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Abstract. Melanoma represents a significant challenge in 
cancer treatment due to the high drug resistance of melanomas 
and the patient mortality rate. This study presents data indicating 
that nanomolar concentrations of the hormonally active form 
of vitamin D, 1α,25‑dihydroxyvitamin D3 [1α,25(OH)2D3], 
its non‑calcemic analogues 20S‑hydroxyvitamin  D3 and 
21‑hydroxypregnacalciferol, as well as the low‑calcemic 
synthetic analog calcipotriol, modulate the efficacy of the 
anticancer drugs cisplatin and dacarbazine. It was observed 
that vitamin D analogs sensitized melanoma A375 cells to 
hydrogen peroxide used as an inducer of oxidative stress. On 
the other hand, only 1α,25(OH)2D3 resulted in a minor, but 
significant effect on the proliferation of melanoma cells treated 
simultaneously with dacarbazine, but not cisplatin. Notably, 
cisplatin (300 µM) exhibited a higher overall antiproliferative 
activity than dacarbazine. Cisplatin treatment of melanoma 
cells resulted in an induction of apoptosis as demonstrated by 
flow cytometry (accumulation of cells at the subG1 phase of 

the cell cycle), whereas dacarbazine caused G1/G0 cell cycle 
arrest, with the effects being improved by pre‑treatment with 
vitamin D analogs. Treatment with cisplatin resulted in an 
initial increase in the level of reactive oxygen species (ROS). 
Dacarbazine caused transient stimulation of ROS levels and 
the mitochondrial membrane potential (Δψm) (after 1 or 3 h 
of treatment, respectively), but the effect was not detectable 
following prolonged (24  h) incubation with the drug. 
Vitamin D exhibited modulatory effects on the cells treated 
with dacarbazine, decreasing the half maximal inhibitory 
concentration (IC50) for the drug, stimulating G1/G0 arrest 
and causing a marked decrease in Δψm. Finally, cisplatin, 
dacarbazine and 1α,25(OH)2D3 displayed modulatory 
effects on the expression of ROS and vitamin D‑associated 
genes in the melanoma A375 cells. In conclusion, nanomolar 
concentrations of 1,25(OH)2D3 only had minor effects on the 
proliferation of melanoma cells treated with dacarbazine, 
decreasing the relative IC50 value. However, co‑treatment with 
vitamin D analogs resulted in the modulation of cell cycle 
and ROS responses, and affected gene expression, suggesting 
possible crosstalk between the signaling pathways of vitamin D 
and the anticancer drugs used in this study.

Introduction

1α,25‑dihydroxyvitamin D3 [1α,25(OH)2D3], or vitamin D, 
is a lipid‑soluble secosteroid produced by skin subjected to 
ultraviolet (UV)B radiation (1‑3). Apart from its widely known 
beneficial role in the regulation of calcium homeostasis, 
vitamin D exerts pleiotropic effects, including regulation of the 
cell cycle, proliferation, differentiation and apoptosis (4‑6). The 
active forms of vitamin D are important in the protection against 
DNA damage (7‑9) and UVB‑induced carcinogenesis in the 
skin (10‑15). An inverse correlation between the concentration 
of vitamin D in serum and total cancer incidence and mortality 
has recently been described (16), implying, that vitamin D 
deficiency is a serious cancer risk factor (13,17). An inverse 
correlation has also been demonstrated between the expression 
of the vitamin D receptor (VDR) and 25‑hydroxyvitamin D3 
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1‑α‑hydroxylase (CYP27B1) with melanoma progression and 
disease outcome (15,18,19). Therefore, active forms of vitamin 
D are now considered for therapeutic use in cancer prevention 
and treatment, supported by numerous epidemiological and 
preclinical studies  (20‑30). It should be emphasized that 
active forms of vitamin D used in combined therapy enhance 
the effectiveness of a number of anticancer drugs, including 
cisplatin (31,32), doxorubicin (33) and proton therapy (34). A 
previous study indicated that vitamin D analogs enhance the 
antiproliferative activity of cisplatin on keratinocytes (35). 
Furthermore, vitamin D and its analogs are currently being 
tested in clinical trials on various types of cancer, including 
melanoma (36,37).

Melanoma, while accounting for only 4% of skin cancers, is 
linked to 80% of mortalities due to skin tumors, and therefore 
represents a significant public health problem (30,38‑42). This 
tumor is aggressive, but potentially curable by surgical excision 
if it is diagnosed at the early stages of development, including 
melanoma in  situ or at the radial growth phase. However, 
with progression of the disease to the vertical growth phase, 
melanoma cells become resistant to the majority of forms of 
treatment, and acquire the ability to metastasize (38,39,43). 
Furthermore, the incidence of melanoma has been rising in the 
Caucasian population worldwide over recent decades (38,39). 
In 2017, melanoma was expected to be the fifth most common 
cancer in males and sixth most common in females in the 
USA (44). In recent years, major progress has been made 
with respect to our understanding of the molecular nature 
of melanoma and the interaction of melanoma cells with the 
immune system. Unfortunately, despite the marked expansion 
of advanced treatment options, primary or acquired resistance 
develops in patients, emphasizing the requirement for additional 
effort to develop effective melanoma therapy (42,45).

The aim of the present study was to investigate the 
modulation of the anticancer properties of selected 
anti‑melanoma chemotherapy agents by vitamin D and its non‑ 
or low‑calcemic analogs 20S‑hydroxyvitamin D3 [20(OH)D3], 
21‑hydroxypregnacalciferol [21(OH)pD] and calcipotriol (46‑50), 
since the use of the hormonally active form of vitamin D, 
1α,25(OH)2D3, at high doses is limited due to the risk of toxic 
effects, including hypercalcemia (51,52). Notably, 20(OH)D3 is a 
natural product synthesized in the human body and detectable in 
human serum (53‑55). It was hypothesized that vitamin D analogs 
would sensitize melanoma cells to classic chemotherapeutic 
drugs, based on a recent study documenting the association 
between vitamin D and oxidative stress in keratinocytes with a 
high proliferative potential, and the effect of vitamin D analogs 
on the sensitivity of these cells to cisplatin (35). Even though it 
is known that cisplatin induces DNA damage (56), it should be 
noted that the mechanism of action of cisplatin partially relies on 
the generation of reactive oxygen species (ROS) (57). Therefore 
the effects of dacarbazine, still used in melanoma therapy and 
also known to produce ROS in cells (58), and cisplatin, used in 
combination with vitamin D or its low calcemic analogs, were 
tested on the human malignant melanoma A375 cell line.

Materials and methods

Chemicals. 1,25(OH)2D3, hydrogen peroxide (30%), cisplatin 
and dacarbazine were Sigma‑Aldrich products (Merck KGaA, 

Darmstadt, Germany). 21(OH)pD was synthesized according 
to Zmijewski et al  (50) by ProChimia Surfaces Sp. z o. o. 
(Sopot, Poland). 20(OH)D3 was synthesized and purified as 
described previously (59). Calcipotriol was a gift from the 
Pharmaceutical Research Institute (Warsaw, Poland).

Cell culture. Human melanoma A375 cells (CRL‑1619) 
were purchased from the American Type Culture Collection 
(Manassas, VA, USA). The cells were cultured in Dulbecco's 
modified Eagle's medium (DMEM) supplemented with 10% 
fetal bovine serum (FBS) (both Sigma‑Aldrich; Merck KGaA) 
and 1% penicillin/streptomycin in an incubator with 5% CO2 at 
37˚C. DMEM medium supplemented with 2% charcoal‑stripped 
FBS was used for all experimental procedures where the effects 
of vitamin D derivatives were examined.

Proliferation assay. The sulphorhodamine B (SRB) assay 
was performed as previously described  (35). Briefly, the 
human melanoma A375 cells were seeded in 96‑well plates 
(7,000 cells per well), cultured overnight and then treated with 
serial dilutions of the compounds (vitamin D, 10‑12‑10‑6 M; 
hydrogen peroxide, 0.004‑0.250 mM; cisplatin, 0.19‑300 µM; 
and dacarbazine, 0.15‑10 µM) being tested for an additional 
24 or 48 h. Following cell fixation with 10% trichloroacetic 
acid for 1 h at 4˚C, the plates were washed 5 times with distilled 
water and air‑dried. Staining solution comprising of 0.4% SRB 
(Sigma‑Aldrich; Merck KGaA) in acetic acid was added to 
each well for 15 min, followed by washing with 1% acetic 
acid. The SRB dye was solubilized using a solution of 10 mM 
buffered Tris Base (pH 10.5) and the absorbance was measured 
at 570 nm using an Epoch™ microplate spectrophotometer 
(BioTek Instruments, Inc., Winooski, VT, USA). The relative 
IC50 value was calculated as the concentration at which half 
the maximum inhibition was observed, i.e., the mid‑point 
between no inhibition and the maximum observed decrease in 
proliferation (60,61).

Cell cycle analysis. The cell cycle was analyzed by quantification 
of DNA content using flow cytometry. Trypsinized cells and 
cells from culture medium were fixed in 70% ethanol for 
24‑48 h at 4˚C, treated with ribonuclease in order to remove 
any contaminating RNA, and the DNA was stained with 
propidium iodide (PI; Sigma‑Aldrich; Merck KGaA) for 
30 min at 37˚C. The fluorescence of the PI‑stained cells was 
measured by flow cytometry (excitation, 536 nm; emission, 
617 nm; FACSCalibur™; Becton, Dickinson and Company, 
Franklin, Lakes, NJ, USA). The results were analyzed using 
the CellQuest™ Pro Software version 6.0 (Becton, Dickinson 
and Company) and expressed as a percentage of cells with 
DNA content corresponding to apoptotic/necrotic cells (subG1 
fraction) or cells in G1, S and G2/M phases of the cycle.

Measurement of changes in the mitochondrial membrane 
potential (Δψm). The detection of changes in the inner 
electrochemical Δψm in living cells was performed as described 
previously (35), using the cationic, lipophilic JC‑1 dye (Thermo 
Fisher Scientific, Inc., Waltham, MA, USA). Carbonyl cyanide 
3‑chlorophenylhydrazone (CCCP; Sigma‑Aldrich; Merck 
KGaA), a mitochondrial potential disrupter, was used as a 
control. The melanoma A375 cells were pre‑treated with 
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secosteroids at a concentration of 100 nM and then exposed 
to 2.4 and 12 µM cisplatin or 2.0 and 10 µM dacarbazine for 
an additional 3 h, or to 75 nM hydrogen peroxide for 1‑3 h. 
Following the treatment with the selected compounds, the cells 
were harvested and suspended in 1 ml PBS at room temperature. 
CCCP solution in dimethylsulfoxide (DMSO) was added to 
the positive control tube only (2 µM final concentration) and 
the cells incubated at 37˚C for 5 min. JC‑1 solution (2 µM in 
DMSO) was added to all tubes and the cells were incubated 
at 37˚C for 15 min, then centrifuged at 1,000 x g for 10 min at 
room temperature, and resuspended in 500 µl PBS. The samples 
were kept on ice until they were analyzed on the FACSCalibur 
flow cytometer using the CellQuest Pro analysis software.

Detection of intracellular ROS production. The intracellular 
production of ROS was measured using H2DCFDA (Thermo 
Fisher Scientific, Inc.). Cells were incubated with 100 nM 
1,25(OH)2D3 for 24 h followed by exposure to 24 µM cisplatin 
or 6 µM dacarbazine for 1 or 24 h. H2DCFDA was added to 
a final concentration of 10 µM 30 min before the end of the 
incubation. The cells were washed and suspended in cold PBS. 
The samples were kept on ice until they were analyzed using 
the FACSCalibur flow cytometer using CellQuest Pro analysis 
software.

Measurement of mRNA levels. The relative mRNA 
levels of particular genes were determined by a reverse 
transcription‑quantitative polymerase chain reaction (qPCR) 
assay. Total RNA was isolated using the Total RNA Mini 
kit (A&A Biotechnology, Gdynia, Poland), according to 
the manufacturer's instructions. The concentration and 
quality of RNA samples were determined using the Epoch 
spectrophotometer. A total of 1 μg RNA was used for reverse 
transcription using the RevertAid™ First Strand cDNA 
Synthesis kit (Thermo Fisher Scientific, Inc.) by incubating at 
42˚C for 1 h. The qPCR reaction comprised 1 µl cDNA and 
150 nM of each primer (Table I), and was performed using the 

SensiFAST™ SYBR No‑ROX kit (Bioline Reagents Limited, 
London, UK) in a total volume of 20 µl on the StepOnePlus 
Real‑Time PCR System (Thermo Fisher Scientific, Inc.). The 
thermocycling conditions were as follows: Initial denaturation at 
95˚C for 2 min, followed by 40 cycles of 95˚C for 5 sec, 55‑63˚C 
for 10 sec, 72˚C for 15 sec and 79˚C for 10 sec. The melting 
curve analysis of the PCR products was performed following 
the qPCR reaction and consisted of 95˚C for 15 sec, 60˚C for 
1 min and 95˚C for 15 sec. The reactions were run in duplicate 
and the resulting data were averaged prior to analysis with the 
StepOnePlus version 2.2.2. software (Thermo Fisher Scientific, 
Inc.). The RPL37 gene was used as a control to normalize the 
values by the 2‑ΔΔCq quantification method (62).

Statistical analysis. Statistical analysis was performed using 
Microsoft Excel 2007 (Microsoft Corporation, Redmond, WA, 
USA) or GraphPad Prism version 6.03 (GraphPad Software, 
Inc., La Jolla, CA, USA). The data were subjected to Student's 
t‑test for the comparison of two groups, one‑way analysis of 
variance followed by Dunnett's or Tukey's multiple comparison 
post hoc tests. The data are expressed as the mean ± standard 
deviation (n=3‑6). Differences were considered statistically 
significant when P<0.05.

Results

Vitamin D analogs modulate the cytotoxic effects of hydrogen 
peroxide in human malignant melanoma A375 cells. In 
agreement with previous studies (35,49,50,63,64) vitamin D 
analogs 1,25(OH)2D3, 20(OH)D3, 21(OH)pD and calcipotriol, 
effectively inhibited the proliferation of human melanoma 
A375 cells, as demonstrated by the SRB assay (Fig. 1A‑D). 
A decrease of ≤20% in cell proliferation was observed, 
significant at the highest tested concentration of vitamin D 
analogs (10‑6 M). The relative IC50 values ranged from 5.3 nM 
for 20(OH)D3 to ~0.274 nM for 1,25(OH)2D3 and 0.038 nM 
for calcipotriol (Fig. 1A‑D).

Table I. Primer sequences.

Gene	 Forward primer (3'‑5')	 Reverse primer (3'‑5')

RPL37A	 TTCTGATGGCGGACTTTACC	 CACTTGCTCTTTCTGTGGCA
SOD1	 CCACACCTTCACTGGTCCAT	 CTAGCGAGTTATGGCGACG
SOD2	 TAGGGCTGAGGTTTGTCCAG	 CACCGAGGAGAAGTACCAGG
CAT	 ACGGGGCCCTACTGTAATAA	 AGATGCAGCACTGGAAGGAG
VDR	 CCAGTTCGTGTGAATGATGG	 GTCGTCCATGGTGAAGGA
PDIA3	 CTCCGACGTGCTAGAACTCA	 CAGGTGTTAGTGTTGGCAGT
CYP2R1	 AGAGACCCAGAAGTGTTCCAT	 GTCTTTCAGCACAGATGAGGTA
CYP3A4	 AAGGCACCACCCACCTATGATACT	 TACTTTGGGTCACGGTGAAGAGCA
CYP27B1	 TGTTTGCATTTGCTCAGA	 CCGGGAGAGCTCATACAG
CYP24A1	 GCAGCCTAGTGCAGATTT	 ATTCACCCAGAACTGTTG
CYP11A1	 TGGGTCGCCTATCACCAGTAT	 CCACCCGGTCTTTCTTCCA

RPL37A, ribosomal protein L37a; SOD1, superoxide dismutase 1; SOD2, superoxide dismutase 2; CAT, catalase; VDR, vitamin D receptor; 
PDIA3, protein disulfide isomerase A3; CYP2R1, vitamin D 25‑hydroxylase; CYP3A4, cytochrome P450 3A4; CYP27B1, 25‑hydroxyvi-
tamin D3 1‑α‑hydroxylase; CYP24A1, vitamin D 24‑hydroxylase; CYP11A1 cholesterol side‑chain cleavage enzyme.
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The effects of vitamin D derivatives on the sensitivity 
of A375 cells to ROS were also tested. Hydrogen peroxide, 
an oxidative stress‑generating compound, inhibited the 
proliferation of the cells with a relative IC50 of 17  µM 

(Fig.  1E‑H). Simultaneous treatment with hydrogen 
peroxide and 1α,25(OH)2D3, 20(OH)D3 or calcipotriol at a 
concentration of 10 nM (Fig. 1E, F and H) for 24 h resulted in 
a further decrease in the proliferation of the melanoma cells. 

Figure 1. The effect of vitamin D derivatives on the proliferation of human melanoma A375 cells treated with H2O2. The cells were treated with serial dilutions 
(10‑12‑10‑6 M) of (A) 1,25(OH)2D3, (B) 20(OH)D3, (C) 21(OH)pD or (D) calcipotriol. *P<0.05, **P<0.005 and ***P<0.0005 versus control using one‑way analysis 
of variance. The cells were treated with serial dilutions of H2O2 (0.0039‑0.25 mM) alone or in combination with (E) 10 nM 1,25(OH)2D3, (F) 20(OH)D3, 
(G) 21(OH)pD or (H) calcipotriol for 24 h. The results presented are representative of three experiments (n=6). *P<0.05, **P<0.01 and ***P<0.001 between the 
two treatments at each H2O2 concentration, using one‑way analysis of variance followed by Tukey's multiple comparison test. The same control data is plotted 
in each graph. In order to investigate the effect of secosteroid pre‑treatment on mitochondrial transmembrane potential, human melanoma A375 cells were 
treated with (I) 100 nM 1,25(OH)2D3 or calcipotriol for 24 h, and subsequently exposed to 7.5 µM H2O2 for 1 or 3 h, then stained with JC‑1 and analyzed by flow 
cytometry. The data are presented as mean ± standard deviation of 3 independent experiments. ***P<0.001 versus untreated control or between the two groups 
indicated by the bracket using one‑way analysis of variance followed by Tukey's multiple comparison test. The positive control was exposed to CCCP for 5 min 
prior to staining with JC‑1. IC50, half maximal inhibitory concentration; 1α,25(OH)2D3, 1α, 25‑dihydroxyvitamin D3; 20(OH)D3, 20S‑hydroxyvitamin D3; 
21(OH)pD, 21‑hydroxypregnacalciferol; H2O2, hydrogen peroxide; CCCP, carbonyl cyanide 3‑chlorophenylhydrazone.
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The effect was more pronounced for 1α,25(OH)2D3 (Fig. 1E) 
and calcipotriol (Fig. 1H), however we did not observe any 
significant decrease between the calculated IC50 values 
(Table II). It has been suggested that altered mitochondrial 
activity may be a signature of certain melanoma cells (65). 
In the present study, changes in Δψm were monitored using 
the JC‑1 dual‑emission potential‑sensitive probe, by flow 
cytometry. The results revealed that the pre‑incubation of 
the A375 cells with calcipotriol, but not 1α,25(OH)2D3, for 
24 h modulated the effect of hydrogen peroxide on the Δψm 
(Fig. 1I). Notably, the pre‑treatment with calcipotriol resulted 
in a protective effect on Δψm in melanoma cells treated with 
hydrogen peroxide for 1 h (Fig. 1I). Prolonged exposure to 
hydrogen peroxide (3 h) in combination with pre‑treatment 
of melanoma cells with either 1,25(OH)2D3 or calcipotriol 
triggered a decrease in Δψm (Fig. 1I), although the observed 
differences were not significant.

Vitamin D analogs modulate the cytotoxic effects of cisplatin 
and dacarbazine on human malignant melanoma A375 cells. 
It is well established that oxidative stress and the resulting cell 
damage is one of the mechanisms of cell death induced by 
anticancer drugs. Thus, based on the aforementioned results 
with hydrogen peroxide (Fig. 1E‑I), the effect of the treatment 
of A375 human melanoma cells with 1α,25(OH)2D3, 20(OH)
D3, 21(OH)pD or calcipotriol, on the ability of cisplatin or 
dacarbazine to inhibit proliferation, was investigated. These two 
drugs are widely used in melanoma treatment and their activity, 
at least partially, relies on ROS generation (35,57,58,66). The 
anti‑melanoma effects of cisplatin (Fig. 2A‑D) or dacarbazine 
(Fig. 3A‑D) alone or with 10 nM 1α,25(OH)2D3, 20(OH)D3, 
21(OH)pD or calcipotriol were investigated in A375 cells using 
the SRB assay. Simultaneous treatment with vitamin D analogs 
and cisplatin for 24 h resulted in an unexpected increase in 
the cisplatin relative IC50, suggesting protective effects of the 

Table II. Summary of the relative IC50 values for inhibition of proliferation of human melanoma A375 cells by H2O2 
(0.004‑0.250 mM), cisplatin (0.19‑300 µM) or dacarbazine (0.15‑10 µM) in the presence or absence of the tested secosteroids.

	 Relative IC50
	 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Incubation	 Tested	  	 +10 nM	 +10 nM	 +10 nM	 +10 nM
time, h	 compound	 Monotreatment	 1α,25(OH)2D3	 20(OH)D3	 21(OH)pD	 calcipotriol

24	 H2O2	 0.017±0.07	  0.011±0.001	    0.013±0.0006	 0.017±0.002	    0.012±0.0006
24	 Cisplatin	 4.81±2.2	 11.61±0.98a	 14.08±3.29b	 9.37±1.64	 15.23±6.15b

48	 Cisplatin	   2.57±0.19	  1.97±0.22	  3.47±1.04	 3.71±1.90	  2.13±1.01
48	 Dacarbazine	   1.07±0.31	   0.45±0.35a	  1.17±0.40	 1.04±0.36	  0.85±0.39

Data are presented as the mean ± standard deviation of three independent experiments (n=6 each). The data were subjected to analysis of variance 
followed by Tukey's multiple comparison test. aP<0.05 and bP<0.001 vs. monotreatment. IC50, half maximal inhibitory concentration; H2O2, 
hydrogen peroxide; 1α,25(OH)2D3, 1α,25‑dihydroxyvitamin D3; 20(OH)D3, 20S‑hydroxyvitamin D3; 21(OH)pD, 21‑hydroxypregnacalciferol.

Figure 2. The effect of vitamin D derivatives on the proliferation of human melanoma A375 cells that were treated with cisplatin. Melanoma A375 cells were 
treated with serial dilutions of cisplatin (0.019‑300 µM) in combination with 10 nM (Α) 1α,25(OH)2D3, (Β) 20(OH)D3, (C) 21(OH)pD or (D) calcipotriol 
for 48 h. The results are representative of three experiments (n=6). The same control data is plotted in each graph. *P<0.05 between the two treatments at 
each cisplatin concentration, using one‑way analysis of variance followed by Tukey's multiple comparison test. 1α,25(OH)2D3, 1α, 25‑dihydroxyvitamin D3; 
20(OH)D3, 20S‑hydroxyvitamin D3; 21(OH)pD, 21‑hydroxypregnacalciferol.
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secosteroids (Table II). However, during prolonged incubation 
with cisplatin (48 h), the addition of 1,25(OH)2D3, but not 
20(OH)D3, 21(OH)pD or calcipotriol, resulted in a decreasing 
trend in the relative IC50 in comparison to cisplatin alone 
(Fig. 2; Table II), however the observed differences were not 
significant.

Dacarbazine inhibited the proliferation of human 
melanoma A375 cells during a 48 h incubation with a 
relative IC50 of 1.07  µM (Table  II). The results from the 
combined treatment with the vitamin D analogs revealed that 
1α,25(OH)2D3, but not 20(OH)D3, 21(OH)pD or calcipotriol, 
decreased the relative IC50 observed with dacarbazine alone by 
2.3‑fold (Table II).

Pre‑treatment of human malignant melanoma A375 cells with 
vitamin D derivatives alters the distribution of the cells in the 
cell cycle phases following treatment with dacarbazine, but 
not cisplatin. To investigate the mechanism of proliferation 
inhibition of melanoma A375 cell by the combination 
of vitamin  D analogs and the tested drugs, changes in 
the distribution of the cells in the cell cycle phases were 
investigated by flow cytometry. The cells were pre‑treated 
with the vitamin D analogs for 24 h and then incubated with 
cisplatin or dacarbazine for an additional 24 or 48 h. The initial 
experiments revealed no significant effects of pre‑treatment 
of melanoma cells for 24  h with 10  nM secosteroids in 
combination with additional incubation with cisplatin for 24 h 
on the cell cycle distribution (data not shown). Since the results 
of the aforementioned SRB tests (Fig. 1A‑D) demonstrated a 
plateau in the inhibition of cell proliferation at 10 and 100 nM 
concentrations, and taking into consideration that vitamin D 
is widely used at higher concentrations (100‑1,000 nM) in 
in vitro studies (67‑69), the concentration of vitamin D analogs 

was raised to 100 nM for the present assay. Additionally, the 
time of incubation with cisplatin or dacarbazine was increased 
to 48 h, similar to the conditions used during proliferation 
tests, and their concentrations were increased to 24 and 6 µM, 
respectively, to maximize the observed effect.

The treatment of melanoma A375 cells with 24  µM 
cisplatin alone for 48 h resulted in an increase in the number 
of SubG1 cells (P<0.001), indicating induction of apoptosis 
with a concomitant decrease in the number of cells in the 
G0/G1 (P<0.001), S (P<0.001) and G2/M (P<0.001) phases 
(Fig. 4A‑D). No impact of the vitamin D pre‑treatment was 
observed on the distribution of cisplatin‑treated melanoma 
cells in the cell cycle. The effect of pre‑treatment of melanoma 
A375 cells with vitamin D analogs prior to incubation with 
dacarbazine was also tested (Fig. 4E‑H). The treatment with 
6 µM dacarbazine alone for 48 h resulted in an increase in 
the fraction of cells in G0/G1 compared with untreated cells 
(P<0.01), with a minor effect on the SubG1 fraction (P<0.001) 
in comparison with cells treated with cisplatin alone (<10 
vs. >60% of all cells analyzed at SubG1 following treatment 
with dacarbazine or cisplatin, respectively; P<0.001 cisplatin 
versus untreated cells; P<0.001 dacarbazine versus untreated 
cells; Fig. 4A and E). In addition, 24 h pre‑treatment with 
100 nM 1α,25(OH)2D3 or calcipotriol prior to dacarbazine 
treatment resulted in an increase in the percentage of cells in 
the G0/G1 phase compared with that observed with dacarbazine 
alone (P<0.001; Fig. 4E and H). The effect was accompanied 
by a decrease in the percentage of cells in the G2/M phase for 
1α,25(OH)2D3 (P<0.05; Fig. 4E), and in S and G2/M phases for 
calcipotriol (P<0.001 and P<0.05, respectively; Fig. 4H).

Pre‑treatment with vitamin D derivatives changes the Δψm 
in human melanoma A375 cells and alters the cisplatin‑ or 

Figure 3. The effect of vitamin D derivatives on the proliferation of human melanoma A375 cells that were treated with dacarbazine. melanoma A375 cells 
were treated with serial dilutions of dacarbazine (0.15‑10 µM) in combination with 10 nM (A) 1α,25(OH)2D3, (B) 20(OH)D3, (C) 21(OH)pD or (D) calcipotriol 
for 48 h. The results are representative of three experiments (n=6). The same control data is included in all graphs. *P<0.05 between the two treatments at each 
dacarbazine concentration, using one‑way analysis of variance followed by Tukey's multiple comparison test. 1α,25(OH)2D3, 1α, 25‑dihydroxyvitamin D3; 
20(OH)D3, 20S‑hydroxyvitamin D3; 21(OH)pD, 21‑hydroxypregnacalciferol.
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dacarbazine‑induced production of ROS. The effects of the 
anti‑cancer drugs on the Δψm of the melanoma A375 cells were 
analyzed by measuring JC‑1 fluorescence by flow cytometry 
(Figs. 5 and 6). Treatment with cisplatin alone for 3 h did not 
influence the Δψm, at either of the two concentrations tested 
(2.4 and 12 µM; Fig. 5A‑D). A 24 h pre‑treatment with 21(OH)
pD (Fig. 5C) or calcipotriol (Fig. 5D) resulted in a decrease 
in Δψm following treatment with cisplatin, compared to the 
cisplatin effect observed without pre‑treatment. Notably, 
pre‑treatment of the melanoma cells with 20(OH)D3 resulted 
in an increase in Δψm (Fig. 5B) following exposure to 2.4 µM 
cisplatin (P<0.001). However, this effect was not observed at 
higher concentration of the drug, or without the drug treatment.

A 3 h treatment with 2.0 µM dacarbazine alone led to 
an increase in the Δψm of melanoma A375 cells (P<0.001) 
but this was not the case at the higher concentration (10 
µM) (Fig. 6A‑D). The 24 h pre‑treatment of the cells with 
1α,25(OH)2D3 (Fig. 6A), 20(OH)D3 (Fig. 6B) or calcipotriol 
(Fig. 6D) resulted in a decrease in Δψm following exposure 
to 2.0  µM dacarbazine (P<0.01 for 1α,25(OH)2D3 and 
P<0.001 for 20(OH)D3 and calcipotriol versus dacarbazine 
alone). In the case of 21(OH)pD (Fig. 6C), the effect was not 
statistically significant. In contrast, at the higher concentration 
of dacarbazine (10 µM), the pre‑treatment of the cells with 
1,25(OH)2D3, 20(OH)D3 or calcipotriol resulted in an increase 
in Δψm (P<0.05, P<0.001 and P<0.01, respectively, versus 

Figure 4. The effect of secosteroids and cisplatin or dacarbazine on the distribution of human melanoma A375 cells through the cell cycle. Cells that were 
treated with 24 µM cisplatin for 48 h had been pre‑treated with (A) 100 nM 1α,25(OH)2D3, (B) 20(OH)D3, (C) 21(OH)pD or (D) calcipotriol for 24 h. Similarly, 
cells that were treated with 6 µM dacarbazine 48 h had been pre‑treated with (E) 100 nM 1α,25(OH)2D3, (F) 20(OH)D3, (G) 21(OH)pD or (H) calcipotriol 
for 24 h. The cells were harvested, stained with propidium iodide and analyzed by flow cytometry. The data are presented as the mean ± standard deviation 
(n=3). *P<0.05, **P<0.01 and ***P<0.001, calculated using one‑way analysis of variance followed by Tukey's multiple comparison test versus untreated control 
or between the two groups indicated by the bracket. SubG1, apoptotic/necrotic cells; G1, growth; S, DNA synthesis; G2/M, preparation for mitosis/mitosis; 
1α,25(OH)2D3, 1α, 25‑dihydroxyvitamin D3; 20(OH)D3, 20S‑hydroxyvitamin D3; 21(OH)pD, 21‑hydroxypregnacalciferol.
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10  µM dacarbazine alone). No significant difference was 
observed in the case of pre‑treatment with 21(OH)pD.

A pre‑treatment of malignant melanoma A375 cells with 
100 nM 1,25(OH)2D3 for 24 h did not influence the production 
of ROS in comparison with untreated cells, as determined 
by the H2DCFDA assay (Figs. 5E and 6E). However, this 
pre‑treatment affected the ROS production following 
treatment with either cisplatin (Fig.  5E) or dacarbazine 
(Fig. 6E). The observed effect was time‑dependent. Exposure 
of the cells to cisplatin or dacarbazine alone for 1 h, without 
vitamin D pre‑treatment, led to a significant increase in the 
ROS levels (P<0.01 for cisplatin and P<0.001 for dacarbazine; 
Figs. 5E and 6E, respectively). However, 24 h pre‑treatment 
of melanoma cells with 1α,25(OH)2D3 decreased the effect 
that the 1 h cisplatin or dacarbazine treatment had on the ROS 
levels (P<0.05 versus no pre‑treatment; Fig. 5E). In contrast, 
prolonged exposure (24 h) to cisplatin or dacarbazine alone 
tended towards a decrease in the ROS levels in the melanoma 
cells, whereas the 1α,25(OH)2D3 pre‑treatment alleviated 
the effect of the 24 h cisplatin or dacarbazine treatment on 

the ROS levels, although the observed differences were not 
significant.

Modulation of the expression of selected genes by cisplatin or 
dacarbazine in the presence or absence of 1α,25(OH)2D3. In 
order to verify the aforementioned changes in ROS generation 
and the Δψm, the impact of 1α,25(OH)2D3 pre‑treatment on the 
expression of the selected ROS‑associated genes was tested 
in melanoma A375 cells treated with cisplatin or dacarbazine 
(Fig. 7). No significant effect was observed in the expression of 
superoxide dismutases 1 and 2 (SOD1 and SOD2) or catalase 
(CAT) by 1α,25(OH)2D3 under the experimental conditions 
used (Fig. 7A‑C). Treatment of the cells with the anticancer 
drugs had a limited effect on the mRNA levels of the selected 
ROS‑associated genes. A decrease in SOD2 gene expression 
was observed under the influence of cisplatin alone (P<0.05 
vs. no treatment control; Fig. 7B), as well as in SOD1 and 
CAT gene expression following treatment with dacarbazine 
alone (both P<0.05 vs. no treatment control; Fig. 7A and C, 
respectively). Pre‑treatment of the cells with 1α,25(OH)2D3 

Figure 5. The effect of pre‑treatment of human melanoma A375 cells with vitamin D derivatives on the cisplatin‑induced changes in the mitochondrial 
membrane potential and ROS levels. A375 cells were treated with (A) 100 nM 1α,25(OH)2D3, (B) 20(OH)D3, (C) 21(OH)pD or (D) calcipotriol for 24 h, and 
subsequently exposed to 2.4 or 12 µM cisplatin for 3 h. The cells were stained with JC‑1 and analyzed by flow cytometry. The positive control was exposed 
to CCCP for 5 min prior to staining with JC‑1. (E) The effect of 1α,25(OH)2D3 on ROS levels. The cells were treated with 100 nM 1,25(OH)2D3 for 24 h and 
subsequently exposed to 24 µM cisplatin for 1 or 24 h. The cells were stained with H2DCFDA and analyzed by flow cytometry. The data are presented as the 
mean ± standard deviation (n=3). *P<0.05; **P<0.01; and ***P<0.001, calculated using one way analysis of variance followed by Tukey's multiple comparison 
test between the two groups indicated by the bracket or compared with the untreated control. 1α,25(OH)2D3, 1α, 25‑dihydroxyvitamin D3; 20(OH)D3, 
20S‑hydroxyvitamin D3; 21(OH)pD, 21‑hydroxypregnacalciferol; CCCP, carbonyl cyanide 3‑chlorophenylhydrazone; ROS, reactive oxygen species.
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prior to incubation with dacarbazine resulted in an increase 
of CAT mRNA compared with cells treated solely with 
dacarbazine (P<0.05; Fig. 7C).

Subsequently, the effect of cisplatin or dacarbazine on 
the expression of vitamin D‑associated genes, including 
ones encoding vitamin D receptors VDR and protein 
disulfide‑isomerase A3 (PDIA3), and vitamin D metabolizing 
hydroxylases that belong to the cytochrome  P450 (CYP) 
family, CYP2R1, CYP3A4, CYP27B1, CYP24A1 and 
CYP11A1, was investigated in melanoma A375 cells, as well 
as the consequences of pre‑treatment with 1α,25(OH)2D3. The 
results revealed that 1α,25(OH)2D3 and cisplatin, used alone, 
decreased VDR mRNA levels in the A375 cells (P<0.05; 
Fig. 7D). The effect of dacarbazine was statistically significant 
only in the case of the 1α,25(OH)2D3 pre‑treatment (P<0.05; 
Fig. 7D). In contrast, 1α,25(OH)2D3 and cisplatin had no effect 
on PDIA3 mRNA levels (Fig. 7E), whereas dacarbazine alone 
led to a significant decrease (P<0.05). Notably, the effect 
of dacarbazine alone was reversed by the 1α,25(OH)2D3 
pre‑treatment (P<0.05).

Although the transcription of CYP2R1 was not affected by 
1α,25(OH)2D3, cisplatin or dacarbazine alone, pre‑treatment 
of the A375 cells with 1α,25(OH)2D3 with subsequent 
exposure to dacarbazine resulted in an increase in its mRNA 
(P<0.05; Fig. 7F) compared with that in the cells treated with 
dacarbazine alone. Stimulation of CYP3A4 expression was 
observed with all combinations of the drugs tested. The effect 
was further exacerbated by a 24 h 1α,25(OH)2D3 pre‑treatment 
(Fig. 7G). Treatment with 1α,25(OH)2D3 or cisplatin alone 
or in combination had no statistically significant effect on 
the CYP27B1 mRNA levels (Fig. 7H). However, treatment 
with dacarbazine alone resulted in a decrease (P<0.001) 
and this effect was reversed by prior administration of 
1α,25(OH)2D3 (P<0.01). As expected, pre‑treatment of the 
cells with 1α,25(OH)2D3 resulted in a strong stimulation of 
CYP24A1, which encodes the vitamin D deactivation enzyme, 
24‑hydroxylase (Fig. 7I). An increase in CYP24A1 mRNA 
levels was also observed for cisplatin or dacarbazine alone, 
although to a lesser extent [7‑ and 5‑fold increase, respectively, 
versus a 1,700‑fold increase for 1α,25(OH)2D3]. Furthermore, 

Figure 6. The effect of pre‑treatment of human melanoma A375 cells with vitamin D derivatives on the dacarbazine‑induced changes in the mitochondrial 
membrane potential and ROS levels. A375 cells were treated with (A) 100 nM 1α,25(OH)2D3, (B) 20(OH)D3, (C) 21(OH)pD or (D) calcipotriol for 24 h, and 
subsequently exposed to 2.0 or 10 µM dacarbazine for 3 h The cells were stained with JC‑1 and analyzed by flow cytometry. The positive control was exposed 
to CCCP for 5 min prior to staining with JC‑1. (E) The effect of 1α,25(OH)2D3 on ROS levels. The cells were treated with 100 nM 1,25(OH)2D3 for 24 h and 
subsequently exposed to 6 µM dacarbazine for 1 or 24 h. The cells were stained with H2DCFDA and analyzed by flow cytometry. The data are presented 
as the mean ± standard deviation (n=3). *P<0.05, **P<0.01 and ***P<0.001, calculated using one way analysis of variance followed by Tukey's multiple com-
parison test between the two groups indicated by the bracket or compared with the untreated control. 1α,25(OH)2D3, 1α,25‑dihydroxyvitamin D3; 20(OH)D3, 
20S‑hydroxyvitamin D3; 21(OH)pD, 21‑hydroxypregnacalciferol; CCCP, carbonyl cyanide 3‑chlorophenylhydrazone; ROS, reactive oxygen species.
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cisplatin or dacarbazine had no effect on the level of CYP24A1 
mRNA following pre‑ treatment with 1α,25(OH)2D3, 
compared with cells treated solely with 1α,25(OH)2D3 
(Fig. 7I). Treatment of the A375 cells with 1α,25(OH)2D3, 
cisplatin or dacarbazine alone did not affect the transcription 
levels of the CYP11A1 gene (Fig. 7J). Finally, the pre‑treatment 
with 1α,25(OH)2D3 followed by treatment with dacarbazine 
resulted in a small, but significant, increase in the CYP11A1 
mRNA level (P<0.05 vs. dacarbazine alone).

Discussion

It is well established that UV radiation is a major skin carcinogen 
that serves an important role in melanomagenesis (14,70,71). 
However, UVB is also indispensable for the production of 
vitamin D in the skin (1‑3). Considering the antiproliferative 
and differentiation‑promoting function of vitamin D and its 
analogs, it seemed advantageous to explore their efficacy as 
anticancer drugs and their potential for positive interactions 

with other antimelanoma drugs or therapeutic approaches (34). 
The effects of the active forms of vitamin D require VDR 
activation, which results in the modulation of the expression in 
~3,000 target genes in humans (72), including those involved in 
DNA repair and the oxidative stress response (73). Vitamin D 
deficiency is considered to contribute to carcinogenesis, and 
notably, to poor prognosis due to multidrug resistance (74,75). 
Recently published data suggest an inverse correlation between 
the vitamin D serum level and the relative risk of melanoma 
and non‑melanoma skin cancer, as well as melanoma thickness 
at diagnosis (30,75,76). Wyatt et al (77) also suggested that 
vitamin D deficiency at the time of melanoma diagnosis is not 
only associated with a higher Breslow thickness but also with a 
poorer prognosis. Ogbah et al (78) reported that even in patients 
living in the sunny Mediterranean area, 1α,25(OH)2D3 levels 
were sub‑optimal at the time of melanoma diagnosis. Patients 
with metastatic melanoma, who were initially vitamin  D 
deficient, had significantly poorer outcomes in comparison 
to individuals who, being initially deficient, exhibited a 

Figure 7. Relative mRNA quantification of reactive oxygen species‑ and vitamin D‑associated genes. Effects of cisplatin or dacarbazine treatment on the 
mRNA levels of (A) SOD1, (B) SOD2, (C) CAT, (D) VDR, (E) PDIA3, (F) CYP2R1, (G) CYP3A4, (H) CYP27B1, (I) CYP24A1 and (J) CYP11A1 gene expression 
in human melanoma A375 cells pre‑treated with 1,25(OH)2D3. The cells were incubated with 100 nM 1,25(OH)2D3 for 24 h, followed by exposure to 12 µM 
cisplatin or 6 µM dacarbazine for an additional 24 h. The mRNA levels were measured by reverse transcription‑quantitative polymerase chain reactions. 
The data are presented as the mean ± standard deviation of 3 independent experiments carried out in duplicate. *P<0.05, **P<0.01 and ***P<0.001, calculated 
using Student's t‑test vs. untreated control or between the two groups indicated by the bracket. 1α,25(OH)2D3, 1α, 25‑dihydroxyvitamin D3; SOD, superoxide 
dismutase; CAT, catalase; VDR, vitamin D receptor; PDIA3, protein disulfide‑isomerase A3; CYP2R1, vitamin D 25‑hydroxylase; CYP3A4, cytochrome 
P450 3A4; CYP27B1, 25‑hydroxyvitamin D3 1‑α‑hydroxylase; CYP24A1, vitamin D 24‑hydroxylase; CYP11A1, cholesterol side‑chain cleavage enzyme.
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>20 ng/ml increase in their 25‑hydroxyvitamin D3 [25(OH)
D3] concentration during the therapy period (75). Vitamin D 
deficient patients with stage  IV metastatic melanoma also 
had significantly poorer prognosis  (75). Therefore, the 
administration of vitamin D is potentially beneficial in cancer 
therapy.

A previous study has revealed that melanoma A375 cells 
are ≥10 times more sensitive to hydrogen peroxide than human 
immortalized HaCaT keratinocytes. The interaction between 
hydrogen peroxide, as a model oxidative stress inducer, and 
vitamin D analogs were investigated (35). First, as reported for 
HaCaT keratinocytes (35), the incubation of melanoma A375 
cells with vitamin D analogs resulted in higher sensitivity of 
the cells to hydrogen peroxide treatment (Fig. 1). It should 
be emphasized that HaCaT keratinocytes represent a cellular 
model of epithelial cells, whereas melanocytes are derived 
from neural crest cells (79) and therefore represent a different 
cellular model. Hence, the present study focused on human 
malignant melanoma cells. Hydrogen peroxide treatment was 
used to investigate the association between ROS levels and 
vitamin D analogs, and subsequently the interaction between 
vitamin D analogs and anticancer drugs was explored.

Secondly, similar effects to those discussed above for 
hydrogen peroxide were observed for dacarbazine, but not 
cisplatin, following treatment with 1α,25(OH)2D3, since 
sensitization of 1α,25(OH)2D3‑treated melanoma cells to this 
drugs was observed. Notably, the highest concentration of 
cisplatin (300 µM) resulted in a decrease in cell proliferation 
as measured using the SRB assay, by >90%, whereas treatment 
with 10 μM dacarbazine decreased proliferation by 50%. 
Incubation of the melanoma A375 cells with 1α,25(OH)2D3, 
20(OH)D3, 21(OH)pD or calcipotriol for 24  h resulted 
in up to a 20% decrease in cell proliferation at the highest 
concentrations tested. This inhibitory effect of the vitamin D 
analogs, with the exception of 20(OH)D3, is consistent with 
previous studies  (80,81), however certain differences were 
noted in the relative IC50 values [i.e., 1α,25(OH)2D3 relative 
IC50, 0.274 vs. 6.4 nM reported by Wasiewicz et al (81)]. The 
variation among the relative IC50 values could be explained 
by variable experimental conditions, including a shorter 
incubation time with vitamin D analogs (24 vs. 48 h), as well 
as a lower FBS concentration in the medium. It is already 
known that vitamin D inhibits cell proliferation and promotes 
their differentiation  (80,82,83). Therefore, the inhibition 
of melanoma cell proliferation by vitamin D should not be 
considered as a direct cytotoxic effect, but rather reveals its 
antiproliferative potential.

Thirdly, it appears that these two drugs inhibit melanoma 
cell proliferation via distinct mechanisms (58,66). It should 
be noted that even though cisplatin and dacarbazine function 
primarily based on the induction of DNA damage (56,84), 
it is apparent that these drugs also lead to the generation of 
ROS inside treated cells (57,58). The current study design was 
based on a 24 h pre‑treatment with vitamin D analogs at a low 
concentration (100 nM). This corresponds to the optimal level 
of 25(OH)D3 in the serum (75‑125 nM) (28), since, according 
to Timerman et al (75), vitamin D deficiency is associated with 
a poorer prognosis in metastatic melanoma. As demonstrated 
by the cell cycle analyses, induction of apoptosis (increase 
in SubG1 cell fraction) was observed for the cells treated 

with cisplatin, consistent with other studies (85,86). On the 
other hand, the inhibition of melanoma cell proliferation by 
dacarbazine probably results from cell cycle arrest, as observed 
from an increase in the number of cells in the G0/G1 fraction 
(P<0.01) and decreases in the S and G2/M phases (both P<0.01). 
As expected based on previous studies  (15,17,80,82,83), 
pre‑treatment with active forms of vitamin D resulted in an 
increase in the number of cells in G0/G1, with this effect being 
observed in cells treated with dacarbazine, but not cisplatin. 
Notably, the two anticancer drugs exhibited similar effects on 
oxidative stress. Treatment of the melanoma cells with the two 
drugs resulted in an initial significant increase in oxidative 
stress (at 1 h), whereas prolonged incubation (24 h) resulted 
in a downward trend of 2',7'‑dichlorofluorescein fluorescence 
in cells treated with cisplatin or dacarbazine compared with 
the untreated control. The pre‑incubation with vitamin D 
analogs, however, resulted in a drug‑specific effect on Δψm. 
In the case of cisplatin, a significant decrease in Δψm was 
only observed in cells pre‑treated with vitamin D derivatives, 
21(OH)pD and calcipotriol (P<0.05 and P<0.01, respectively). 
It has been reported that cisplatin‑resistant lung cancer cells 
exhibit increased Δψm in comparison with cisplatin‑sensitive 
counterparts  (87). Therefore, a decrease in Δψm in 
cisplatin‑treated cells elicited by vitamin D analogs possibly 
reflects their drug‑sensitization potential. The effect of the 
incubation of melanoma cells with the secosteoids, with the 
exception of 21(OH)pD, prior to treatment with dacarbazine 
was dose‑dependent, with a decrease in Δψm in cells treated 
with a low concentration of the drug (2 μM), and an increase 
at the high concentration (10 μM).

The analyses of the expression levels of selected genes 
involved in the response to ROS or the modulation of 
vitamin D activity, revealed potential regulatory properties 
of dacarbazine. This drug resulted in significant inhibition 
of the expression of CAT, the alternative vitamin D binding 
protein encoded by PDIA3, and CYP27B1, with these effects 
being reversed by pre‑treatment with 1α,25(OH)2D3. All the 
tested analogs efficiently induced the expression of CYP3A4, 
with the effect of cisplatin or dacarbazine treatment being 
enhanced by secosteroid pre‑treatment. This observation 
indicates the induction of an anti‑xenobiotic response in the 
melanoma A375 cells. Similar results for cisplatin and other 
anticancer compounds were reported in hepatocyte‑derived 
HepG2 cells, in which chemotherapeutic agents activated 
cellular tumor antigen p53 protein to induce the expression of 
the main enzymes involved in the systemic clearance of these 
drugs (88). On the other hand, dacarbazine, a prodrug, requires 
activation by the cytochrome P450 (CYP450) enzyme family, 
to which the product of CYP3A4 belongs (89). Therefore, the 
observed induction of CYP3A4 expression may also suggest 
more efficient oxidation of dacarbazine to its active metabolite 
in melanoma cells pre‑treated with vitamin  D. Cells 
overexpressing another CYP450 family member, CYP450 2E1 
(CYP2E1), were revealed to be more sensitive to cisplatin 
treatment with respect to cell viability and ROS production, 
compared with cells lacking CYP2E1 expression (90).

CYP24A1 is pivotal for vitamin D homeostasis, since 
it regulates the serum and tissue levels of 25(OH)D3 and 
1α,25(OH)2D3, being the major vitamin D inactivating 
enzyme (91). A strong induction of CYP24A1 expression 
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was observed with 100 nM 1α,25(OH)2D3 (Fig.  7I). 
This observation is consistent with previous reports for 
melanoma A375 cells (81) and HaCaT keratinocytes (35). 
Notably, an increase in CYP24A1 expression was also 
observed in cells treated with 12  µM cisplatin or 6 μM 
dacarbazine alone (Fig. 7I). A similar induction of CYP24A1 
expression by cisplatin has been observed in HepG2 cells 
in a p53‑dependent manner (88). Furthermore, dacarbazine 
is a well known powerful alkylating agent that activates 
p53 (92). Therefore, the induction of CYP24A1 expression 
in A375 melanoma cells by this chemotherapeutic agent 
may involve a p53‑dependent mechanism. However, this 
hypothesis requires further investigation.

Similarities and differences were noted in the phenotypic 
effects between 1α,25(OH)2D3 and calcipotriol versus 
non‑calcemic 20(OH)D3 and 21(OH)pD. These can be 
explained by the different receptors targeted by each of 
these molecules. Although the VDR is the primary target 
for 1α,25(OH)2D3 and calcipotriol, 20(OH)D3 acts only as a 
biased agonist on the VDR and can act as a reverse agonist 
on retinoic acid orphan receptors (46,93‑96), whereas its 
downstream metabolite, 20,23(OH)2D3, acts as an agonist on 
the aryl hydrocarbon receptor (97). In the case of 21(OH)pD, 
its nuclear receptor remains to be identified, since it has low or 
no affinity for the VDR (98). Defining the precise mechanism 
of action for each secosteroid is a future goal.

In vitro studies require further validation by in vivo animal 
studies prior to the use of vitamin D in combination with 
cisplatin or dacarbazine in melanoma treatment. However, 
pre‑clinical models of human melanoma, including cell 
line‑transplantable mouse models, genetically engineered 
mouse models or immunodeficient mice with patient‑derived 
xenografts (PDOX), do not reflect the true nature of the 
primary tumor, being controversial in their ability to translate 
the effectiveness of immunotherapeutic strategies in clinical 
trials (99,100). Nevertheless, animal models, including PDOX, 
are the next logical step to discovering novel targets for more 
efficient combinatorial therapy and approaches to overcome 
emerging resistance of melanoma cells to any form of treat-
ment (101‑103).

Despite not observing pronounced enhancement of 
anti‑melanoma activity by the tested chemotherapeutics 
under the described experimental conditions, the results of 
the present study have demonstrated that vitamin D analogs 
modulate the response of melanoma cells to dacarbazine. In 
conclusion, low‑ and non‑calcemic vitamin D analogs may 
serve as beneficial adjuvant agents in chemotherapy, particu-
larly in patients suffering from vitamin D deficiency.
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