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Abstract. Lung cancer is the most common malignancy
with the highest mortality worldwide. Emerging research
has demonstrated that long non-coding RNAs (IncRNAs),
a key genomic product, are commonly dysregulated in
lung cancer and have significant functions in lung cancer
initiation, progression and therapeutic response. IncRNAs
may interact with DNA, RNA or proteins, as tumor suppressor
genes or oncogenes, to regulate gene expression and cell
signaling pathways. In the present review, first a summary
was presented of the causal effects of dysregulated IncRNAs
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in lung cancer. Next, the function and specific mechanisms
of IncRNA-mediated tumorigenesis, metastasis and drug
resistance in lung cancer were discussed. Finally, the potential
roles of IncRNAs as biomarkers for lung cancer were explored.
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1. Introduction

According to the 2018 cancer statistics, it was estimated
that 234,030 cases of lung and bronchus cancer were newly
diagnosed in the United States (1). Lung cancer is the primary
cause of cancer-related deaths worldwide and results in
>1.3 million deaths per year (2). Lung cancer mainly includes
non-small cell lung cancer (NSCLC) and small cell lung cancer
(SCLC). NSCLC constitutes 85% of all lung cancer cases,
including lung adenocarcinoma, squamous cell carcinoma and
large cell lung cancer (3-5). The lung cancer incidence rate is
increasing worldwide, especially female morbidity (6). Despite
the discovery of multiple mutations and targeted drugs, such as
for the genes epidermal growth factor receptor (EGFR), KRAS
and MET, the prognosis of advanced lung cancer patients
remains poor, with a 5-year survival rate stagnant at ~5% (7).
Known risk factors, such as smoking habits, air pollution and
genetic variations, have an important impact on lung cancer
development and clinical outcomes (8).

Long non-coding RNAs (IncRNAs) are ~200 nt in length,
lack the protein coding potential, and constitute ~70% of the
non-coding RNAs (9,10). Except for their role as competing
endogenous RNA (ceRNA) to sponge microRNAs (miRNAs),
IncRNAs have also been shown to interact with DNA, RNA
and various proteins, thereby having crucial roles in diverse
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physiological and pathological functions (11). Appropriate
IncRNA expression is essential for normal cell function and
is precisely regulated by epigenetic mechanisms and various
other molecules. Recent reports have found that dysregulation
of IncRNA expression induces tumorigenesis, invasiveness
and drug resistance through diverse mechanisms in multiple
types of cancer (12,13). IncRNAs are also important, complex
controlling factors in the pathogenesis of lung cancer (14-17).
In the present review, the behavior and environment-induced
dysregulation of IncRNA expression was summarized
in regards to lung cancer, their functions and molecular
mechanisms were examined, and their potential as biomarkers
for the diagnosis and prognosis of lung cancer was explored.

2. Regulation patterns of dysregulated IncRNAs in lung
cancer

Many large-scale investigations, including microarray profiling
and deep sequencing data, have revealed that the derangement
of IncRNA expression is a primary feature in lung cancer
initiation and progression (18,19). The IncRNA expression
levels are precisely regulated in the physiological state and
are potentially disturbed in the pathological state by diverse
mechanisms. The influence of chemical compounds and the
local tumor microenvironments responsible for the regulation
of IncRNA expression should not be ignored. Additionally,
the function of epigenetic modification in tumor progression
is likely involved. Abnormal epigenetic regulation can lead to
aberrant activation of IncRNAs without involving any changes
in the DNA sequences. Various transcription factors can bind
within the promoter regions of IncRNAs to activate or inhibit
their transcription. These regulation patterns of dysregulated
IncRNAs in lung cancer are summarized in Fig. 1 and Table I.

Chemical compounds and hypoxia. It has been reported that
H19is significantly elevated in the airway epithelium of healthy
20 pack-year smokers compared with non-smokers (20).
Mineral dust-induced gene (Mdig) is associated with
environmental exposure to smoke and dust, which influences
the progression of lung cancer. Mdig regulates the expression
of H19 by regulating the levels of trimethylated histone 3
lysine 9 (H3K9me3) at the promoter region of H19 (21).
Benzo(a)pyrene (BaP) increases H19 expression and its
interaction with the S-adenosylhomocysteine hydrolase
protein. By contrast, H19 knockdown suppresses the
formation of benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide
(BPDE)-DNA adducts, which decreases the risk for lung
cancer (22). Smoke-associated and cancer-associated
IncRNA-1 (SCALY1) is located on the chromosome 5q14.3
locus. High expression of SCALI in lung cancer cells is
induced by cigarette smoke extract. SCALI is upregulated
by nuclear factor erythroid 2-related factor 2 (NRF2) and
serves a functional role in cytoprotection against cigarette
smoke-induced toxicity. These findings suggest that SCALI
has an important role in the antioxidant pathway (23).
Hypoxia induces upregulation of the IncRNA
metastasis-associated lung adenocarcinoma transcript 1
(MALAT]I) in lung cancer (24). Hypoxia-inducible factor la
(HIF-1o) can bind to the hypoxia-sensitive elements on the
promoter region of HOX transcript antisense RNA (HOTAIR) and
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activate the transcription of HOTAIR, as well as promote NSCLC
proliferation and metastasis under hypoxia conditions (25).

Epigenetic modification. The methylated levels of MALATI1
promoter are low in lung cancer cells or tissues. Treatment
with the methyl donor, S-adenosylmethionine, suppresses
MALATI expression in lung cancer cells (26). In such cases,
the IncRNA sprouty RTK signaling antagonist 4 intronic
transcript 1 (SPRY4-IT1), located at chromosome 5q31.3, is
upregulated and promotes proliferation and metastasis of
cancer cells (27). However, SPRY4-IT1 is expressed at low
levels in NSCLC tissues and inhibits the proliferation and
epithelial-mesenchymal transition (EMT) of NSCLC cancer
cells. Enhancer of zeste homolog 2 (EZH2) can directly bind
to SPRY4-IT1 and silence its transcription in NSCLCs (28,29).

Transcription regulation. p53 has been shown to bind the
promoter region of HOTAIR and suppress its transcription. By
contrast, HOTAIR enhances H3K27me3 modification within
the p53 promoter and inhibits p53 expression in the lung cancer
cell line A549. This negative feedback loop of HOTAIR-p53
promotes the progression of lung cancer (30). On the contrary,
p53 increases expression of p2l-associated non-coding
RNA DNA damage-activated (PANDAR), which is a tumor
suppressor gene that is downregulated in human NSCLC
tissues (31). PANDAR can interact with nuclear transcription
factor Y subunit o (NF-YA) and low expression of PANDAR
increases NF-YA binding to the promoter of B cell lymphoma-2
(Bcl-2); this leads to an increase in Bcl-2 expression, thereby
inhibiting NSCLC cell apoptosis (32). Binding of c-Myc to the
E-boxes near the H19 imprinting control region activates the
transcription of H19 in lung cancer (33). Notably, c-Myc also
binds to the E-box element upstream of antisense ncRNA in
INK4 locus (ANRIL) and induces its expression in NSCLC
cells (34). The transcription factors, c-Myc and Yin Yang 1
(YY1), can activate transcription of the IncRNA plasmacytoma
variant translocation 1 (PVTI), by binding to its promoter
region in lung cancer (35,36). The transcription factor,
specificity protein 1 (SP1), promotes MALATI transcription
and MALATI directly binds to SP1 protein to enhances its
stability. This MALATI1-SP1 positive feedback loop has been
demonstrated to promote the progression of lung cancer (37).
Octamer binding transcription factor 4 (OCT4) has been
reported to increase MALATI transcription by binding to its
promoter enhancer region, thereby inducing upregulation of
MALAT1 expression in lung cancer (38). MALAT1 expression
has also been shown to be regulated by TAR DNA-binding
protein 43 (TDP43) in lung cancer (39).

3. Biologic functions and molecular mechanisms of In-
cRNAs in lung cancer

In lung cancer progression, abnormally regulated IncRNAs
act as vital factors to regulate the gene signaling network at
the transcriptional, post-transcriptional and post-translational
level, and thus, alter various malignant behaviors and treatment
responses of lung cancer (Table II).

Proliferation and survival. MALATI can act as a ceRNA to
regulate miR-124/STAT3 and miR-206/AKT expression to
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Figure 1. Schematic plot of regulation patterns of dysregulated IncRNAs in lung cancer. (A) Chemical compounds and hypoxia affect IncRNA expression to
promote cancer progression. (B) Changes in epigenetic modification of IncRNAs can regulate the development of lung cancer. (C) Various transcription factors
can interact with IncRNAs to activate or inhibit their transcription, subsequently affecting cancer progression. IncRNA, long non-coding RNA.

promote NSCLC progression (40,41). MALATI binds with
serine/arginine splicing factor (SR) in the nuclear speckle
domains and increases SR phosphorylation followed by
regulation of the alternative splicing of pre-mRNA (42).
MALATI suppresses pS3 activity by binding to a minimal
region of p53 promoter that regulates downstream genes
influencing the cell cycle progression of lung cancer cells (43).
Downregulation of MALAT1 has been shown to inhibit
NSCLC progression by inhibiting autophagy (44). The S'end
of HOTAIR binds with the polycomb repressive complex 2
(PRC2) resulting in histone H3 being trimethylated at
lysine 27, while the 3'domain binds to the histone demethylase
complexes (lysine demethylase 1A/REST corepressor 1/RE1
silencing transcription factor) facilitating histone H3 lysine 4
demethylation, which causes homeobox D cluster (HOXD)

gene silencing (45). Silencing of HOTAIR decreases miR-326
expression, which regulates paired like homeobox 2A
(Phox2a) and inhibits tumor cell proliferation and migration
in lung cancer (46). H19 knockdown evidently restrains
NSCLC cell proliferation (47-49). Notably, H19 functions as
a ceRNA sponge for miR-17 to modulate signal transducer
and activator of transcription 3 (STAT3) expression (50), and
as a ceRNA sponge for miR-484 to regulate the expression
of Rho associated coiled-coil containing protein kinase 2
(ROCK?2) (51), thereby promoting lung cancer development.
Finally, H19 sponges miR-196b to elevate LIN28B expression,
which accelerates the proliferation of lung cancer cells (52).
Another intergenic non-coding RNA, LINC00473, has
been demonstrated to be the most upregulated IncRNA
in liver kinase B (LKBI1)-inactivated NSCLC tissues.



588

JIANG et al: ROLES OF IncRNAs IN LUNG CANCER

Table I. Molecules and chemical compounds that regulate IncRNA expression in lung cancer.

IncRNA Expression Regulation (Refs.)

MALAT1 Upregulation Hypoxia induces MALAT1; SAM suppresses MALAT1; SP1, OCT4 (24,26,37,38)
and TDP-43 promote MALAT1 transcription

HOTAIR Upregulation HIF-1a activates HOTAIR; P53 suppresses HOTAIR expression (25,30)

H19 Upregulation MDIG and benzo(a)pyrene increase H19 expression; c-Myc increases (21,22,33)
H19 transcription

PVTI1 Upregulation MYC and YY1 increase PVT1 transcription (35,36)

ANRIL Upregulation C-Myc increases ANRIL transcription (34)

SCALI1 Upregulation Cigarette smoke extract increases SCAL1; NRF2 upregulates SCALI1 (23)

PANDAR Downregulation P53 increases PANDAR expression; 31

SPRY4-IT1 Downregulation EZH2 silences SPRY4-IT1 transcription (28,29)

LINCO00473 interacts with non-POU domain-containing
octamer-binding protein (NONO)andsubsequently facilitates
NONO/CREB regulated transcription coactivator 1
(CRTC1) interaction and CREB-mediated transcription,
to promote the proliferation of LKBIl-inactivated NSCLC
cells (53). Another IncRNA, DLX6-ASI, is located on the
chromosome 7q21.3 and has been found to be upregulated
in lung adenocarcinoma tissues comparted with adjacent
normal tissues (54). DLX6-ASI alters JAK/STAT signaling
to promote proliferation of lung adenocarcinoma cells (54).
Another study demonstrated that the knockdown of ANRIL
induced cell cycle arrest at the G1/GO phase and promoted
cell cycle apoptosis (34). In addition, depletion of ANRIL
increased pl5 expression and induced cell-cycle arrest at the
G2/M phase of lung cancer cells (55). Knockdown of ANRIL
has been found to reduce EZH2 binding with Kriippel-like
factor 2 (KLF2) and p21 promoter, and to also inhibit the
proliferation of PC9 NSCLC cells (56). SOX2 overlapping
transcript (SOX20T) is encoded on chromosome 3q26.3
locus, and has been found to be upregulated in 53.01% of
NSCLCs and significantly associated with poor survival
in patients lung cancer. Thus, silencing of SOX2OT can
suppress cell proliferation by causing G2/M arrest via
regulation of EZH2 expression (57).

Similarly, BRAF-activated non-protein coding RNA
(BANCR) is an antitumor IncRNA of 693 bp, located on the
chromosome 9q21.11 (58). Knockdown of BANCR induces
p38 mitogen-activated protein kinase (MAPK) and JNK
activation, which promotes lung cancer cell proliferation
and migration (59). By contrast, other IncRNAs, such as p53
inducible cancer associated RNA transcript 1 (PICARTI),
can inhibit JAK2/STAT3 signaling to suppress lung cancer
proliferation and induce apoptosis (60). Another IncRNA,
MIR22 host gene (MIR22HG), also has a tumor suppressive
role in lung cancer, by inhibiting oncogenes Y-box
binding protein 1 (YBX1) and MET, while increasing p21
expression (61). The IncRNA chromatin-associated RNA 10
(CARI10) can regulate the expression of neighboring genes,
which was first confirmed in human fibroblasts (62). Previous
studies have shown that CAR10 can act as an oncogene by
binding to the transcription factor YBX1 and subsequently
increase the proliferation of lung cancer cells (63). A schematic

illustrating the aforementioned IncRNAs and their roles in
proliferation of lung cancer cells is shown in Fig. 2.

Invasion and metastasis. Liu et al (64) reported that MALAT1
was upregulated in NSCLC tissues with bone metastasis
compared with non-metastatic NSCLC. In addition, MALAT1
downregulation inhibited the metastasis of lung cancer cells
and upregulated the expression of the metastasis-suppressor
genes MIA SH3 domain ER export factor 2 (MIA2) and
roundabout guidance receptor 1 (ROBOI), whereas it
decreased the expression of the tumor promoter genes glypican
6 (GPC6), adhesion G protein-coupled receptor L2 (LPHN?2),
and AT binding cassette subfamily A member 1 (ABCA1) (65).
Furthermore, MALATI acts as a sponge for miR-204 and
enhances the expression of Snail family transcriptional
repressor 2 (SNAI2, also known as SLUG), to promote
epithelial-mesenchymal transition and migration of lung cancer
cells (66). MALAT!I silencing can decrease the migration and
invasion ability of cells by inhibiting the expression of C-X-C
motif chemokine ligand 5 (CXCL5) (26,39). MALATI can
cause the dissociation of PTB-associated splicing factor (PSF)
from the promoter region of the proto-oncogene G antigen 6
(GAGES®6), which promotes the proliferation and invasion of
A549 cells (24).

HOTAIR also promotes the invasion and metastasis of lung
cancer cells by regulating homeobox A5 (HOXAS), miR-613
and 14-3-30 expression (67-69). Ono et al (70) found that
patients with elevated expression of HOTAIR were more prone
to lymph node metastasis and recurrence. HOTAIR interacts
with lymphoid-specific helicase (HELLS) and affects the
forkhead box A (FOXA) 2/FOXA1 expression ratio, thereby
promoting invasion and migration of lung adenocarcinoma
cells (71). PVT1 has been shown to regulate miR-497
expression and to competitively bind with miR-200a and
miR-200b, to upregulate matrix metalloproteinase 9 (MMP9)
expression and promote the metastasis of NSCLC (72,73).
ANRIL suppression has been shown to inhibit the invasion
and migration of lung tumor cells (74,75). LINC00963
is highly expressed in NSCLC tissues and interacts with
phosphoglycerate kinase (PGK1) to prevent its ubiquitination,
leading to activation of the AKT/mTOR oncogenic signaling
pathway. In addition, LINC00963 interacts with NONO to
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Table II. Continued.

Molecular mechanisms Functions (Refs.)

Expression

IncRNA

(32)

Induces apoptosis

Low-expression of PANDAR increases NF-YA binding to the promoter

of Bcl-2, thereby inhibiting NSCLC cell apoptosis

Downregulation

PANDAR

(61)

Suppresses proliferation and invasion of lung cancer

Cisplatin sensitivity

Decreases YBX1 and MET; increases p21 expression
Regulates p53 and WNT/B-catenin expression

Inhibits IGF-1R expression

Downregulation

MIR22HG
MEG3
GASS

(89)
92)

Downregulation

JIANG et al: ROLES OF IncRNAs IN LUNG CANCER

EGFR-TKIs sensitivity

Downregulation

27)

Inhibits proliferation and metastasis

Downregulation

SPRY4-IT1

activate CRTC/CREB-mediated transcription promoting
the metastasis of lung cancer cells (76). Knockdown of the
IncRNA ACTAZ2 antisense RNA 1 (ACTA2-AS1, also known
as ZXF1) inhibits the invasion and migration of lung cancer
cells (77). Finally, Ge et al found that CAR10 acted as a ceRNA
for miR-30 and miR-203 and induced EMT by regulating
Snail family transcriptional repressor 1 (SNAI1) and SNAI2
expression (78). A schematic illustrating the aforementioned
IncRNAs and their roles in invasion and metastasis of lung
cancer cells is shown in Fig. 3.

Drug and radiation resistance. Medical treatment for lung
cancer mainly includes platinum-based chemotherapy and
molecular-targeted drugs, such as epidermal growth factor
receptor tyrosine kinase inhibitors (EGFR-TKIs) (79,80).
However, drug resistance at many instances leads to failure of
treatment (81,82). Previous studies have shown that multidrug
resistant (MDR) A549/DDP cells were primarily caused by
changes to the cell membrane transporters, abnormal target
enzymes and irregular apoptosis pathway (83-85). In recent
years, there has been evidence that some IncRNAs are also
involved in the drug resistance mechanism of lung cancer
(Fig. 4).

The levels of several IncRNAs, including MALAT1, H19
and HOTAIR, have been demonstrated to be upregulated in
cisplatin-resistant lung cancer (86-88), whereas maternally
expressed 3 (MEG3) and AK126698 are downregulated in
drug-resistant A549/DDP lung cancer cells (89,90). MALAT1
acts as a ceRNA to sponge miR-101 and then regulates
SRY-box transcription factor 9 (SOX9) and MCLI to enhance
cisplatin resistance (91,92). Furthermore, MALAT1 induces
cisplatin resistance via STAT3 activation, and upregulation
of multidrug resistance-associated protein 1 (MRP1) and
multidrug resistance 1 (MDR1) expression (86). HOTAIR
increases cisplatin resistance in A549 cells by decreasing p21
expression and activating the Wnt signaling pathway (93).
HOTAIR upregulates HOX A1 by decreasing the expression of
DNA methyltransferase (DNMT) 1 and DNMT3b, resulting in
chemoresistant SCLC (94,95). By contrast, MEG3 expression
is decreased in cisplatin-resistant A549/DDP lung cancer cells
and cisplatin-insensitive lung adenocarcinoma tissues (89).
Overexpression of MEG3 has been reported to mediate
re-sensitization to cisplatin in drug resistant A549/DDP cells
and animal models (89). MEG3 affects cisplatin sensitivity
partially via regulation of the p53 and WNT/p-catenin
signaling pathways (89). AK126698 is also found at high
expression levels in DDP-sensitive A549 cells compared with
the drug resistant A549/DDP cells. As a result, AK126698
knockdown has been demonstrated to decrease the apoptosis
of A549 cells following cisplatin treatment via activation of
Wnat signaling (90).

EGFR-TKIs are used to treat NSCLC patients with EGFR
mutations (96-98). When comparing gefitinib-sensitive to
gefitinib-resistant human lung cancer cells, 1,731 IncRNAs
were found to be upregulated and 2,936 IncRNAs
downregulated in drug resistant cell lines (99). HOTAIR
induces gefitinib resistance by activating transforming
growth factor (TGF)-a/EGFR signaling and inhibiting the
Bax/caspase-3 pathway (100). Similarly, urothelial cancer
associated 1 (UCA1) expression is increased in lung cancer
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patients with EGFR-TKI resistance and thereby affects patient
prognosis. Knockdown of UCAI retrieves gefitinib sensitivity
in drug-resistant cells not harboring an EGFR T790M
mutation, via regulation of the AKT/mTOR pathway (101).
Additionally, upregulation of growth arrest-specific 5
(GASS) has been detected in EGFR-TKI sensitive lung
cancer cells. GASS enhances the sensitivity of lung cancer
cells to EGFR-TKIs by regulating the EGFR pathway and
insulin-like growth factor 1 receptor (IGF-1R) (102). Finally,
crizotinib is an inhibitor of receptor tyrosine kinases and
is mainly used for ALK positive lung cancer patients (79).
HOTAIR increases crizotinib resistance of NSCLC cells
via enhancing the phosphorylation of ULK1 and stimulating
autophagy (103).

In addition, HOTAIR increases the radiation resistance
in lung cancer via downregulation of Wnt inhibitory factor 1
(WIF-1) and activation of the Wnt signaling pathway (104).
Similarly, PVT1 also decreases the radiosensitivity of NSCLC
cells via sponging of miR-195 (105). BANCR was demonstrated
to be highly expressed in Lewis lung tumor-bearing mice after
radiation therapy (106). Knockdown of BANCR expression
promoted cancer cell viability after radiation therapy, and mice
with lower BANCR expression had larger tumor sizes (106).
These studies could help predict which patients may best
respond to radiotherapy.

4.IncRNAs as biomarkers in lung cancer

IncRNAs have complex roles in the initiation and progression
of lung cancer, thereby affecting the prognosis of patients.
IncRNAs are prevailing in the plasma with relative stability,
which is suitable for early diagnosis of lung cancer. Recently,
abundant IncRNAs have also been detected in serum exosomes
with specific and characteristic expression markers in patients
with lung cancer, suggesting that they could be utilized as
potential clinical biomarkers.

Several reports have found that increased HOTAIR levels
in patients with lung cancer and upregulation of HOTAIR
expression correlates with the pathological staging and
poor prognosis of lung cancer (107,108). Plasma HOTAIR
expression levels could be a biomarker for the diagnosis
and monitoring of NSCLC patients (109). Similarly, H19
is upregulated in NSCLC tissues and negatively correlated
with the survival of lung cancer patients (21,49). PVT1 has
been shown to be overexpressed in NSCLC tissues, and
elevated PVT1 expression levels have been demonstrated
as an independent prognostic factor for NSCLC (110-112).
Wu et al (110) reported that PVT1 was also overexpressed
in lung squamous cell carcinoma. Notably, overexpression of
the IncRNA ZXF1, positioned at chromosome 10q23.31 with
a length of 3,985 bp, was found to be significantly related



592

Invasion and

JIANG et al: ROLES OF IncRNAs IN LUNG CANCER

metastasis

HOTAIR !ANRlD szxm)

? l
‘?_ED

LSH HOXA5, miR-613
and 14-3-30

Y

CXCLS

FOXA2 | FOXA1

|

-

AN

g

miR-204/SNAI2 | GPCB, LPHN2 and ABCA1

me_ Noney CPVTID R10)

‘L Vlf b

AKT/MTOR  CRTC/CREB miR205/30

MIAZ, ROBO1 ISNAI axis

miR-200a/b/MMP9

}\’\)‘ Oncogenic IncRNA

miRNA and target
[, gene 9

)
13%3

-0 WO

Invasion at the
primary tumor site
and intravasation
into a blood vessel

—

8
i"
Extravasation
and establishment
of secondary metastasis
at a distant site

Figure 3. Roles of IncRNA-mediated regulatory pathways in invasion and metastasis of lung cancer. IncRNAs act as sponges for miRNAs or regulate their
downstream target genes, thereby promoting invasion and metastasis of lung cancer cells. IncRNA, long non-coding RNA; miRNA, microRNA.

% ULK1
Autophagy
DNMT 1/DNMT3b
R 53 "4
WNT/f-catenin
Vint signal HOXA1
EGFR pathway
and IGF-1R
e

< !Oncogenic IncRNA l Inhibition

Tumor suppressor
7 |ncRNA

wmw, MIRNA and target
gene

® Phosphorylation

fi;]’ Resistance

e

p21WiF-1 Bax/Caspase-3
Wt signaling

iﬁﬁgé?ﬁﬁ%g

doTal
KX <@

4

STAT3 L

miR-101/S0OX8MCLA

l

AKT/ImTOR

E
o
w
3]

MRF1/MOR1

I

Figure 4. IncRNAs mediate drug and radiation resistance. Tumor suppressor IncRNAs can regulate EGFR, IGF-1R, the Wnt signaling pathway and p53 to
inhibit resistance of cancer cells towards drug and radiation therapy. Oncogenic IncRNAs promote resistance via multiple pathways, target genes and miRNAs.

IncRNA, long non-coding RNA; EGFR, epidermal growth factor receptor; IGF-

to lymph node metastasis and poor prognosis in patients
with lung adenocarcinoma (77). ANRIL is overexpressed
in NSCLC tissues and cell lines and elevated ANRIL levels
are correlated with poor prognosis in NSCLC patients (74).
ANRIL can be found in the plasma of NSCLC patients and
acts as an extremely sensitive diagnostic tool with an area
under ROC curve (AUC) value of 0.798 (113). Circulating
ANRIL expression may be used as a predictor in the early
diagnosis of NSCLC (113). Similarly, SOX2OT is upregulated
in serum samples of NSCLC and its expression is significantly
associated with the overall survival (OS) rate of lung cancer

IR, insulin-like growth factor 1 receptor; miRNA, microRNA.

patients (114). Several studies have reported overexpression
of MALATTI in tumor tissue as well as peripheral blood
of NSCLC patients (115-118). Weber et al (119) found that
MALATI1 expression in the peripheral blood of NSCLC
patients was higher compared with healthy controls and was
characterized by high specificity and sufficient sensitivity
(AUC=0.79). Similarly, Zhang et al (120) indicated that
abundant expression of serum exosomal MALATI in
NSCLC patients was positively associated with tumor stage
and lymph node metastasis, suggesting that MALAT]I can act
as a tumor biomarker for prognosis and diagnosis in NSCLC.
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Furthermore, Sun et al (121) analyzed 113 cases of NSCLC
tissue samples and found that expression of BANCR was
remarkably decreased in NSCLC patients with shorter survival
time. Similarly, the IncRNA MIR22HG was significantly
downregulated in lung cancer compared with normal tissues,
and low expression was correlated with poor survival of the
patients (61). Liang et al (122) examined a total of 123 human
blood sample, which included blood from 90 NSCLC patients
and 33 healthy controls prior to surgery and therapy. The
levels of GAS5 were notably downregulated in the plasma
of NSCLC patients. Of note, the expression levels of GASS
were associated with 82.2% sensitivity and 72.7% specificity
via ROC analysis. Moreover, combination of the GASS with
the carcinoembryonic antigen marker had a higher AUC of
0.909 (95% confidence interval, 0.857-0.962; P 0.0001) (122).
Tantai et al found that compared to a single IncRNA, the
combination of the IncRNAs X-inactive specific transcript
(XIST) and HIF-1a antisense RNA 1 (HIF1A-ASI1) was also
a prospective marker for the diagnosis of NSCLC with an
AUC of 0.931 via ROC analysis (123). A study on SPRY4-IT1,
ANRIL and nuclear enriched abundant transcript 1 (NEAT1)
demonstrated that the combination was a significant marker in
the diagnosis of lung cancer (AUC=0.876) (113).

5. Conclusion and perspectives

Emerging substantial research has confirmed that abnormally
regulated IncRNAs have crucial roles in the malignant biology
of lung cancer. However, available information about IncRNA
dysregulation mechanisms in lung cancer remain limited.
Further research into the mechanisms by which smoking and air
pollution regulate IncRNA expression and by which IncRNAs
affect lung cancer initiation and progression will provide valuable
information to improve our understanding of lung cancer.

IncRNAs demonstrate diverse and dynamic functions
depending on their subcellular localization and interacting
molecules. At present, IncRNA remains a poorly understood
genomic product; especially their functions in the nucleus as
chromatin architecture regulators are unclear. In the future, the
construction of a IncRNA-mediated gene expression network
and associated signaling pathway network will further reveal the
function and molecular mechanisms of IncRNA in proliferation,
metastasis, and therapeutic response of lung cancer.

IncRNA-specific expression patterns in cancer subtypes
and their stability in body fluid provides a valuable choice
as biomarkers for lung cancer. Existing studies of IncRNAs
as biomarkers in lung cancer have laid the foundation for
clinical application, but require further wider screening and
validation in large cohorts. Such studies will further elucidate
the potential of IncRNAs as diagnostic markers and treatment
targets for lung cancer.
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