides, OPN upregulates HIF‑1α 
to induce EMT through TWIST activation and by maintaining 
the tumor cell stemness  (66). TWIST also serves in 
OPN‑mediated metastasis through activation of the PI3K/AKT 
pathway (66). Signaling mediated by OPN interacts directly or 

indirectly with ZEB TF family members, as well as leading 
to EMT. Notably, it is known that OPN is a potent activator of 
NF‑κB (73), which induces the expression of both ZEB1/2 and 
therefore can regulate NF‑κB/ZEB dependent EMT. Likewise, 
OPN can regulate ZEB‑related EMT through non‑NF‑κB 
pathways, such as by upregulating the expression of miR‑200 
family members that inhibit ZEB1/2 initiated EMT  (71). 
Otherwise, NF‑κB has also been indicated as a key player of 
OPN and MMP‑9 activation (74). Furthermore, OPN regulates 
EMT by overexpressing SNAIL EMT‑TF. In addition, OPN 
co‑regulates the expression of glioma‑associated oncogene, 
a TF that mediates Sonic hedgehog signaling, which then 
induces the expression of SNAIL (71). Vimentin upregulation 
has also been induced by OPN (66). Notably, OPN induces the 
expression of TGF‑β (71).

It has been reported that OPN is able to modify the tissue 
and TME to support EMT and hence can also indirectly modify 
EMT (66). During tumor progression, limited tumor oxygen 
availability and tumor metabolic demands induce hypoxia. 
As reviewed previously (60,61), the activities of HIF‑1α and 
HIF‑2α are enhanced in response to prolonged TGF‑β and 
certain tyrosine kinase receptors. HIF‑1α and HIF‑2α can then 
activate EMT‑TF expression and/or subcellular localization 
in tumor cells. Immune and stromal cells from the TME 
are also sources of EMT‑inducing cytokine stimulation. It 
has been demonstrated that chemotherapy and radiotherapy 
promote oxidative and inflammatory stress in tumor tissues, 
contributing to increased expression of inf lammatory 
cytokines and subsequent induction of the EMT program. 
In the TME, post‑translational modifications of EMT‑TF 
can also regulate the half‑life of EMT‑TFs (61). Malignant 
signals from the TME with long‑lasting effects on associated 
cancer cells may also modulate epithelial plasticity and then 
sustain the metastatic potential and tumor chemoresistance. 
OPN modulates tumor‑specific EMT by generating 
cancer‑associated fibroblasts (CAFs), which secrete a multitude 
of factors in the TME that support tumor invasiveness and 
metastases, including TGF‑β and interleukin‑6. Tumor‑derived 
OPN and exogenous OPN are able to induce transformation 
of CAFs from mesenchymal stem cells by stimulating the 
production of TGF‑β. OPN also enhances the migration and 
invasion of malignant tumor cells through both the inhibition 
of apoptosis and by regulating the activities of MMP‑2 and 
MMP‑9, which degrade the ECM. OPN has been described 
to upregulate MMP‑9 activity, modulating multiple signaling 
pathways via focal FAK, ERK and NF‑κB that regulate 
cytoskeletal organization, cell motility, cell growth, and also 
cell migration, ECM invasion and tumor growth (61,62). In 
this context, it has been indicated that NF‑κB may be a key 
player in OPN and MMP‑9 activation (27). OPN is a substrate 
for several extracellular proteases and is cleaved in vitro and 
in vivo by MMPs. MMP‑9, for instance, is known to cleave 
OPN (75), and it is also known that OPN‑regulated signaling 
leads upregulation of MMP‑2 in prostate cancer cells (74). 
Similarly, OPN can mediate the activation of MMP‑9 during 
migration of prostate cancer and melanoma cells (74).

It has also been reported that OPN has an important role in 
regulating TGF‑β‑mediated processes and likely also regulates 
TGF‑β‑mediated EMT (70). Considering the emerging roles of 
OPN in modulating the EMT process, thus contributing to a 
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drug resistant phenotype, the analysis of OPN expression has 
been considered as a potential target for future interventions 
to overcome tumor resistance. Notably, it has been reported 
that, unlike secreted OPN, which is able to trigger the EMT 
to initiate cancer metastasis, nuclear OPN is able to induce 
MET, contributing to metastasis establishment at secondary 
sites. In this model, OPN interacted with HIF‑2α, latterly 
impacting on the AKT/mir‑29/ZEB cascade (71). It has also 
demonstrated that VEGF in the TME is able to induce OPN 
nuclear translocation (71).

5. OPN as a target to overcome resistance to cancer therapy

Considering the emerging roles of OPN in several processes 
associated with chemoresistant and radioresistant phenotype, 
and its pleiotropic roles in the tumor cascade, the analysis of 
OPN expression and associated signaling has been considered 
as a potential target for future interventions trying to overcome 
tumor resistance, both to early and advanced tumors.

OPN‑associated signaling pathways include PI3K/AKT, 
mTOR, β‑catenin or phosphatase and tensin homolog (PTEN) 
gene expression (72), as well as αvβ3‑NF‑κB‑HIF‑1α (49), 
caspases and Bcl‑2 (5,52), p38/MAPK (54) and GSK3β (48), 
among other targets. Advances in the understanding of the 
biology of tumor resistance, particularly the signaling pathways 
associated with this phenotype, may enable the development of 
novel approaches to overcome resistance to therapy.

Sp e c i f ic  a nd  t a rge t e d  i n h ib i t ion  of  t hese 
resistance‑associated proteins and signaling pathways 
may potentially increase sensitivity of cancer cells to the 
cytotoxic action of chemotherapeutic agents and to radiation 
exposure (44,45). As an example of this approach to further 
sensitize cells to chemotherapy by targeting OPN and 
associated signaling, isolated primary CD34+/CD38‑ bone 
marrow derived acute myeloid leukemia (AML) cells have 
been treated with curcumin and daunorubicin in combination. 
This strategy induced AML cell growth inhibition and 
increased cytotoxicity by upregulating AKT, mTOR, 
β‑catenin or PTEN. Notably, these effects were stronger when 
OPN expression was specifically knocked‑down (72). It has 
also been reported that OPN/NF‑κB‑mediated autophagy 
is required for the maintenance of the stemness state of 
pancreatic cancer cells, which is associated with survival 
and chemoresistance (76). These data demonstrated that the 
blockade of autophagy by downregulating autophagy markers 
or by treating these pancreatic cells with an autophagy inhibitor 
reduced the pancreatic CSC populations and associated 
features, such as the expression of CD44, CD24, CD133 and 
aldehyde dehydrogenase 1 (76). Once OPN is able to stimulate 
autophagy and the expression of CSC markers (which includes 
integrin and CD44 receptors), these cell populations could 
be prevented by OPN downregulation approaches in order to 
sensitize pancreatic cancer cells to current chemotherapeutic 
drugs, such as gemcitabine (76).

Therapeutic application of small interfering RNA molecules 
targeting OPN (77,78) or neutralizing antibodies associated with 
OPN epitopes (79) have been tested in order to downregulate 
OPN expression levels and the results have been promising. 
An additional approach to sensitize cells to chemotherapy or 
radiotherapy would be using miRNA molecules targeting OPN 

or additional gene products associated with chemoresistance, 
such as those modulating EMT (80,81), drug transporters (78) 
and cell survival (81). Oncogenic miRNAs are the miRNAs 
with a defined role in cancer. Several miRNAs are deregulated 
in cancer cells and correlated with tumor features. Specifically, 
miRNAs have been reported to influence several tumor‑related 
processes, such as EMT, tumor invasion, metastasis and 
resistance to therapy (80,82).

Among currently tested miRNAs targeting OPN, a number 
are able to modulate tumorigenicity, tumor growth and 
metastasis, such as miR‑127‑5p (83), hsa‑miR‑299‑5p (80) and 
miR‑181a (84). However, to the best of our knowledge, there 
is no report describing the specific effects of miRNAs on 
sensitizing tumor cells to chemotherapy. Conversely, a number 
of miRNAs that, via targeting OPN, may be promising tools 
to regulate chemoresistance and radioresistance mediated 
by OPN. It has been demonstrated that miR‑127‑5p and 
hsa‑miR‑299‑5p are able to regulate OPN expression and can 
respectively modulate human chondrocyte cell proliferation 
and tumorigenicity, and also display vasculogenic mimicry of 
spheroid‑forming breast cancer cells (80). Similarly, miR‑181a 
regulation of OPN expression provides a novel mechanism of 
suppressing metastasis in cancer cell lines (84). Furthermore, 
three lentiviral vectors encoding miRNA against OPN have 
been reported to inhibit tumor growth and metastasis of human 
hepatocellular carcinoma, by decreasing MMP‑2 and uPA 
expression, thus leading to inhibition of lung metastasis (85). 
Furthermore, RNA aptamers have also been proposed to target 
OPN and it has been demonstrated to decrease EMT and tumor 
growth (86,87).

Future studies aiming to improve the effects of chemo-
therapy and radiotherapy could propose similar strategies 
targeting OPN signaling and additional pathways associated 
with cancer cell survival and resistance.

6. OPN splice variants and their potential role in tumor 
resistance

Although previous studies have reported the expression 
and roles of OPN‑SI regarding distinct aspects of tumor 
progression, data reporting the association between their 
expression and resistance to therapy are limited. A recent 
report proposed that OPNb and OPNc splicing isoforms 
are aberrantly expressed in leukemia cells in response to 
distinct chemotherapeutic drugs, such as daunorubicin, 
idarubicin and cytarabine, further mediating resistance to 
these drugs (88). However, it was not clearly demonstrated 
that specific knockdown of these splice variants reverted 
chemoresistance. Our group pioneered the studies of OPN‑SI 
and their relation to chemoresistance, demonstrating that 
prostate cancer cells that ectopically overexpress OPNb or 
OPNc are more resistant to docetaxel (DXT) and display 
higher survival rates  (89). The DXT‑resistant phenotype 
was also associated with EMT features in which cells 
overexpressing OPNb or OPNc exhibited upregulated 
mesenchymal markers, as opposed to epithelial markers (89). 
In summary, these data demonstrated that OPN‑SI differently 
modulate chemoresistance. As nuclear OPNc has been 
demonstrated as a prognostic marker in breast cancer (90) 
and also reported to be correlated with relapse (90,91) and 
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poor survival  (92), it is possible that nuclear OPNc may 
also be a potential marker of response to chemotherapy or 
radiotherapy, as has been previously reported (90). Future 
studies should further investigate the roles of OPN‑SI in 
chemoresistance in distinct tumor models and also explore 
their involvement in radioresistance.

7. Conclusions

Growing evidence has pointed to the crucial role that OPN 
has in many aspects of cancer progression, including the 
acquisition of drug resistance. OPN not only induces inte-
grin receptor‑mediated oncogenic signaling pathways but 
also modulates the epithelial‑mesenchymal phenotype and 
stemness, conferring cancer cells the ability to survive, 
proliferate, evade from cell death, migrate and colonize 
other tissues. Consequently, OPN‑overexpressing cells are 
refractory to current treatment options as well as exhibit 
invasive and metastatic potential. Together, these findings 
provide evidence that OPN‑triggered signaling pathways can 
be targeted to specifically induce cell death in chemo‑ and 
radio‑insensitive cancer cells in order to overcome the thera-
peutic resistant phenotype. Future studies will uncover the 
role of specific OPN isoforms in the acquisition of treatment 
resistance and also address whether OPN and its isoforms 
may be reliable markers for cancer progression and poor 
response to standard therapy.
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