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Abstract. Prostate cancer (PCa) and breast cancer (BCa) are 
two common sex hormone-related cancer types with high 
rates of morbidity, and are leading causes of cancer death 
globally in men and women, respectively. The biological 
function of androgen or estrogen is a key factor for PCa or 
BCa tumorigenesis, respectively. Nevertheless, after hormone 
deprivation therapy, the majority of patients ultimately 
develop hormone-independent malignancies that are resistant 
to endocrinotherapy. It is widely recognized, therefore, that 
understanding of the mechanisms underlying the process from 
hormone dependence towards hormone independence is crit-
ical to discover molecular targets for the control of advanced 
PCa and BCa. This review aimed to dissect the important 
mechanisms involved in the therapeutic resistance of PCa and 
BCa. It was concluded that activation of the NF-κB pathway 
is an important common mechanism for metastasis and thera-
peutic resistance of the two types of cancer; in particular, the 
RelB-activated noncanonical NF-κB pathway appears to be 
able to lengthen and strengthen NF-κB activity, which has 
been a focus of recent investigations.
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1. Introduction

Prostate cancer (PCa) and breast cancer (BCa) are two 
common types of malignant tumor with high mortality rates. 
According to recent statistical data, the number of new cases 
of PCa and BCa accounts for 7.1 and 11.6% of the total cancer 
cases worldwide, and the numbers of deaths from PCa and BCa 
account for 3.8 and 6.6% of all cancer deaths, respectively (1). 
Particularly in Asian countries like China, the incidences of 
PCa and BCa have been constantly increasing over the last 
two decades (2). Owing to the improved early diagnosis and 
advanced therapeutic strategies, the mortality rates of PCa and 
BCa have appreciably decreased. Unfortunately, the majority of 
patients eventually develop more aggressive malignant forms 
that are resistant to the most common treatments, leading to a 
poor prognosis (3,4). Thus, therapeutic resistance still poses a 
major challenge on the path to conquer PCa and BCa.

As sex hormone-related cancer types, PCa and BCa share 
a common feature; namely, that the interaction between 
sex hormones and hormone receptors is required to initiate 
tumorigenesis (5,6). In PCa, the androgen response is thought 
to be essential for tumorigenesis. Blockage of the interaction 
between androgen and the androgen receptor (AR) has been 
implicated in the induction of caspase-mediated apoptosis, 
as well as the inhibition of cell proliferation by altering cell 
cycling (7,8). Like androgen, estrogen is also essential for 
cell survival and proliferation, and estrogen receptor (ER) 
activation is recognized to play a pivotal role in BCa 

Endocrinotherapy resistance of prostate and breast 
cancer: Importance of the NF‑κB pathway (Review)

XIUMEI WANG1,2*,  YAO FANG1,2*,  WENBO SUN1,  ZHI XU3,  YANYAN ZHANG1,   
XIAOWEI WEI4,  XUANSHENG DING2  and  YONG XU1,3

1Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University 
Affiliated Cancer Hospital, Nanjing, Jiangsu 210009; 2School of Basic Medicine and Clinical Pharmacy, 

China Pharmaceutical University, Nanjing, Jiangsu 211198; 3Jiangsu Key Lab of Cancer Biomarkers, 
Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu 211166;  

4Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China

Received October 7, 2019;  Accepted January 24, 2020

DOI: 10.3892/ijo.2020.4990

Correspondence to: Professor Yong Xu, Jiangsu Cancer Hospital 
and Jiangsu Institute of Cancer Research, and Nanjing Medical 
University Affiliated Cancer Hospital, 42 Baiziting, Nanjing, 
Jiangsu 210009, P.R. China
E‑mail: yxu4696@njmu.edu.cn

Professor Xuansheng Ding, School of Basic Medicine and Clinical 
Pharmacy, China Pharmaceutical University, 639 Longmian Road, 
Nanjing, Jiangsu 211198, P.R. China
E‑mail: xsding2013@163.com

*Contributed equally

Key words: NF-κB, androgen receptor, estrogen receptor, 
endocrinotherapy resistance, prostate cancer, breast cancer



WANG et al:  NONCANONICAL NF-κB PATHWAY IN ENDOCRINOTHERAPY RESISTANCE 1065

progression (9‑11). Overall, heightened AR and ER activities 
are thought to contribute to the development of PCa and BCa 
through AR/ER-mediated signal transduction.

Since sex hormone responses are a key factor for the 
initiation of tumorigenesis in both PCa and BCa, hormone 
deprivation has become a common therapeutic option for the 
treatment of these two types of cancer. However, although most 
patients can gain certain therapeutic benefits from hormone 
therapies in the early stages, a large number of patients 
eventually acquire therapeutic resistance, leading to tumor 
recurrence and metastasis in hormone-free conditions (3,12). 
Overall, the therapeutic strategies for PCa and BCa are quite 
similar (Table I).

For patients with low- and intermediate-risk localized 
PCa, local treatment such as prostatectomy and radiotherapy 
are efficient to prevent distant organ metastasis (13-15). 
Additionally, radiotherapy plus hormone therapy has been 
applied to treat patients with high-risk locally advanced PCa, 
metastatic PCa that is unsuitable for surgery, or tumor recur-
rence after prostatectomy (13,15,16). Finally, chemotherapy 
with serious side-effects is still required to treat malignant 
PCa when hormone therapy is no longer effective (13,15). 
Notably, recent advanced targeted therapy and immunotherapy 
for inhibiting malignancy-associated molecules, as well as 
specific signaling pathways, have been successfully used to 
control hormone-refractory states (17,18). In BCa treatment, for 
patients with the early stages of BCa, after breast-conserving 
surgery or mastectomy, radiotherapy is essential to reduce 
the risk of recurrence (19,20). Generally, endocrino-
therapy is the first‑line treatment for ER‑positive BCa (21). 
Ultimately, chemotherapy is essential in treating patients 
with metastatic BCa, including human epidermal growth 
factor receptor 2 (HER2)-positive BCa, high-risk luminal 
HER2-negative BCa and triple-negative BCa (TNBC) (22-24). 
Likewise, targeted therapy for inhibiting HER2 appears to 
efficiently treat malignant BCa (25). Immunotherapy also has 
also become a potent therapeutic approach to controlling BCa 
progression and reversing drug resistance (26).

Overall, hormone therapy is a powerful tool for the treat-
ment of the early stages of AR-positive PCa or ER-positive 
BCa. Nevertheless, chemotherapy is necessary for treating 
late-stage disease that is resistant to hormone therapy. 
Unfortunately, advanced disease with a metastatic phenotype 
remains incurable, particularly life-threatening metastases 
to the bones or brain (27‑30). Thus, more efficient targeted 
therapy and immunotherapy are needed to more effectively 
treat advanced PCa/BCa. To that end, the aim of the present 
review was to integrate research on the mechanism by which 
PCa or BCa gradually progresses to the AR/ER-negative 
genotype. Activation of the NF-κB pathway appears to play a 
central role in the progression of hormone-independent malig-
nancies and in endocrinotherapy resistance; in particular, 
RelB is a key factor in sustaining NF-κB activity to replace 
the function of AR/ER.

2. Key ligand receptors in PCa and BCa tumorigenesis

The interaction between ligands and receptors is thought to 
be essential for normal physiological development, but also 
to be involved in cancer progression. Abnormal activation of 

AR/ER signaling uniquely contributes toward the tumorigen-
esis of PCa/BCa. Nevertheless, unlike PCa with AR alone, 
the progesterone receptor (PR) and HER2 are also important 
receptors, along with ER, in BCa.

Biological functions of AR and ER in PCa and BCa. As major 
sex hormone receptors, AR and ER belong to the nuclear 
receptor superfamily, which can be activated by multiple ligands 
including steroids, thyroid hormones and retinoic acid (31-33). 
AR and ER function as transcription factors in the regulation 
of downstream gene expression (8,34). The mechanisms of 
AR/ER-mediated transcriptional regulation are illustrated 
in Fig. 1. AR is expressed in both androgen-dependent and 
-independent PCa (5,33); it can be activated by various steroid 
hormones, particularly androgenic hormones including testos-
terone and dihydrotestosterone (35,36). Similar to AR, there 
exist both ERα and Erβ, which are responsive to estrogen activa-
tion (6). In general, AR/ER form heterodimers with heat shock 
proteins (HSPs) to remain in an inactive state in the cytosol. 
HSP is released when hormone ligands bind to AR/ER, and 
subsequently the hormone ligand-receptor complexes transfer 
into the nuclei as a dimer, and bind to androgen/estrogen 
response elements located in the enhancer regions of the down-
stream regulated genes (3,8,37). Additionally, many co-factors 
also participate in AR/ER-mediated transcriptional regula-
tion by interacting with AR/ER (3,6,8,33,37). Accordingly, 
multiple endocrine therapeutic approaches focusing on the 
suppression of AR/ER activation have been frequently used to 
treat PCa and BCa. However, after the initial benefits received 
from the AR/ER‑targeted treatment, the therapeutic efficacies 
are inevitably declined when patients develop more aggressive 
AR/ER-independent malignancies (7,33,34,38).

PR and HER2 in BCa. In addition to ER, PR is another 
important sex steroid hormone receptor for sexual maturation 
and gestation, whose function is also relevant to BCa progres-
sion (39‑42). Notably, HER2, a typical proto‑oncogene, has 
been recognized as a key factor for promoting high risk BCa 
through a steroid-independent signaling pathway (43-45). 
Thus, HER2 has become an important biomarker for BCa 
progression as well as a therapeutic target for ~30% of patients 
with BCa (44-46). Increasing evidence has demonstrated 
that downregulation of PR and/or upregulation of HER2 
in BCa leads to the acquisition of endocrinotherapy resis-
tance (41,43,44,47).

3. Mechanistic switch from AR/ER to NF‑κB in PCa and 
BCa progression

The functional consequences of cell signaling modulation are 
mainly ascribed to gene transcriptional regulation in PCa and 
BCa progression (48,49). AR/ER‑mediated transcriptional 
regulation is thought to be critical for the development of 
the early stages of PCa/BCa. Nevertheless, AR/ER func-
tion eventually declines in the late stages of malignant 
PCa/BCa, particularly as a consequences of hormone depriva-
tion therapy (50,51). Notably, other transcription factors like 
NF-κB functionally take over AR/ER to substantially repro-
gram the cell transcriptome, sustaining PCa/BCa progression 
under hormone-free conditions (52-54).
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NF‑κB functional substitution of AR/ER. It is thought that 
NF-κB negatively regulates AR function by competing 
for transcriptional regulation (55). Previous studies have 
demonstrated that androgen-independent PCa exhibits higher 
constitutive NF-κB binding activity than its androgen-depen-
dent counterpart. Tumor necrosis factor (TNF)α induces 
NF-κB activation via stimulation of inhibitor of NF-κB (IKK), 
which is inhibited as an androgen analogue (56). For example, 
prostate‑specific antigen (PSA), a common PCa biomarker, is 
regulated by AR (57). However, NF-κB is also able to regu-
late PSA through binding to a κB response element located 
in the promoter region (52). Consistently, inhibition of NF-κB 
results in the suppression of castration-resistant prostate 
cancer (CRPC) xenograft tumor growth (58). Nevertheless, 
NF-κB also appears to positively regulate androgen receptor 
splicing variant (ARV) transactivation (59,60). Additionally, 
AR-negative PCa stem cells with high constitutive NF-κB 
activity promote tumor growth during androgen deprivation 
therapy, suggesting that NF-κB gradually substitutes AR 

during CRPC progression (61). Notably, AR activation results 
in the suppression of the canonical NF-κB pathway, but leads 
to upregulation of the noncanonical NF-κB pathway (61).

Likewise, NF-κB plays a key role in the promotion of 
estrogen-independent growth in both ER-positive and -nega-
tive BCa (62). In particular, the evidence of low NF-κB 
activation in ER-positive BCa cells and high NF-κB activation 
in ER-negative BCa cells indicates an inverse relationship 
between ER and NF-κB in BCa progression (53), suggesting 
that constitutive NF-κB activity is consistently increased 
during ER-independent BCa progression (63,64). Blockage 
of NF-κB activation efficiently inhibits proliferation and 
reverses therapeutic resistance in ER-negative cells (54). 
Mechanistically, NF-κB represses ER expression, and high 
levels of NF-κB can cause downregulation of ER (65). In 
particular, it has been noted that levels of RelB are inversely 
correlated with the status of ER in BCa cells (66). RelB can 
stimulate PR/SET domain 1, which represses ER expres-
sion by binding to the ER promoter (67). However, in some 

Figure 1. AR/ER, a ligand-activated transcription factor. The AR/ER is usually bound by Hsp and remains inactive in the cytoplasm. When a steroid hor-
mone signal appears, Hsp is shed to free the corresponding receptor for androgen/estrogen binding, followed by the translocation of the ligand-receptor 
complexes into the nuclei to mediate the transcriptional activation of the downstream regulatory genes. AR, androgen receptor; ER, estrogen receptor; H, 
androgen/estrogen; HR, AR/ER; HREs, androgen/estrogen response elements; Hsp, heat shock protein; C, transcription co-factor.

Table I. Comprehensive therapeutic strategies for PCa and BCa.

A, PCa

Type/stage  Treatment

Primary/localized Prostatectomy; radiotherapy
Advanced/metastatic Radiotherapy plus hormone therapy; hormone therapy; chemotherapy; 
 targeted therapy; immunotherapy

B, BCa

Type/stage Treatment

Primary/localized Breast-conserving surgery; mastectomy; radiotherapy
Advanced/metastatic Radiotherapy plus hormone therapy; hormone therapy; chemotherapy; 
 targeted therapy; immunotherapy

PCa, prostate cancer; BCa, breast cancer.
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early-stage ER-positive BCa cells, NF-κB activation has been 
shown to recruit ER to p65/estrogen response element motifs, 
resulting in increased ER transcriptional responses (68,69). 
Taken together, these findings predict that NF‑κB gradually 
replaces ER, from transcriptional cooperation in inflammatory 
BCa states to functional substitution in hormone refractory 
states. The activation of the NF-κB pathway in the progres-
sion of hormone-deprived aggressive PCa and BCa is depicted 
in Fig. 2.

NF‑κB activation mechanism. NF-κB is involved in various 
biological processes, such as cell survival, proliferation, 
differentiation and the immune response (70). Members of the 
NF-κB family have a conserved Rel homology domain at their 
N-terminus, including RelA (p65), RelB, c-Rel, NF-κB1 (p50) 
and NF-κB2 (p52) (71,72). NF-κB activation is divided into 
the canonical NF-κB pathway and the noncanonical NF-κB 
pathway. In the canonical NF-κB pathway, stimulating ligands 
including the Toll-like superfamily, interleukin (IL)-1, TNF 
and other antigens interact with their receptors to recruit 
adaptors, such as TNF receptor associated factor (TRAF)2, 
TRAF3 and nuclear receptor subfamily 2 group C member 2, 
which activate the IκB kinase complex (IKKα, IKKβ and 
IKKγ/NEMO) to phosphorylate and then ubiquitinate IκBα, 
leading to p50:RelA dimer nuclear translocation (73,74). By 
contrast, in the activation of the noncanonical NF-κB pathway, 
NF-κB-induced kinase stimulates IKKα to phosphorylate 
p100, resulting in the release of p52 and promoting p52:RelB 
nuclear translocation (75,76). However, evidence has shown 

that p50 can also dimerize with RelB to activate the nonca-
nonical NF-κB pathway (76).

Role of the NF‑κB pathway in malignant PCa development. 
The activation of NF-κB plays a crucial role in PCa progres-
sion. Ras (GTP binding protein) cooperates with NF-κB and 
acts as a signal scaffold for metastatic promotion in PCa (77). 
In this context, it is well documented that NF-κB-activated 
inflammation, including cytokines/chemokines, contributes to 
CRPC (61). For instance, androgen ablation results in regression 
of androgen-dependent PCa, in which IKKα-activated NF-κB 
increases cytokine production leading to androgen-free prolif-
eration (78). Importantly, constitutive activation of NF-κB is 
highly associated with PCa resistance to both chemotherapy 
and radiotherapy (79).

Role of the NF‑κB pathway in advanced BCa development. 
Mounting evidence highlights that NF-κB promotes BCa 
metastasis by activating the epithelial-mesenchymal transi-
tion (EMT) process, partially by upregulating IL-1β and 
IL-6 (80). In malignant BCa, epidermal growth factor receptor 
is integrated with NF-κB in the activation of IL-1, which 
promotes the invasive capacity of BCa cells (81). Additionally, 
IL-8 stimulates the PI3K-AKT-NF-κB signaling axis, which 
in turn upregulates integrin β1/β3 expression, leading to 
increased motility as well as enhanced chemoresistance and 
radioresistance in BCa cells (63). Furthermore, a previous 
study demonstrated that the NF-κB‑controlled proinflamma-
tory cytokine network is important for the maintenance of 

Figure 2. NF-κB functional substitution of AR/ER for sustaining PCa/BCa progression. The interaction between androgen-AR in PCa or estrogen-ER in 
BCa is essential for the transcriptional regulation of hormone responsive gene expression and the initiation of PCa/BCa tumorigenesis. Along with malignant 
progression, AR and ER functions decline and tumors start to metastasize the nearby organs. NF-κB dominantly activates metastasis-related gene transcrip-
tion as a hormone-independent response. In general, the IKK-IκBα-p50:RelA signaling axis is responsible for canonical NF-κB pathway activation, while the 
NIK-IKK-p100:RelB-p52:RelB signaling axis is required for noncanonical NF-κB pathway activation. AR, androgen receptor; ER, estrogen receptor; IKK, 
inhibitor of NF-κB; PCa, prostate cancer; BCa, breast cancer; IκBα, inhibitor of NF-κB kinase subunit-α; Ub, ubiquitin; P, phosphoric acid.
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cancer stem cells in the regulation of BCa plasticity, suggesting 
that NF-κB-mediated cytokine activation is critical for the 
recurrence of BCa after hormone therapy (82).

4. NF‑κB activation in endocrinotherapy resistance

Although most patients with PCa and BCa are responsive to 
endocrinotherapy initially, treatment resistance and tumor 
relapse remains a salient question in clinical supervision. Indeed, 
clinical outcomes indicate that hormone deprivation treatment 
somehow promotes the development of hormone-independent 
malignant tumor types (83,84). Accordingly, multiple mecha-
nisms have been reported to be relevant to endocrinotherapy 
resistance, including activation of the NF-κB pathway (47,83-
87). Notably, the TNF-α, WNT5A, PI3K-AKT, Ras-Raf-ERK 
and transforming growth factor (TGF)-β1-mitogen activated 
protein kinase (MAPK) signaling axes have been demonstrated 
to be important upstream signaling pathways of the NF-κB 
pathway in both PCa and BCa (47,85,86,88‑92).

As a typical redox responsible transcription factor, NF-κB 
responds to stimulation with reactive oxygen species (ROS). 
In the regard, NADPH oxidase 4 leads to ROS production 
accompanied by mitochondrial respiration, thereby stimulating 
the NF-κB pathway (88). Anticancer drugs such as TNF-α and 
adriamycin adapt to increase ROS, in turn induce antioxidant 
enzymes like manganese superoxide dismutase (MnSOD) 
through NF-κB activation (88,89). The PI3K‑AKT and 
Ras-Raf-ERK signaling axes have been shown to play pivotal 
roles in PCa/BCa progression by modulating NF-κB in substitu-
tion for AR/ER (47,85,86,90‑95). In particular, the activation of 
the PI3K-AKT-NF-κB signaling axis has been well documented 
for the development of a hormone-independent phenotype as 
well as therapeutic resistance in both PCa and BCa (63,96,97). 
Notably, PI3K activation in PTEN‑deficient PCa is a hallmark 
of an androgen-independent phenotype (17). The results of a 
previous study suggested a reciprocal feedback between the two 
oncogenic pathways (98). PI3K activation leads to repression 
of AR transcriptional output and, consistently, PI3K inhibition 
activates AR signaling. Conversely, AR inhibition promotes 
PI3K activity in PTEN‑deficient PCa. Thus, combined AR and 
PI3K inhibition produces improved therapeutic responses (98). 
Since PI3K is a key upstream signaling molecule for activation 
of the NF-κB pathway, this finding mechanistically elucidated 
the inverse association between AR and the NF-κB pathway.

In addition, TGF-β1-induced p38-MAPK signaling 
upregulates IL‑6 expression due to RelA activation (99‑101). 
RalBP1-associated Eps domain-containing protein 2 mediates 
RelA activation, and was also shown to promote androgen-inde-
pendent growth (102). Nevertheless, NF-κB has also been shown 
to cooperate with AR under androgen deprivation conditions; 
for instance, macrophage stimulating 1 receptor, a receptor 
tyrosine kinase, is able to activate NF-κB, which is sufficient 
to drive AR nuclear localization under androgen deprivation 
condition and support CRPC growth (103).

Notably, the canonical NF-κB pathway can actually induce 
the noncanonical NF-κB pathway, thereby sustaining high 
NF-κB activity (76,104). Additionally, several inducible agents 
have been demonstrated to directly activate the noncanonical 
NF-κB pathway. WNT5A from bone stromal cells induces 
bone morphogenetic protein 6 (BMP-6) via RelB activation; in 

turn, BMP-6 stimulates PCa cell proliferation via the interac-
tion between Smad5 and β-catenin (28). In addition, WNT5A 
activates NF-κB signaling to induce MMP7 expression, thereby 
contributing to the invasion of TNBC cells (105). A decrease 
in chicken ovalbumin upstream promoter transcription factor II 
results in endocrinotherapy resistance in BCa cells by activating 
the noncanonical NF-κB pathway (106); whereas, fucoxanthin 
appears to be able to reverse BCa endocrinotherapy resistance 
by suppressing RelB activation (107). Overexpression of aryl 
hydrocarbon receptor (AhR) leads to the activation of RelB, 
in turn upregulating IL‑8 expression in BCa cells (108,109). 
Ribonucleotide reductase M2 (RRM2) leads to increased RelB 
activity, thereby endowing tamoxifen resistance due to the upreg-
ulation of Bcl-2 in BCa cells (110). Overall, NF-κB functions as 
a master switch, changing PCa/BCa from an AR/ER-positive 
phenotype to an AR/ER-negative phenotype (Fig. 3).

5. Main NF‑κB‑regulated proteins in endocrinotherapy 
resistance

NF-κB regulates a series of genes relevant to endocrinotherapy 
resistance. Particularly, it has been widely recognized that 
both canonical and noncanonical NF-κB pathways are vital 
for resistance to hormone receptor-targeted treatment in PCa 
and BCa (52,53,58,60,111). As important NF-κB-regulated 
proteins, Bcl-2, cyclin D1, IL-6 and IL-8 appeared to be 
critical for endocrinotherapy resistance in both PCa and BCa. 
The main NF-κB regulated proteins associated with endocri-
notherapy resistance are summarized in Fig. 4.

Effect of the canonical NF‑κB pathway in PCa endocrino‑
therapy resistance. Bcl-2, an important antiapoptotic protein, 
was upregulated in response to ROS-mediated NF-κB activa-
tion, promoting therapeutic resistance (112). TNF-α-mediated 
RelA activation contributes to CRPC partially through 
upregulation of Bcl-2 (113). In addition, the activation of 
NF-κB results in upregulation of IL-6, leading to castration 
resistance (114). Induction of IL-6 is important for hormone 
resistance, which is positively regulated by the canonical 
NF-κB pathway, but negatively regulated by AP-1 (115). IL-8 
also promotes the progression of CRPC through NF-κB acti-
vation (116). NF-κB-activated IL-4 has been shown to enhance 
AR function in PCa cells with an absence or low levels of 
androgen (117). Altogether, the feed-forward activation of 
NF-κB-cytokines/chemokines is essential for the appearance 
of CRPC (118). In androgen-refractory PCa, the activation 
of canonical NF-κB pathway significantly increases the 
disease‑specific death due to AKT‑mediated IKK phosphory-
lation (119). Furthermore, NF‑κB-enhanced EMT upregulates 
Twist1 in response to AR inhibition, leading to CRPC (120).

Effect of the canonical NF‑κB pathway in BCa endocrinotherapy 
resistance. Estrogen withdrawal leads to increased p50:RelA 
DNA binding activity and sustained estrogen-independent 
growth through upregulation of cyclin D1 and Bcl-3 (121). 
Moreover, NF-κB-mediated upregulation of cyclin D1, urokinase 
and vascular endothelial growth factor contributes to endocrino-
therapy resistance in high-risk ER-positive BCa (122). Immediate 
early gene X-1 expression is stimulated by tamoxifen through the 
binding of NF-κB to the promoter (123). X-box binding protein 1 
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is a key factor for antiestrogen resistance, the expression of which 
is regulated by modulating RelA (124). In tamoxifen-resistant 
BCa cells, NF-κB activation results in an increase in IL-6 (125). 
In TNBC cells, the lipoprotein(a)-lysophosphatidic acid 
receptor 2-enhancer of zeste 2 polycomb repressive complex 2 
subunit-NF-κB signaling cascade is required for the coordi-
nated autocrine effect of IL-6 and IL-8 (126). As expected, 
Bcl-2 is upregulated by the canonical NF-κB pathway in 
response to tamoxifen (127). Similar to PCa, the activation of 
the PI3K-AKT-NF-κB signaling axis is highly associated with 
endocrinotherapy resistance in BCa (128).

Emerging role of the noncanonical NF‑κB pathway in endocri‑
notherapy resistance. In contrast to the well-studied p50:RelA 
activation described above, the role of p52:RelB in cancer 
responses to treatment remains elusive. Indeed, the noncanon-
ical NF-κB pathway exerts even more effects in metastasis and 
therapeutic resistance rather than in tumorigenesis. p52:RelB 
can activate AR-responsive genes, such as PSA and NKX3.1 
(a prostate‑specific tumor suppressor) in a ligand‑independent 
manner, suggesting that the noncanonical NF-κB pathway also 
plays a supporting role in CRPC progression (129). In addition, 
p52:RelB activation increases PCa cell survival and prolifera-
tion by upregulating Bcl-xL and cyclin D1 (130-132). Moreover, 
p52:RelB activation contributes to resistance to AR-targeted 
therapies through regulation of multiple signaling pathways, 
such as by modulating AR (60), upregulating c-Myc-depen-
dent heterogeneous nuclear RNA-binding protein A1 (133), 
and enhancing glucose flux to the glycolysis and pentose 
phosphate pathways (134). Consistent with PCa, RelB is also 
highly expressed in hormone therapy-resistant BCa cells (111). 
Fucoxanthin appears to be able to reverse hormone therapy 
resistance by suppressing p52:RelB (107). Overexpression 
of AhR and RRM2 leads to the activation of RelB, thereby 
endowing tamoxifen resistance due to the upregulation of 
Bcl-2 and IL-8 (111). MEK-mediated p52 activation is required 
for TNBC growth and drug resistance (135). Overexpression 
of HOXB13 (a homeobox protein) enhances RelB nuclear 
translocation and contributes to therapeutic resistance (136).

6. NF‑κB as a target in PCa and BCa treatment

Since NF-κB contributes to endocrinotherapy resistance in PCa 
and BCa, NF-κB-targeted therapy has frequently been applied 
to enhance endocrinotherapy. Nitric oxide donors sensitize 
Trail-mediated apoptosis via inhibition of Bcl-xL through 

Figure 3. Upstream signaling involved in NF-κB activation in the endocrinotherapy resistance of prostate cancer and breast cancer. The canonical NF-κB 
pathway is stimulated by a cell signaling network, including TNF-α, RON, REPS2, PI3K-AKT, TGF-β-MAPK, Ras-Raf-ERK and treatment-induced ROS. 
While several regulators have been identified to be able to activate the noncanonical NF‑κB pathway, including WNT5A, COUP-TFII, AhR and RRM2. 
Particularly, PI3K-AKT and Ras-Raf-ERK function as vital upstream signals, are able to stimulate both canonical and noncanonical NF-κB pathway. 
Importantly, the canonical NF-κB pathway can further activate the noncanonical NF-κB pathway to sustain the NF-κB activity. TNF-α, tumor necrosis 
factor-α; REPS2, RalBP1-associated Eps domain-containing protein 2; TGF-β, transforming growth factor-β; MAPK, mitogen activated protein kinase; 
COUP-TFII, chicken ovalbumin upstream promoter transcription factor II; AhR, aryl hydrocarbon receptor; RRM2, ribonucleotide reductase M2; Nox4, 
NADPH oxidase 4; ROS, reactive oxygen species.

Figure 4. Downstream NF-κB-regulated proteins involved in the endocrino-
therapy resistance of PCa and BCa. Antiapoptotic protein Bcl-2, cell cycle 
regulator cyclin D1, cytokine IL-6 and IL-8 appear to be common factors 
in response to endocrinotherapy resistance in both PCa and BCa. PCa, 
prostate cancer; BCa, breast cancer; IL, interleukin; VEGF, vascular endo-
thelial growth factor; HnRNPA1, c-Myc-dependent heterogeneous nuclear 
RNA-binding protein A1; uPA, urokinase-type plasminogen activator; 
XBP1, X-box binding protein 1; IEX-1, immediate early gene X-1.
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inactivation of NF-κB (137). IL-6, a NF-κB-regulated cytokine, 
contributes to androgen-independent PCa progression. Inhibition 
of IL-6 enhances the sensitivity of PCa to docetaxel (138). NF-κB 
activation in ARVs associated with CRPC leads to anti-androgen 
therapy resistance. Repression of NF-κB enhances the efficiency 
of hormone therapy (59). Notably, Wedelia chinensis herbal 
extract has been shown not merely to inhibit AR activity in 
androgen-dependent PCa, but also to suppress the expression 
of IKKα/β phosphorylation in hormone-independent PCa 
cells (139). In BCa, NSC35446, a hydrochloride salt compound, 
is able to inhibit anti-estrogenic tumor growth and reverse 
antiestrogen resistance by targeting NF-κB (140). Additionally, 
ivermectin reverses chemotherapeutic resistance via suppression 
of NF-κB-activated P-gp expression (141). Importantly, a number 
of compounds appear to efficiently treat both aggressive PCa and 
BCa via repression of NF-κB-mediated transcriptional activa-
tion. Curcumin, an inhibitor of the NF-κB canonical pathway, 
is able to inhibit the hormone-mediated invasion of BCa (142). 
The combination of curcumin and bicalutamide enhances the 
growth inhibition of androgen-independent PCa cells (143), 
while 1α,25-dihydroxyvitamin D3 has been reported to repress 
the NF-κB noncanonical pathway, which strongly reduces the 
growth of drug-resistant BCa cells and enhances the radiosen-
sitivity of PCa cells (144,145). Parthenolide, a native compound 
that functions as an NF-κB repressor, has been shown to restore 
the sensitivity of tamoxifen to endocrine-resistant BCa cells and 
to enhance PCa cell radiosensitivity (146-148).

7. Conclusions and perspectives

Endocrinotherapy resistance and tumor relapse are major 
challenges in treating advanced PCa and BCa. The progres-
sion from hormone-dependence to hormone-independence 
has been widely recognized to be one of main causes of 
endocrinotherapy resistance. Therefore, the molecular basis 
for the failure of treatments targeting AR or ER has been well 
investigated. This review reorganized the molecular mecha-
nisms underlining endocrinotherapy resistance and concluded 
that NF-κB is the most important transcription regulator in 
activating the expression of a series of genes, leading to the 
acquisition of the endocrinotherapy resistance. In the majority 
of cases, NF-κB functionally substitutes AR or ER in tran-
scriptional regulation for sustaining tumor cell survival and 
proliferation, by activating a different set of genes when the 
efficacy of AR/ER‑targeted treatments declines. It should be 
noted, however, the inverse association between AR/ER and 
NF-κB is not persistent during the progression of PCa and 
BCa; in particular, a few case studies have demonstrated that 
RelA can cooperate with AR in transcriptional regulation 
when androgen deprivation treatment fails (103). Additionally, 
although the NF-κB pathway is thought to serve as a key 
mechanism underlying endocrinotherapy resistance, other 
signaling pathways, such as Myc, Stat3 and Wnt, also play 
regulatory roles in the acquisition of therapeutic resistance. 
Furthermore, NF-κB also plays a crucial role in the radiore-
sistance of PCa and BCa through upregulation of antioxidant 
and antiapoptotic proteins, including MnSOD and Bcl‑2 (149).

The present review also outlined that several upstream 
signaling pathways engage to trigger the NF-κB pathway; in 
particular, PI3K-AKT upstream signaling activates the NF-κB 

pathway in response to oxidative stress and inflammatory 
stimulation. Importantly, the cytokine/chemokine-NF-κB 
signaling feed-forward loop is indispensable for the acquisi-
tion of endocrinotherapy resistance. It was recently concluded 
that TGF-β, IL-6, IL-8 and TNF-α are the most important 
cytokines associated with multidrug resistance in BCa (150). 
These four cytokines are typical NF-κB-regulated proteins, 
and increased levels of inflammation in turn activate the 
NF-κB pathway, which promotes endocrinotherapy resistance.

Distant organ metastasis associated with multidrug resis-
tance precludes successful treatment. A myriad of studies 
have demonstrated that RelA-activated canonical NF-κB 
pathway is critical for cancer progression and therapeutic 
resistance (82,103,110,124,151-153). However, the effect of the 
RelB-activated noncanonical NF-κB pathway is underesti-
mated. Indeed, RelA can upregulate RelB, leading to sustained 
long-term NF-κB activity in cancer progression (76). Since the 
function of RelA is essential for normal physiological develop-
ment, the failure of anticancer treatment by targeting RelA 
may be caused by either low therapeutic efficacy or unexpected 
side effects. It has been demonstrated that RelB is uniquely 
expressed at a high level in advanced PCa, which contributes 
to therapeutic resistance (149,154). Accordingly, blockage 
of RelB nuclear translocation has the effect of reversing 
resistance to treatment in AR-negative PCa (155). Thus, the 
inactivation of the noncanonical NF-κB pathway may provide 
a promising approach to the treatment of advanced PCa and 
BCa when AR/ER‑targeted therapeutic efficiency declines.

In summary, this review emphasized the importance of 
NF-κB in the acquisition of endocrinotherapy resistance in PCa 
and BCa, suggesting that inhibition of the NF-κB pathway may 
overcome endocrinotherapy resistance and should be beneficial 
in developing comprehensive treatment strategies to control 
malignant PCa and BCa. In addition to the well-documented 
canonical NF-κB pathway, the noncanonical NF-κB pathway 
remains to be fully elucidated. Emerging evidence predicts that 
RelB may exert an even greater effect than RelA on metastasis 
and therapeutic resistance, based on its capacity for maintaining 
NF-κB activity. Of further interest, therefore, is why and how the 
noncanonical NF-κB pathway contributes to cancer progression 
and therapeutic resistance. To that end, this review is expected to 
shed light on future in-depth investigations into NF-κB function 
to advance the treatment of PCa/BCa therapeutic resistance.
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