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Abstract. The incidence of cutaneous malignant melanoma 
has been steadily increasing worldwide for several decades. 
This phenomenon seems to follow the trend observed in 
many types of malignancies caused by multiple significant 
factors, including ageing. Despite the progress in cutaneous 
malignant melanoma therapeutic options, the curability of 
advanced disease after metastasis represents a serious chal-
lenge for further research. In this review, we summarise data 
on the microenvironment of cutaneous malignant melanoma 
with emphasis on intercellular signalling during the disease 
progression. Malignant melanocytes with features of neural 
crest stem cells interact with non‑malignant populations within 
this microenvironment. We focus on representative bioactive 
factors regulating this intercellular crosstalk. We describe the 
possible key factors and signalling cascades responsible for the 
high complexity of the melanoma microenvironment and its 
premetastatic niches. Furthermore, we present the concept of 
melanoma early becoming a systemic disease. This systemic 
effect is presented as a background for the new horizons in the 
therapy of cutaneous melanoma.
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1. Introduction

Similarly to other malignant diseases, the incidence of cutaneous 
malignant melanoma (CMM) is increasing worldwide (1). This 
increased incidence seems to be influenced by many factors, 
including ageing of the population, behavioural habits, and 
climatic and environmental changes. Formation of CMM is 
associated with the main genetic drivers such as BRAF, NF1 and 
NRAS mutations, also usually associated with chronic skin sun 
damage (2). Aberrant activation of the RAS/BRAF/MEK/ERK 
signalling pathway causes uncontrolled proliferation of 
malignant cells in the majority of CMM (3). Melanoma causes 
most of the skin cancer‑related deaths. The patient overall 
survival at five years depends on the thickness of the primary 
melanoma. CMM is also known for its remarkable ability to 
metastasise. Despite the new therapeutic options, the curability 
of advanced‑stage melanoma is still limited. These recent 
therapeutic approaches modulate the immune response of the 
organism (e.g., via application of anti‑CTLA‑4 and anti‑PD‑1 
antibodies) or target proliferation in specifically mutated 
melanomas (e.g., by application of BRAF or MEK inhibitors). 
In order to establish novel targeted melanoma therapies, it is 
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of fundamental importance to understand the mechanisms 
activated in the permissive tumour microenvironment. In 
particular, interactions between melanoma cells and the tissue 
microenvironment play key roles in the disease progression. 
This article summarises data on the multifaceted roles of 
CMM microenvironment in tumour spreading. This concept 
may be extended to the intravasation of bioactive molecules 
participating in the melanoma cell crosstalk with non‑malignant 
cells forming the CMM microenvironment. These molecules 
also participate in premetastatic niche formation. Finally, their 
role in patient wasting is also widely discussed. The concept 
of CMM microenvironment as a complex system suitable for 
therapeutic targeting is introduced in this article.

2. Cutaneous malignant melanoma (CMM) disseminates 
extensively in the organism of the patient

The critical feature associated with melanoma is its enormous 
capability to spread and form lymph node or distant visceral 
metastases (Fig. 1). Almost any tissue in the patient's body can 
host metastatic cells, and even a small and thin primary tumour 
can metastasise to the entire body, leading to the death of the 
patient (1). Metastatic spread is a complex multistep process, 
as was noted almost 200 years ago by surgeon Stephen Paget, 
who coined the ‘seed and soil’ hypothesis (4). Surprisingly, 
cutaneous melanoma can spread to different organs without 
any particular predilection, and thus differs from, e.g., uveal 
melanoma of similar histogenesis. However, the first predic-
tive site of metastatic disease is a lymph node. The presence 
of tumour cells in this lymph node is generally investigated 
in melanoma patients with tumours thicker than 1 mm. This 
procedure is routinely called sentinel lymph node biopsy. The 
presence of melanoma cells in the lymph node is a powerful 
predictor of melanoma recurrence, but not of survival, in 
the melanoma patients  (5). VEGF‑C, which is involved in 
lymphangiogenesis and promotes increased lymphatic vessel 
density, can also play a role in lymph node metastasis (6).

CMM metastasis to the lungs and brain and other visceral 
organs. In the case of visceral melanoma metastasis, the 
most predictive localisations are the lungs and pleura  (7). 
Lung metastases are also the most frequent metastases in 
mouse models of metastatic melanoma (8). In these mouse 
models using the B16 model of melanoma, chloride channel 
accessory  2 (CLCA2), an extracellular protein expressed 
predominantly in the lung, was identified as a factor mediating 
interactions with α6β4‑integrin, which is expressed by tumour 
cells (9). Brain metastases are associated with poor prognosis. 
Historically, melanoma patients with brain metastases have 
had dismal outcomes and very limited treatment options. 
Systemic treatment with BRAF inhibitors and immunotherapy 
offers therapeutic responses in up to 55-58% of patients (10). 
The actual mechanism of brain metastases is not clear, but 
mouse models point to some factors that play a role in this 
process. The original model suggested a role of transferrin 
receptors and their interaction with their ligand, transferrin, 
mediating metastases of melanoma cells to the brain. Another 
study highlighted the importance of neurotrophins and neuro-
trophin receptors in the process of brain‑specific melanoma 
metastases (11).

Other common sites for melanoma metastases are the liver 
(up to 20% of patients), bones (11-17%), or skin and subcuta-
neous tissue (12).

CMM metastasis to the skin. Skin metastasis represents 
haematogenous dissemination of melanoma cells. Specific 
interactions between chemokines C‑C motif chemokine 
receptor 10 (CCR10) and C‑C motif chemokine ligand 27 
(CCL27) have been determined as crucial factors in melanoma 
metastasis to the skin (13). CCL27 is a chemokine expressed 
in the epidermis by normal keratinocytes. In addition, high 
expression in supratumoral epidermis is associated with 
more prolonged melanoma‑specific survival (14). Presumably, 
CCL27 interacts with the chemokine receptor CCR10, which 
is expressed in melanoma cells. Experiments with blocking 
antibodies to CCL27 showed inhibition of development of skin 
metastasis in a mouse model (15).

CMM metastasis and somatic mutations. Despite that, no 
specific biomarker with predictive potential to determine 
the metastatic site exists to date. In melanoma, there is also 
an observed lack of association between the site of visceral 
or lymph node metastasis and either the clinicopathological 
variant or location of the primary tumour  (16). The 
dependence on the presence of somatic mutations has been 
reported. One study suggested that BRAF mutation is 
associated with lymph node metastasis as the first metastasis 
and sentinel lymph node positivity. BRAF and NRAS 
mutations were associated with different metastatic patterns, 
with metastases more frequently affecting the central nervous 
system and the liver. NRAS‑mutated tumours formed lung 
metastases  (17). This highlights an earlier‑unexpected 
internal heterogeneity of the group of tumours nowadays 
collectively called melanoma. Although intense visceral 
organ‑specific surveillance may be initiated in patients with 
tumours harbouring these somatic mutations, this does not 
necessarily lead to a decrease in mortality. It is not easy 
to understand this metastatic potency of CMM, which 
represents the main, frequently fatal, complication in the 
treatment of patients. The complexity of these mechanisms 
is also shown by the concept of pre‑malignant melanocyte 
dissemination, suggesting that benign melanocytes may 
exist at disseminated sites in the body and may be capable 
of undergoing malignant progression. It is not uncommon 
to find benign melanocytic nevi in the lymph node during 
sentinel lymph node biopsy or in non‑melanoma patients (up 
to 7% of patients) (18). These findings support the hypothesis 
mentioned above. It is also critically important to identify the 
mechanisms driving the metastatic behaviour.

CMM cells are similar to neural crest‑originated stem 
cells. CMM cells arise after malignant transformation from 
pigment‑producing cells called melanocytes. Melanocytes 
originate from the embryonic neuroectoderm structure called 
the neural crest (NC). NC cells are multipotent stem cells 
derived from the neuroectoderm that delaminate from the 
neural tube in early vertebrate development (in the 4th week) 
and migrate throughout the developing embryo. Consequently, 
NC cells differentiate into various cell lineages, including 
melanocytes (19).
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NC cells are unique because of their remarkably broad 
differentiation potential (Table  I)  (20-22). Once they have 
reached the final tissue niche in the skin, NC cells differ-
entiate to melanocytes by a cascade of events controlled by 
transcription factors such as microphthalmia‑associated tran-
scription factor (MITF) and sex‑determining region Y‑box 
10 (Sox10). This process occurs during the prenatal period 
of human development (23,24). The signalling molecules and 
transcription factors that are required for NC cell specifica-
tion, migration and differentiation form a highly orchestrated 
gene regulatory network. Every individual signalling molecule 
has either individual or combinatorial roles in transcriptional 
regulation (25). The precise understanding of this mechanism 
seems to be critically important because similar pathways are 
activated in malignancy, and they could control the biological 
properties of malignant CMM cells (26). The signalling path-
ways regulating epithelial to mesenchymal transition (EMT) 
can be triggered by transcription factors that are active in both 
NC development and cancer progression (27).

Interestingly, both melanoblasts and NC cells also reside in 
the bulge region of the hair follicle in the outer root sheath. In 
this highly specialised niche, NC cells retain their multipotency 
during adult life. NC cells can be isolated and expanded in vitro 
with the remarkable features of highly multipotent stem cells 
(SCs). It is possible to differentiate NC cells to various special-
ised cell types such as melanocytes, adipocytes, osteoblasts, 
chondroblasts, smooth muscle cells, neurons, and Schwann 
cells (28). The NC cell phenotype is defined by expression of 
multiple markers, and NC cell identification cannot be based 
on a single molecule. Of note, there is a significant overlap 
with the marker profile of CMM [Table II based on (29-37)]. 

This highlights the low differentiation frequently observed 
in melanoma, where many cells typically have properties of 
stem cells (37). These cancer‑initiating cells of CMM have an 
indispensable role in CMM resistance to therapy, progression 
and generalisation (38).

The life‑long postnatal presence of NC cells in hair follicles 
raises important questions regarding the maintenance of their 
multipotency and regulation of their normal behaviour within 
this niche. There is strong evidence that the microenviron-
ment is a critical condition of this steady‑state. The signalling 
cues within the proper microenvironment, via both extrinsic 
and intrinsic factors, orchestrate the interplay necessary for 
healthy tissue dynamics. The importance of the normal tissue 
microenvironment was highlighted in several studies using 
transplantation of malignant cells to animal embryos. In 
experiments performed in the early chicken embryo, labelled 
CMM cells were injected into the region of the neural tube. 
It was demonstrated that melanoma cells migrate to the same 
regions as the autologous embryonic NC cells (39). Similar 
experiments performed later in zebrafish embryos supported 
these findings. Both the embryonic NC cells and the cells of 
CMM in zebrafish express specific protein crestin, which is 
absent in normal melanocytes (40).

Taking into account the low differentiation status of NC 
cells and their natural migratory activity, the similarity of 
CMM and NC cells can also explain the highly metastatic 
behaviour observed in melanoma in the clinic.

Circulating CMM cells in disease dissemination. Similarly 
to other types of malignant tumours, cells of CMM can also 
be detected in the circulation. These circulating melanoma 

Figure 1. This figure presents the extensive capability of melanoma to form lymphatic/distant metastases in all tissues in the patient's body documented at a 
single patient level. (A) Primary cutaneous melanoma (Breslow thickness 6 mm) with clinical apparent ulceration in a 69‑year‑old female, and (B) dermoscopy 
of this primary cutaneous melanoma with atypical black dots, dotted vessels and erythema in regression areas. (C) The same primary tumour stained with H&E; 
magnification, x200. (D) After staining with Fontana‑Masson (melanin), dark black granules of melanin in melanoma are visualised; magnification, x400. 
(E) PET‑CT scan shows generalisation of the tumour to the lung, bones, lymph nodes, and soft tissue. (F) Horizontal section of PET‑CT scan demonstrates 
metastasis in the lung and left humerus. The images were kindly provided by the Department of Dermatovenereology, First Faculty of Medicine, Charles 
University with explicit informed consent.



KODET et al:  MELANOMA DISSEMINATION IS DEPENDENT ON INTERCELLULAR CROSSTALK622

cells harbour the functional properties of cells of the primary 
tumour, including their SC‑like properties (41,42). These cells 
leave the primary tumour and penetrate the vessels and use 
them as a highway for dissemination through the patient's 
body to target the organ/tissue where they form metastases. 
Using an identical vascular path, the normal adult tissue SCs 
can migrate in order to facilitate body repair processes during 
wound healing (43,44). From this point of view and based 
on histological/molecular similarity, cancer again resembles 
wound healing. With a certain hyperbole, cancer can be seen 
as a distorted cascade of wound repair events (45). These data 
can also predict the great invasive metastatic potential of 
CMM.

3. The microenvironment of CMM participates in the 
control of its invasive potential

Melanoma is a complex ecosystem. Malignant cells define 
the type of tumour. However, there are other non‑cancerous 
populations forming the tumour stroma. It is the interaction of 
both components of this microenvironment that finally defines 
the biological behaviour of the tumour. It is truly applicable to 
solid tumours in general, and CMM is no exception (46-48). 
Concerning CMM, the cancer microenvironment is formed 
by cancer‑associated fibroblasts (CAFs) and several types of 
leukocytes, as comprehensively reviewed by Lacina et al (49) 
(Fig. 2A).

The origin of CAFs is not fully understood. Local normal 
dermal fibroblasts, attracted mesenchymal SCs and pericytes 
are frequently mentioned as source cell populations from 
which CAFs are recruited  (50). However, the transition of 
cancer cells to CAFs cannot be entirely excluded, although its 
likeliness is not very high. This fact is difficult to prove in the 
experimental model (51).

Treg lymphocytes, tumour‑associated macrophages and 
myeloid‑derived immunosuppressive cells stimulating the 
CMM progression, as well as NK cells, macrophages and 

CD8‑positive T lymphocytes, are attracted to the CMM site. 
Interestingly, CAFs stimulate the activity of immune cells 
supporting melanoma cells and inhibit the cancer‑suppressing 
cells (52,53).

Unlike in other epidermal tumours, keratinocytes are also 
an important component of the CMM microenvironment. 
Melanoma cells can stimulate surrounding keratinocytes (54). 
On the other hand, keratinocytes control growth and differ-
entiation of melanocytes and potentiate the invasiveness of 
melanoma cells during early progression as observed in a 
reconstructed skin model (55).

Role of intercellular contact. Cell‑cell adhesion molecules 
(cadherins) and cell‑extracellular matrix adhesion proteins 
(integrins) play a critical role in the regulation of cancer invasion 
and metastasis. Many members of the cadherin superfamily 
play an important role in cancer biology. However, the most 
significant explanation is seen in the E‑/N‑cadherin switch, 
and its role in epithelial to mesenchymal transition (EMT), 
in cancer progression. N‑cadherin expression in CMM cells 
helps cancer cells to interact with fibroblasts and extracellular 
matrix and stimulates the invasive potential of melanoma cells 
and their proliferation, but also activation of PI3/AKT, mTOR, 
and ERK kinase. Inhibition of N‑cadherin represents an inter-
esting possibility, with potential clinical use (56).

Intercellular contacts of normal melanocytes, or malignant 
melanoma cells, respectively, and their non‑cancerous neigh-
bours within the tissue environment influence their properties 
mutually (62). Keratinocytes reduce expression of N‑cadherin 
not only via cell‑cell contacts, but also via cell‑derived 
extracellular matrix and conditioned medium with calcium 
regulators  (57). These findings support the importance of 
the balance in communications between melanoma cells and 
non‑cancerous cells in the melanoma microenvironment. 

Table I. Examples of cells originated from neural crest cells.

Cell type	 Specification

Peripheral neurons	 Sensory, sympathetic + 	
	 parasympathetic ganglia
Glial cells	 Schwann cells
Merkel cells	 Mechanoreceptor function
Parafollicular cells	 Production of calcitonin
Adrenal medullar cells 	 Chromaffin cells
Osteoblasts/odontoblasts	 Facial skeleton
Chondroblasts	 Facial skeleton
Myoblasts	 Striated/smooth‑facial 
	 region
Dental pulp cells	 Multipotent stem cell 
	 potential
Fibroblast/mesenchymal cells	 Facial region
Cornea	 Stromal cells
Melanocytes	 All parts of the body

Table II. Comparison of markers of hair follicle NC SCs and 
CMM cells.

Factor	 NC SCs	 CMM cells

BMP4a	 +	 +
SNAILa	 +	 +
SLUGa	 +	 +
SOX9a	 +	 +
TWISTa	 +	 +
MITFb	 +	 +
Desminc	 +	 +/‑
Calponinc	 +	 +/‑
β‑III tubulind	 +	 +

aNC marker, bmelanocyte progenitor marker, csmooth muscle differ-
entiation marker, dneuronal marker. NC, neural crest; SCs, stem cells; 
CMM, cutaneous malignant melanoma; BMP3, bone morphogenetic 
protein 3; SOX9, SRY‑box transcription factor 9; MITF, microph-
thalmia‑associated transcription factor. Based on Person et al  (29), 
Stasiak et al (30), Yang et al (31), Lee et al (32), Tudrej et al (33), 
Iwakami et al (34), Goding and Arnheiter (35), Campbell et al (36), 
Krejčí and Grim (37).
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Integrins β1 and β3, as adhesion cell‑extracellular matrix 
proteins, are differentially expressed during the transforma-
tion of melanoma radial growth to the vertical invasion (58,59). 
The differentiation status of melanoma cells and the ability 
to invade the surrounding tissue also highlights this impact. 
For example, the expression of connexin‑43 in CMM cells 
indicates the ability of CMM cells to metastasise (52,60,61). 
Expression of desmoglein‑2, which participates in the contacts 
with keratinocytes, has an inhibitory effect on CMM cell 
migration.

On the other hand, the expression of desmoglein‑2 promotes 
the vasculogenic mimicry of CMM cells, which is associated with 
a poor outcome of patients (62,63). Furthermore, in melanoma 
cells that do not express β3 integrins, β1 integrins instead play a 
role in promoting their transendothelial migration by binding to 
vascular cell adhesion molecule 1 (VCAM‑1) (64). Integrins also 
play an important role in connecting the extracellular matrix with 
the melanocyte and melanoma cell cytoskeleton. Cytoskeletal 
rearrangements, such as the increase of the overall contrac-
tility, impact cell mechanical properties and cell deformability. 
These changes may then potentiate prometastatic phenotypes 
of melanoma cells. Expression of αvβ3 integrin increases elas-
ticity in human melanoma cells in adherent and non‑adherent 
conditions (65). Intercellular contacts and molecules play an 
important role in the mechanisms of targeted therapy. Targeting 
of the CMM cell surface receptor Notch‑dependent pathway 
improves the activity of Erk inhibitors in BRAF‑V600E mutated 
tumours. Further, it can be combined with inhibition of ERBB3 
to suppress melanoma cell growth (63). On the other hand, Notch 
expression in CAFs reduces the growth and migration potential 
of melanoma cells (66).

Role of paracrine signalling in communication across the 
CMM microenvironment. The paracrine mode of signalling 
between cancerous and non‑cancerous cells in CMM has been 
extensively studied (Fig. 2B and C). For example, CAFs, kera-
tinocytes and infiltrating immune cells produce a variety of 
growth factors/cytokines/chemokines that significantly influ-
ence the biological properties of malignant CMM cells (67,68) 
(Table III). Interestingly, many of these factors are also associ-
ated with skin ageing. Collectively, these bioactive molecules 
are called the senescence‑associated secretome  (69). As 
expected, chemokines attract inflammatory cells to the tumour 
site. However, they also have multiple other functions (70). 
CMM cells express receptors for CXCL1 and interleukin 
(IL)8, and these factors enhance their invasiveness (71,72). 
Antagonists of CXCR1/2 receptors have a well‑documented 
inhibitory effect on migration of CMM cells (73). The IL8 
chemokine also stimulates vascularisation of CMM (74,75), 
and in general, its high expression indicates poor prognosis of 
CMM patients (76).

Expression of chemokine CXCL16 seems to participate 
in the malignant transformation of a melanocytic nevus to 
CMM (77). Activation of CXCR6 recognising this chemokine 
induces SC‑like properties in CMM cells and initiates their 
migration (78).

IL1β is predominantly produced by macrophages. It partici-
pates in the progression of CMM in collaboration with IL8 and 
caspase recruitment domain family member 8 (CARD8) (79).

IL6 is a crucial factor initiating the immune response. IL6 
has a multifaceted role in cancer progression (80). While the 
initial stage of CMM growth can be inhibited by IL6 (81), 
the more advanced stages are associated with production of 

Figure 2. The figure demonstrates the paracrine and systemic effect of CMM during progression. (A) Once initiated, the tumour growths and via paracrine 
signalling influences surrounding non‑cancerous tissues (detail in the pink‑filled circle). This paracrine interaction strengthens the malignant potential of 
CMM. However, signalling molecules diffuse and also leak to the circulation via capillaries. (B) Exposed to the released cytokines, chemokines and growth 
factors, the normal distant tissues become activated and form premetastatic niches (detail in the blue‑filled circle). This is an early systemic effect of the 
primary tumour. (C) In some of these niches, the metastasising malignant cells will harbour and initiate a metastatic tumour (detail in the blue‑filled circle). 
The concentration of circulating bioactive molecules is further enhanced by their production in metastases. This represents a later systemic effect typical of 
generalised malignancies. (D) Circulating bioactive molecules induce physical and functional organ changes. This consequently results in wasting, cachexia 
and death. CMM, cutaneous malignant melanoma.
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this interleukin (82,83). IL6, frequently in cooperation with 
IL8, exhibits an additive effect on WNT5A in the stimulation 
of CMM cell invasiveness  (67,84). IL6 induces Twist and 
N‑cadherin expression in CMM angiogenesis in a mechanism 
dependent on the p50 subunit of nuclear factor κB (85).

In general, IL17D (IL27) has an anti‑tumoral effect in 
CMM (86), where it participates in generating tumour‑specific 
cytotoxic T cells (87). The effect of IL17D on CMM cells 
seems to be TRAIL‑dependent (88). On the other hand, it is 
also known as a potent inducer of the production of IL6 and 
IL8 in endothelial cells. It is highly expressed in the initial 
stages of CMM (89), stimulating the CMM growth and tumour 
vascularisation.

Glycoprotein aggrecan is produced by cells of the CMM, 
CAFs and keratinocytes. It is usually secreted during the 
process of chondroblast differentiation, and it has an inhibitory 
effect on CMM progression (90). A similar anti‑CMM effect 
is produced by insulin‑like growth factor‑binding protein 7 
(IGFBP‑7), namely in BRAF‑mutated V600E‑positive 
dysplastic nevi  (91). On the other hand, heparin‑binding 
EGF‑like growth factor has a stimulatory impact on CMM 
growth (92). The same result was described in the case of 
another growth factor, neurotrophin  (93,94). miRNA‑328 
controls production of TGF‑β2, and attenuation of its expression 
has a strong inhibitory effect on CMM cell proliferation (95). 
VEGFA and VEGFC are generally responsible for the activa-
tion of CMM neovascularisation by blood/lymphatic vessels 
that support the CMM growth and progression. Connective 

tissue growth factor has a synergistic effect on VEGFA and 
stimulates the tumour site neovascularisation (96).

As mentioned earlier, CAFs do not support tumour 
growth and metastases exclusively. CAFs are also implicated 
in the acquisition of resistance to the targeted therapy in 
BRAF‑mutated melanomas. Under the influence of BRAF 
inhibitors, CAFs secrete factors that contribute to CMM cell 
survival and melanoma resistance. CAFs release factors such 
as hepatocyte growth factor (HGF) and neuregulin 1 (NRG1), 
which can trigger alternative cascades in MAP kinase 
signalling (97,98).

The short overview in Table III demonstrates the complexity 
of signalling between CMM cells and non‑cancerous cells, 
where intercellular contacts, cytokines, chemokines, and 
growth factors with both the stimulatory and inhibitory effect 
influence the tumour growth and generalisation.

Concluding this paragraph, paracrine signalling represents 
a critical aspect in the control of biological properties of 
CMM. In addition to the crosstalk between melanoma cells, 
this process includes an exchange of information between 
CMM cells and non‑malignant cells of the microenvironment.

Role of exosomes. In addition to paracrine signalling via 
soluble products, exosomes represent another tool of CMM 
cell communication with non‑cancerous partners within 
the microenvironment. All affected cell populations of the 
cancer microenvironment produce these bodies. Exosomes 
thus inf luence CMM cell biological properties  (99). 

Table III. Examples of factors produced by CAFs, Kerat and melanoma cells in CMM.

Symbol	 Gene name	 CAFs	 Kerat	 CMM cells

IL8	 Interleukin 8	 +	 +	 +
CXCL1	 Chemokine (C‑X‑C motif) ligand 1 
	 (melanoma growth stimulating activity α)	 +	‑	‑ 
CXCL16	 Chemokine (C‑X‑C motif) ligand 16	 +	‑	  +
IL1B	 Interleukin 1β	 +	 -	 -
IL6	 Interleukin 6	 +	 +	 +
IL17D	 Interleukin 17D	 +	‑	  +
ACAN	 Aggrecan	 +	 +	 +
HBEGF	 Heparin‑binding EGF‑like growth factor	 +	 +	‑
BDNF	 Brain‑derived neurotrophic factor	‑	‑	   +
TGFB2	 Transforming growth factor, β2	‑	‑	   +
IGFBP7	 Insulin‑like growth factor binding protein‑7	 +	 +	‑
GAP43	 Growth associated protein 43	 +	 +	‑
BMP2	 Bone morphogenetic protein 2	 +	‑	  +
BMP6	 Bone morphogenetic protein 6	 +	‑	‑ 
VEGFA	 Vascular endothelial factor A	 +	 +	 +
VEGFC	 Vascular endothelial factor C	 +	 +	 +
CTGF	 Connective tissue growth factor	 +	‑	  +
PDGFRL	 Platelet‑derived growth factor receptor‑like	 +	‑	  +
LEPRE1	 Leucine proline‑enriched proteoglycan (Leprecan)	 +	‑	‑ 
LEPREL1	 Leprecan‑like 1	 +	‑	  +
KAZALD1	 Kazal‑type serine peptidase inhibitor domain 1	 +	‑	‑ 

CAFs, cancer‑associated fibroblasts; CMM, cutaneous malignant melanoma; Kerat, keratinocytes. Based on Kodet et al (54), Jobe et al (67).
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Exosomes stimulate CMM cell metastasis via support of 
the epithelial‑mesenchymal transition. Exosomes influ-
ence vascularisation of the lymph node in order to prepare 
the vascular bed for the metastasising (100,101). Exosomes 
significantly participate in the regulation of local invasive-
ness and also in the entrance of melanoma cells to the target 
organs  (102). This effect is frequently associated with the 
presence of miRNAs in CMM‑derived exosomes. It was 
confirmed both in vitro and in vivo in clinical material (103). 
Exosomes exert a robust immunosuppressive effect on the 
cancer microenvironment, where they inhibit IL2‑dependent 
proliferation of CD8‑positive T lymphocytes (104). Moreover, 
CMM exosomal miRNA‑125b‑5p induces a tumour‑promoting 
phenotype in macrophages (105). These changes can induce a 
mixed M1, and M2 tumour‑promoting macrophage activation 
included production of CCL22, IL‑12B, IL‑1β, IL‑6, i‑NOS, 
and TNF‑α (106). These data highlight exosomes as a criti-
cally important component of the CMM microenvironment 
significantly participating in its biological properties, with 
the ability to stimulate the immune response of the melanoma 
microenvironment.

4. Differences in serum proteins between CMM patients 
and healthy individuals

Serological biomarkers represent a diverse group of biomol-
ecules with importance in diagnosis, staging, and monitoring 
the therapeutic response. Serum lactate dehydrogenase (LDH) 
is the only serum biomarker that has been accepted as a 
prognostic biomarker for routine clinical use in melanoma 
patients with a predictive therapeutic outcome and has been 
implemented in the American Joint Committee on Cancer (8th 
edition) staging system (107). Routinely used S100B (S100 
calcium binding protein B) protein is highly specific for mela-
noma patients. Its increased levels can be detected in patients 
with advanced melanoma during melanoma prognosis (108). 
Another serological protein is MIA (melanoma inhibitory 
activity), which interacts with extracellular matrix proteins. 
Its expression can also be detected in normal tissue such as 
cartilage. In pathological processes, its overexpression is 
observed in breast cancer or colorectal cancer, in addition to 
melanoma (109).

Introduction of a new treatment strategy for advanced mela-
noma leads to the search for new biomarkers to improve both 
prognostic and predictive outcome. Likely, the high intensity of 
molecular exchange between cancer cells and other members of 
the microenvironment via cytokines, chemokines and growth 
factors can lead to leakage out from the tumour microenviron-
ment, and mediators can be consequently detected in systemic 
circulations in the serum (110,111) (Fig. 2A‑D). Therapy by 
monoclonal antibodies targeting immune checkpoint inhibi-
tors is one of the most potent treatments of CMM patients. 
Measurement of current concentrations and dynamics of these 
mediators in the serum can have the potential of liquid biopsy. 
Indeed, the serum protein signature even reflects the efficiency 
of anti‑PD‑1 therapy of CMM patients and can be substantial 
for therapeutic indications (112).

Similarly to other types of tumours, an elevated serum 
level of IL6 in CMM has been observed  (111), which has 
reached some prognostic validity (113). Serum elevation of 

IL6 sensibly reflected the tumour burden and indicated a 
relapse of the disease or insensitivity to tumour therapy in 
several studies (114-116).

A similar finding was observed in the case of serum levels 
of IL8 (71,117,118). Interestingly, the levels of IL6, IL8, and 
VEGFA correlated with the level of Breslow index at the 
time of diagnosis (117,119). Moreover, the amount of VEGFA 
also depended on the stage of the disease (120). As IL8 also 
supports CMM neovascularisation, it is not surprising that the 
elevation of the serum level of both IL8 and VEGFA corre-
lates with the progression of the disease and poor survival of 
CMM patients (121). Proteins of the TGF‑β family are also 
elevated in the sera of CMM patients, and the prognostic 
relevance of these factors has been proposed (122). Elevated 
concentration of factors with immunomodulatory activity 
such as IL6 and/IL10 influence the presence of self‑renewal 
tumour‑initiating (stem) cells in CMM (123).

Serum protein imbalance influences premetastatic niche 
formation. Based on the selected examples, it is possible to 
demonstrate the systemic effect of CMM. The serum/plasma 
of CMM patients contains numerous bioactive proteins and 
exosomes that are transported to the distant parts of the 
patient's body through the vessels (Fig. 2B‑D). These factors 
participate in the preparation of a premetastatic niche suit-
able for cancer cell homing and metastasis formation (124).
Under the influence of CMM‑derived exosomes, the dermal 
fibroblasts reprogram their metabolism significantly (125). 
The distant dermal fibroblasts from CMM patients at the stage 
of metastatic tumour dissemination differ from the normal 
dermal fibroblasts from healthy donors. The phenotype of 
distant dermal fibroblasts, as well as the expression profile 
and methylation profile of gene promoters, is shifted closer to 
CAFs (126). Due to this activation, it is possible to hypothesise 
that the tissue microenvironment in the distant body parts is 
influenced by the released bioactive factors from the mela-
noma microenvironment. It is, therefore, likely that melanoma 
becomes a systemic disease very early. If so, it is the signalling 
in the primary tumour that already prepares the rest of the 
organism to host CMM cells and facilitate metastases (114) 
(Fig. 2B).

5. Intravasation and extravasation of CMM cells and their 
inhibition via migrastatics

In recent years, the term ‘migrastatics’ has been introduced for 
drugs interfering with all modes of cancer cell invasion (115). 
Migrastatics inhibit local invasion and consequent metastasis. 
This group of drugs was recently established to define and 
distinguish them from conventional cytostatic drugs that 
traditionally target cell proliferation. Malignant melanoma, 
therefore, seems to be a tempting disease for validation of this 
concept.

Endothelial cells of capillaries are also an important 
structure of the cancer microenvironment. Migrating CMM 
cells adhere to the capillary endothelium, intercalate between 
endothelial cells, and migrate throughout the vessels in 
both directions. From the endothelial cell perspective, this 
process is not passive. Endothelial cells actively participate in 
extravasation, where the role of N‑cadherin has been broadly 
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investigated (117). It seems to be also controlled by CD146, 
which cooperates with VEGFA. CD146 is also elevated in the 
patients' serum/plasma (127).

On the other hand, VE‑cadherin expressed on the 
surface of endothelial cells prevents the migration of cancer 
cells through the endothelium of capillaries. VE‑cadherin 
must, therefore, be eliminated from the site of malignant 
cell migration (128). P‑selectin has an essential role in the 
recruitment of inflammatory cells to the site of inflammation, 
so‑called homing.

P‑selectin expression on endothelial cells is under the 
control of the local microenvironment. Expression of this 
molecule on endothelial cells and blood platelets seems to 
be a prerequisite for successful metastasising of CMM cells 
to the target tissue (129,130). P‑selectin expression on the 
surface of endothelial cells is induced by STAT3 activa-
tion (129). IL6 is available in the serum of CMM patients, and 
it is known as a potent activator of STAT3. The observation 
that capsular polysaccharides from E. coli attenuate adhesion 
of CMM cells to the endothelium via P‑selectin demonstrates 
the specificity of this interaction (130). Endogenous lectin 
galectin‑3 locally accumulates in inflamed tissues, including 
endothelium. This lectin also enhances invasion of CMM 
cells, e.g., to the lungs (131). These examples show that an 
imbalance in serum proteins can participate in the process 
of extravasation of CMM cells to the target tissue and metas-
tasising.

Therefore, the combination of migrastatics with other 
groups of traditional oncologic drugs may be possible. Beyond 
that, we suggest that directed therapy (biologics, small‑mole-
cule receptor‑associated kinase inhibitors) against the most 
prominent inflammatory cytokines, namely IL6, could bring 
highly desirable synergism. However, it seems evident that 
inhibition of the IL6 signalling axis is not sufficient and must, 
therefore, be accompanied by simultaneous blockade of other 
proteins/receptors such as IL8, VEGFA and MFGE8 (48,132). 
The therapeutic blockade of IL6, in combination with check-
point inhibitor anti‑PD1, represents an interesting possibility of 
overcoming some immunological mechanisms of resistance. 
IL6 blockade upregulated expression of PD‑L1 on melanoma 
cells in a mouse model and may sensitise melanoma to this 
treatment (133). These findings underscore the importance of 
the IL6‑PD1/PD‑L1 crosstalk in the tumour microenviron-
ment of melanoma.

The local microenvironment and its control by bioactive 
factors can be a highly relevant target in the prevention of the 
deadly complication of malignant disease (Fig. 2D).

6. Cancer‑associated wasting and cachexia as a terminal 
complication of CMM; clinically relevant complications 
are also associated with factors of intercellular crosstalk

Advanced stages of cancer, including CMM, are associated 
with metastasising, which in the case of CMM has a character 
of extensive generalisation. The increasing burden of tumour 
cells generates an imbalance in growth factors, cytokines and 
chemokines, among which IL6 seems to have the leading 
position (80). This stage of the disease is usually terminated 
by cancer‑associated cachexia (CAC), which affects 
approximately 16 patients per 100,000  individuals  (134) 

(Fig. 2D). CAC is a highly complex and multifaceted catabolic 
process (135). IL6, in cooperation with TNFα and IL1β 
influences the metabolism of striated muscle fibres, adipocytes 
and hepatocytes (136,137). The level of the mentioned factors 
in the serum can even predict the onset of CAC and survival 
of cancer patients (138). The terminal stage of cancer is also 
associated with decreased food intake in cancer patients, which 
is called anorexia (139). IL6 seems to be linked to the control 
of food intake, where it inhibits the appetite and participates 
in the development of anorexia (140). TNFα and IL6 can cross 
the blood‑brain barrier (141). TNFα, IL1 and IL6 can interact 
with hypothalamic neurons and affect the serotoninergic 
metabolism, which can be reflected by decreased food 
intake (142). Patients with advanced cancer frequently suffer 
from depression that seems to be associated with elevation of 
IL6, IL10 and TNFα (143). On the other hand, the serum levels 
of IL6 (and also IL8) are significantly elevated in tumour‑free 
patients with bipolar disease, but not with major depressive 
disorder (144). This section demonstrates that factors produced 
by the cancer ecosystem have a strong systemic effect by which 
they influence the metabolic functions of cancer patients, 
resulting in wasting and death.

7. Conclusion

CMM, similarly to the majority of cancers, can be character-
ised as a genetic abnormality and a regulation failure in which 
cancer cells employ predestined pathophysiological pathways 
that are normally activated in the course of organism growth, 
tissue regeneration and repair. This deregulation is typically 
associated with accumulation of mutations acquired during 
the ageing of the individual.

The progression of CMM from tumour initiation to the 
systemic effect on the patient's metabolism is organised 
according to a quite uniform scenario (Fig. 2A‑D). The inter-
cellular crosstalk within this ecosystem is mediated either 
directly by intercellular contacts, or indirectly by paracrine 
secretion of numerous active molecules. This interconnec-
tion strengthens the malignant potential of cancer cells, and 
it can inhibit the anticancer immune response or protect 
malignant cells from the harmful effect of oncological 
therapy. A plethora of bioactive factors are transported via 
vessels and significantly influence even the distant tissue. 
Collectively, these factors prepare a suitable microenviron-
ment for the malignant cell extravasation and metastasising, 
the premetastatic niche. The increasing mass of CMM cells 
in the body of patients generates a cancer‑induced profile of 
inflammatory mediators in the patients' serum. The systemic 
availability of these bioactive molecules triggers mental 
disorders, depression, and mental anorexia‑associated 
problems with food intake. Wasting leads to cancer cachexia 
and death. Based on this scenario, it is evident that besides 
the conventional anticancer therapy, it would be necessary 
to influence the migration of CMM cells and their metas-
tasising - the concept of migrastatics  (115). Because the 
CMM microenvironment stimulates malignant cell inva-
siveness (145), targeting both cancerous and non‑cancerous 
cells of the tumour ecosystem and their products seems to 
be a promising approach. IL6 and its signalling pathway 
influence CMM cell growth and migration, but it can also 
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positively affect the entire patient metabolism and mental 
status  (82). Therefore, targeting the IL6/IL6R/STAT3 
axis as a new therapeutic modality was enthusiastically 
expected, but, unfortunately, the reality did not meet this 
expectation (146). The progress in the detection of clinically 
relevant markers using a robust omics approach that includes 
stromal factors can be translated into personalised therapy 
of CMM (147). For example, a combination of blocking the 
anti‑IL6 axis with drugs blocking other signalling pathways 
seems to be promising for future trials (48). It can be hypoth-
esised that the progress in diagnostics and therapy covering 
the complex ecosystem of melanoma can bring some benefit 
to CMM patients.
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