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Abstract. Leukemia is a group of malignant diseases of clonal
hematopoietic stem-progenitor cells and its pathological
mechanisms remain to be elucidated. Genetic and epigen-
etic abnormalities, as well as microenvironmental factors,
including cytokines, serve critical roles in leukaemogenesis.
Macrophage migration inhibitory factor (MIF) has been
presented as one of the key regulators in tumorigenesis,
angiogenesis and tumor metastasis. This article focuses on the
functional role of MIF and its pathway in cancer, particularly
in leukemia. MIF/CD74 interaction serves prominent roles in
tumor cell survival, such as upregulating BCL-2 and CD84
expression, and activating receptor-type tyrosine phospha-
tase C. Furthermore, MIF upregulation forms a pro-tumor
microenvironment in response to hypoxia-induced factors and
promotes pro-inflammatory cytokine production. Additionally,
polymorphisms of the MIF promoter sequence are associated
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with leukemia development. MIF signal-targeted early clinical
trials show positive results. Overall, these efforts provide a
promising means for intervention in leukemia.
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1. Introduction

The term leukemia collectively describes a group of malignant
clonal diseases of hematopoietic stem-progenitor cells, which
present with various diverse and biological subtypes (1). Due to
chromosomal abnormalities and genetic alterations, these cells
expand in an oligoclonal manner and invade the bloodstream
and extramedullary tissues (2). Epidemiologic cross-sectional
research performed in 2012 revealed that the worldwide
age-standardized incidence of leukemia was 5.6 per 100,000
in men and 3.9 in women, ranking it as the 11th most prevalent
with the 10th highest mortality among all cancers, with even
higher numbers for specific subtypes among young and elderly
patients (3). According to the World Health Organization
standard classification (4), four subtypes of leukemia are
recognized, based on their progression state and the affected
cell lineage: Acute myeloid leukemia (AML), chronic myeloid
leukemia (CML), acute lymphoblastic leukemia (ALL) and
chronic lymphocytic leukemia (CLL).

For decades, genetic aberrations have been considered to
serve an essential role in the pathogenesis of leukemia (5-7).
These mutations can be categorized into three main func-
tional groups regulating cellular activities: Mutation genes
encoding transcription factors, epigenetic modifiers regulating
gene expression and genes associated with signaling pathway
activation. In AML, pro-proliferative signaling pathways, such
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as the RAS/RAF, Janus kinase/STAT, PI3K/AKT signaling
pathways, are aberrantly activated as a result of gene muta-
tions, including mutations of fms related receptor tyrosine
kinase 3, KIT proto-oncogene, receptor tyrosine kinase,
RAS family members and serine/threonine kinases (7). In
lymphoid leukemia, the most commonly mutated gene is
NOTCHI, and this contributes to NOTCHI signaling pathway
activation (8,9). BCR activator of RhoGEF and GTPase-ABL
proto-oncogene 1, non-receptor tyrosine kinase, the key
fusion gene of CML, leads to tyrosine kinases deregula-
tion (6). Apart from gene mutation, epigenetic regulators
also serve essential roles in leukaemogenesis. For example,
DNA methyltransferase 3a, tet methylcytosine dioxygenase 2,
isocitrate dehydrogenase [NADP(+)]1, methyltransferase 3,
N6-adenosine-methyltransferase complex catalytic subunit
and FTO a-ketoglutarate dependent dioxygenase, have been
reported to be involved in pathological DNA methylation and
mRNA modification in AML (10,11). These efforts have been
well described in other reviews. Although progress has been
made in the treatment of leukemia, especially in terms of the use
of tyrosine kinase inhibitors (12) and immunotherapy (13,14),
the disease remains incurable, either due to frequent relapse or
refractory cases, and the best-practice treatment regiments are
still being identified.

Extrinsic signals from the bone marrow (BM) micro-
environment promoting leukaemogenesis provide novel
mechanisms in treating leukemia (15,16). Inflammation
mediator-related genes, and specifically expressed proteins,
serve a vital role in the pathogenesis of various tumor
diseases, including breast cancer, gastrointestinal tumors
and genitourinary cancers (17,18). It is widely accepted
that the activity of inflammatory factors, especially when
causing chronic inflammation, can result in a pro-tumor
microenvironment, promoting tumor survival, proliferation
and metastasis (17-19). Among these, macrophage migra-
tion inhibitory factor (MIF) is one of the pro-inflammatory
cytokines, which is upregulated in a number of autoimmune
diseases (20),as well as in cancer (21), including leukemia (22).
Its multiple functions are necessary for cell proliferation,
survival and invasion (23), suggesting this protein could be a
promising candidate therapeutic target. This review focuses
on the function of MIF in general and its role in cancer,
and on how these functions influence the development of
leukemia.

2. MIF structure and physiology

MIF is a soluble symmetrical homotrimer (37.5 kDa),
consisting of three small (115 amino acids long) 12.5 kDa
monomers (24). The protein is evolutionary highly conserved,
resulting in homologies >80% among protein sequences of
different species, including bacteria, plants, protozoa and
other non-mammals (25). Notably, MIF executes tautomerase
activity and catalyzes the conversion of D-isomer of
2-carboxy-2,3-dihydroindole-5,6-quinone (D-dopachrome)
to 5,6-dihydroxyindole-2-carboxylic acid (26). Its main,
although not sole, receptor is CD74 (27). Binding depends on
the protein-protein interaction between the N-terminal proline
residue of the active site of MIF and the type II transmembrane
CD74 receptor (27).

MIF has been characterized as a pleiotropic, multi-
functional, pro-inflammatory factor (28). First identified in
the 1930s (29), MIF was recognized as a soluble immune
cell-derived factor in 1966 and was first cloned in 1989 (26,30).
Notably, MIF acts as an endogenous regulator of glucocor-
ticoids (31). Under normal conditions, MIF can be detected
in the serum at a range of 2-6 ng/ml, following the circadian
rhythm of glucocorticoids (31). The main sources of MIF are
anterior pituitary cells, where a pre-secreted form is stored in
the cytoplasm (31). Serum levels of MIF peak 2-3 h before
relative serum levels of steroids reach their peak (32). Apart
from pituitary cells, different types of cells, including mono-
cytes/macrophages, granulocytes, dendritic cells, endothelial
cells and mesenchymal cells, can secret MIF in response
to inflammatory stimuli (33-36). The MIF protein lacks an
N-terminal secretion signal (37,38). Instead, its release is
partly dependent on Golgi-associated protein pl15 (38) or
exosomes (39).

3. MIF signaling pathways

Several signaling pathways in which MIF is involved have
been identified in the past decades (Fig. 1). The interac-
tion between MIF and the CD74/CD44 complex was a
landmark discovery (40,41). CD74, which is also known as
constant chain protein, is a molecular marker expressed on
the cell surface (40). It belongs to the major histocompat-
ibility complex (MHC) II invariant chain and facilitates the
interaction of MHC II-antigen peptides for antigen presenta-
tion (42). Multiple studies have demonstrated that CD74 is
upregulated in different types of cancer cells (43-45). CD44
is an adhesion molecule that mediates the activation of SRC
proto-oncogene, non-receptor tyrosine kinase (Src) family
proteins (46). Notably, half of the exons of the gene encoding
CD44 can be spliced into different subtypes, to generate
different protein ectodomains (46). As a result, MIF-activated
CD44 is expressed in cells with dynamic proliferation, such
as epithelial and tumor cells (46). CD44 can be recruited by
CD74 to form a CD74/CD44 complex, which is involved in the
activation of downstream signaling pathways (47).

First, the interaction of MIF-CD74/CD44 results in
phosphorylation of Src family proteins (41). Subsequently,
the phosphorylated Src proteins activate the ERK1/2 MAPK
signaling pathway by phosphorylation (41), accompanied by
the activation of cytosolic phospholipase A2 (cPLA2) and the
inhibition of p53, which is associated with anti-apoptosis and
proliferation effects (48,49). MIF acts as a negative regulator of
p53, probably via binding to pS3 and MDM?2 proto-oncogene
(an E3 ubiquitin ligase), to form a ternary compound (50,51).
As a result, cell cycle arrest is repressed, increasing the risk
of malignant transformation (52). MIF also affects the reti-
noblastoma protein-adenoviral early region 2 binding factor
complex by antagonizing Rb-mediated suppression of DNA
replication by upregulating expression of cyclin D1 (53,54),
which progresses the cell cycle from the G, phase into the
S phase, thus promoting cell proliferation (54). In addition,
the PI3K/AKT and NF-«B signaling pathways are involved
in the downstream signaling, promoting cell survival and
proliferation (55). Secondly, MIF can also initiate downstream
signals in a non-covalent manner following binding to C-X-C
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Figure 1. MIF signaling pathways. MIF induces Src family phosphorylation by binding to the CD74/CD44 complex or CXCR2/4 (blue arrow), and further
activates downstream ERK1/2 MAPK or PI3K/AKT signaling pathways. The interaction of MIF and CD74 can also promote the cleavage of CD74 to produce
CD74-ICD (grey arrow), which is considered to provide a further activation signal. When MIF interaction activates NF-kB and inhibits p53 by stabilizing
the MIF-MDM2-p53 ternary complex, it leads to the upregulation of the expression of proteins of the BCL-2 family, such as BCL-2, BCL-X and MCL-1,
which promotes cell survival and proliferation. In addition, MIF can regulate the cell cycle by facilitating Rb phosphorylation. CXCR, C-X-C chemokine
receptor; MDM2, MDM2 proto-oncogene; MIF, macrophage migration inhibitory factor; SPPL2A, signal peptide peptidase like 2A; Src, SRC proto-oncogene,
non-receptor tyrosine kinase; CD74-ICD, CD74 intracellular domain; p, phosphorylated; cPLA2, cytosolic phospholipase A2; Rb, retinoblastoma protein;
E2F, adenoviral early region 2 binding factor; MCL-1, MCL1 apoptosis regulator, BCL2 family member.

chemokine receptor type 2 (CXCR2)/CXCR4 (56), which is
associated with cell migration and inflammation (57) (blue
arrow; Fig. 1). Thirdly, MIF can promote the cleavage of the
intermembrane part of CD74 via sPPLA2 protease, resulting
in a 42 amino acid peptide (CD74-ICD) (58). Subsequently,
CD74-ICD migrates into the cytosol and binds to p65 (an
NF-«B family member), regulating the transcription of NF-kB
in the nucleus (grey arrows; Fig. 1) (59). It has been identi-
fied that the cleavage of CD74-ICD and NF-«xB activation
occurs in B cell maturation via upregulation of TAp63 (59).
In addition, the tyrosine kinase receptor c-Met is involved, as
it contributes to B cell proliferation and survival (60). Lastly,
research suggests that a soluble form of CD74 is involved in
the regulation of MIF activation (61); however, its mechanism
needs to be further elucidated.

4. MIF and hematopoiesis

Hematopoietic homeostasis is maintained by the hema-
topoietic stem cells (HSCs) and the hematopoietic
microenvironment (62). HSCs stay in the BM niche, a special
structure within the BM that can be considered as a complex
ecological system (62). The niche is composed of different
types of cells that interact with HSCs, providing signals by
secretion of supporting factors to regulate blood cell produc-
tion (63). For example, stem cell factor, TGF-f1, platelet factor
4 [also referred to as chemokine (C-X-C motif) ligand 4] and
angiopoietin 1 are all factors that maintain HSC quiescent
status (63), whereas stromal-derived factor 1 (also referred
to as C-X-C motif chemokine ligand 12) and its receptor
CXCR4 (64,65), or adhesion molecules, such as vascular cell
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adhesion protein 1 (66), are necessary for cell migration and
homing. In addition, IL-7 (67) and erythropoietin (68) facilitate
HSC proliferation and differentiation.

CD74 is an important regulator involved in the maturation
and differentiation of B cells,and MIF participates in regulation
of B cell differentiation and survival. Gore et al (55) reported
that the CD74/CD44 complex was found in the membrane of
murine B cells, activating downstream signaling in the clas-
sical MIF-CD74 interaction described in the previous section.
Furthermore, dendritic cells in the BM facilitate B cell survival
in a MIF-dependent manner (69). However, to the best of our
knowledge, whether MIF is involved in the differentiation and
proliferation of HSCs has not yet been established and this
requires further study.

5. MIF and leukaemogenesis

Hypoxia-induced factors (HIFs) include a heterodimeric
transcription factor whose classical activation is oxygen
concentration-dependent (70). BM is distinguished by high
cellularity and low oxygen concentrations, albeit being
supplied by a complex vascular network (71). Extrinsic factors,
such as stem cell factors, further promote increased levels of
HIF proteins (72). In the leukemic BM, increased cellularity
and high metabolic activity of proliferating cells further reduce
oxygen concentrations and are associated with increased
expression levels of HIF factors, mainly HIF-1a. (73-75), which
are involved in a number of pro-tumor processes, such as cell
proliferation and differentiation, metabolism, and angiogen-
esis (76-79). Hypoxia is an important factor in the upregulation
of MIF (80), and HIF-1a can induce MIF expression (81) in a
p53-dependent manner (82), while the secretion of MIF can in
turn promote the activation of HIF-related signaling pathways,
forming a positive feedback loop (83).

In addition, the leukemic BM niche allows clonal prolif-
eration of pre-leukemia HSCs and leukaemic stem cells,
while reducing the capacity of supporting normal hematopoi-
esis (15). This partly results from BM structure changes, such
as endostral stroma remodeling and fibrosis (84). Additionally,
the increased inflammatory signaling also contributes to
leukaemogenesis (85), again resulting in MIF signaling. The
functions of MIF in the different subtypes of leukemia are
reviewed in the next section.

6. Functions of MIF in leukemia

CLL. CLL comprises a group of chronic lymphoproliferative
disorders. Its prevalence is higher in Caucasians compared
with Asian, Caribbean or African populations (9). It is
characterized by malignant mature B cell proliferation and
accumulation (9).

It has been demonstrated that MIF can be upregulated in
solid tumors (86-89). As early as in 1979, increased levels of
MIF were described in sera from patients with CLL, especially
in patients with advanced stages (22). CD74, the main receptor
of MIF, is also upregulated in response to its upregulated ligand
secreted by CLL cells (90). Binsky et al (90) reported that MIF
acts as apro-survival factor in CLL. MIF/CD74 interaction acti-
vates downstream IL-8 secretion in an autocrine manner, as has
been demonstrated in vitro, and this upregulates BCL-2 levels

via the PI3K/AKT signaling pathway (90). This can be reversed
by (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic
acid methyl ester, a nontoxic inhibitor of MIF, and by anti-IL-8
antibodies, suggesting that the MIF/CD74 signaling pathway
promotes anti-apoptosis (90). In addition, the MIF/CD74
signaling pathway can promote CLL survival by upregulating
the expression of midkine, which is a pro-tumor protein (90).
Midkine binds to its receptor receptor-type tyrosine phos-
phatase T, mediating anti-apoptotic activity (91). Another
target participating in MIF signaling is CD84, a member
of the signaling lymphocyte activation molecule immu-
noglobulin superfamily, which modulates the function of
immune cells (92). Upon upstream stimulation, CD84 recruits
its ligand SH2 domain containing 1B to activate the AKT
signaling pathway and promote the activation of anti-apoptotic
molecules (92).

Reinart et al (93) crossed MIF” mice with Ex-TCL1 mice,
creating an animal model to verify the function of MIF in
CLL. Compared with wild-type animals, the MIF knockout
mice exhibited a delayed onset of disease and longer survival
of CLL (93). Notably, the authors identified a reduced infiltra-
tion of tumor-associated macrophages (TAMs) in the spleen
of the mice, indicating that recruitment of TAMs is associ-
ated with MIF expression (93). A recent study revealed that
knockout of CD74 in Ex-TCLI mice has no significant effect
on CLL development, possibly as a result of yet unknown
compensatory mechanisms, which need to be further inves-
tigated (94). MIF is also able to increase the viability of CLL
by stimulating the production of very late antigen-4 integrin
(VLA-4), a homing factor, via TAp63 (95). The upregulated
VLA-4 allows CLL to remain and survive in BM (95).

AML. AML is a heterogeneous group of diseases characterized
by myeloid progenitor cells with abnormal proliferation and
differentiation (96). Similar to CLL, the serum levels of MIF
are increased in AML compared with healthy bodies (97). This
indicates that the presence of MIF in the microenvironment may
serve an important role in the pathogenesis of AML. In 2014, by
studying BM samples from 85 patients with AML or myelodys-
plastic syndromes, Falantes et al (80) demonstrated that MIF was
highly expressed in BM, which was consistent with the levels in
peripheral blood. Higher MIF expression was associated with a
poorer prognosis and less sensitivity to azacitidine (80), a first-line
therapeutic drug of AML. A mechanistic explanation was
provided by Abdul-Aziz et al (45), whose in vitro work deepened
the understanding of the role of MIF in AML. They described
that MIF is secreted by AML blasts, after which it interacts
with CD74 via protein kinase C {3, but not CXCR?2, and thus,
this induces IL-8 expression in BM mesenchymal stromal cells,
which may then promote AML survival (45). Subsequently, they
demonstrated that HIF modulates MIF expression in response
to a hypoxic BM microenvironment. Indeed, knockdown of
HIFla or MIF prolongs the life of xenograft mice, suggesting
that HIF1a promotes MIF expression and enhances AML blast
survival (98). This process is shown in Fig. 2.

Somatic mutations have been identified in different AML
phenotypes, and are associated with response to therapy
and subsequent relapse (99). MIF promotes the survival of
AML-blasts carrying the lysine methyltransferase 2A-MLLT3
super elongation complex subunit mutation (99). Future
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Figure 2. MIF function in modulating pro-tumor microenvironment in AML.
In the bone marrow of AML, the local hypoxic microenvironment promotes
HIF expression, activating HIFla associated with downstream signal path-
ways, which in turn facilitates MIF expression in a positive loop (grey arrow).
As aresult, AML-derived MIF upregulates IL-8 expression in BM-MSCs via
the MIF/CD74/PKC{ signaling pathway. In turn, IL-8 promotes AML cell
survival and proliferation (black arrow). MIF, macrophage migration inhibi-
tory factor; HIF, hypoxia-induced factor; AML, acute myeloid leukemia;
BM-MSC, bone marrow mesenchymal stromal cells; PKCf, protein
kinase C f3; p, phosphorylated.

studies are required to identify the association between other
mutations or subtypes of AML and MIF expression, as their
identification would have potential in precision medical care.

ALL. ALL is characterized by proliferation of malignant
lymphoid precursor cells, mainly caused by genetic altera-
tions (8). Two types are recognized, T-cell acute lymphoblastic
leukaemia (T-ALL) and B-cell acute lymphoblastic leukemia,
depending on the lymphoid precursor cells involved (8). During
treatment of ALL, the administration of glucocorticoids is
important in all phases (8). However, glucocorticoid resistance
weakens the effects of treatment (100). MIF counteracts the
function of steroids by suppressing NF-xB inhibitor IxB and
reversing cPLA2 activity (48,101). In vitro data suggest that
MIF expression in a CEM cell line was not affected by treat-
ment with glucocorticoids (102). A polymorphism near the
MIF promoter (details provided in the next section) is associ-
ated with ALL prognosis, and its mechanism remains to be
elucidated.

7. Genetics of MIF in leukemia

In rheumatic diseases, regulation of the MIF gene has
been widely discussed (103,104). It has been identified that
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there are two polymorphic sequences located on the MIF
promoter (103,104). One is caused by a microsatellite (CATT)
present in 5-8 copies at location -794 (-794CATTs ) (104) and
the other by a G/C polymorphism at location -173 (-173G/C)
(Fig. 3) (105). To the best of our knowledge, the function of the
-173G/C polymorphism is still unknown. Aberrant expression
levels of genes, such as carnitine palmitoyltransferase 1A, are
associated with poor prognosis (106). Sharaf-Eldein ef al (107)
identified a negative association between MIF serum levels
and ALL prognosis and also reported a higher incidence of
the C genotype over the G genotype in children with ALL
compared with healthy children (108). These results were
corroborated in a Chinese study (109). Apart from ALL cases,
the -173G/C polymorphism may also be involved in patients
with AML (110). The -173C allele is associated with higher
MIF serum levels and poses a risk factor for deteriorative
prognosis (106). However, MIF can be upregulated in other
diseases (56,111-113) except leukemia, resulting in a low speci-
ficity for leukemia. MIF could be recognized as a prognostic
biomarker instead of as a diagnostic marker in leukemia.

For the promoter polymorphism at -794CATTs,., it has
been demonstrated that higher numbers of the CATT repeat
result in higher MIF secretion (104). The number of repeats is
also associated with the severity of a number of autoimmune
diseases and the efficacy of using corticosteroids (114,115);
however, to the best of our knowledge, its role in leukemia
has not yet been reported. The frequency of -173C has been
identified to be associated with presence of 7 CATT repeats
at -794 (103). Notably, ubiquitin like with PHD and ring
finger domains 1 (UHRF1), also known as inverted CCAAT
box-binding protein of 90 kDa, is highly expressed in a
variety of tumor cells, including in lung cancer and hepatocel-
lular carcinoma (116-118) and promotes tumorigenesis (119).
Therefore, UHRF1 can be considered to be a proto-oncogene.
Our previous study demonstrated that the UHRF1 acts as a
transcription factor that binds to the CATT; 3 motif (120).
UHRF]1 regulates MIF transcriptional activity in a CATT;
length-dependent manner (120). Our recent study revealed that
UHREFI acts as a positive regulator mediating MIF expression
in T-ALL by interacting with CATT repeats, leading to T-ALL
survival (121). This provides one more piece of evidence
regarding how MIF transcription and activity can be involved
in the onset or progression of leukemia.

8. Potential therapeutic targets

In the past few decades, the treatment of leukemia has
greatly improved and developments are still ongoing (122).
Taking CLL as an example, a clinical trial (CALGB 9712)
demonstrated that the combination of rituximab and fluda-
rabine improved the rate of complete response, due to
cytotoxic synergism (123). Although various types of drugs,
such as anti-CD20 monoclonal antibody (mAb) (124,125),
B cell receptor signaling kinase inhibitors (126) and BCL-2
antagonists (127), have been applied in clinical practice, other
possible targets remain to be identified in order to improve
treatment response and efficacy.

Three main types of drugs target the MIF/CD74
signaling pathway: MIF inhibitors, mAb targeting MIF and
CD74 (128). In hematopoietic tumors, anti-CD74 mAbs
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Figure 3. Gene expression of MIF. Two MIF promoter polymorphisms (CATT; s and G/C) are located at positions -794 and -173, respectively. MIF transcription
is activated in a MIF allele-dependent manner (CATTjg), which is regulated by ICBP90. ICBP90, inverted CCAAT box-binding protein of 90 kDa; MIF,

macrophage migration inhibitory factor.

exhibited promising therapeutic potential. Milatuzumab, an
anti-CD74 humanized murine mAb, is generated by grafting
of antigen-recognizing variable regions of LL1 onto human
IgG1 (129). Hertlein et al (130) demonstrated that milatuzumab
mediates cytotoxicity on CLL directly via CD74 expression.
Furthermore, clinical data described promising results for
treatment of refractory patients with CLL (131). The data from
a phase I trial conducted by Martin ef al (132) revealed an
improvement of WBC count (usually elevated in leukemia)
from an average of 91x10° cells/l to a nadir of 32x10° cells/I,
despite short clinical benefits. A phase I-II study from Israel
revealed that milatuzumab improved the treatment response
in 62.5% (5/8) of patients, with a decreased spleen size and
a decreased requirement of packed red cell transfusion (133).
Researchers have also identified that the amounts of lympho-
cytes and platelets are increased, while circulating levels of
BCL-2 are decreased, as a result of treatment with milatu-
zumab (133). For safety, neutropenia, thrombocytopenia and
rash are the most common treatment-related adverse events
in a dose-dependent manner (132). The Israel study indicated
that infection was the most common adverse event but was
not associated with milatuzumab (133). It may have resulted
from the generation situation of enrolled individuals (133). The
efficacy of the drug has also been demonstrated in multiple
myeloma (134). More evidence is required based on larger,
randomized clinical trials, as well as trials in other subtypes
of leukemia.

Although treatment options have greatly improved over
time, AML treatment remains a great challenge, due to the
complicated genetic alterations and immunophenotypes
responsible for this disease (135). Recent studies have provided
novel insights on combination treatments with immune check-
point inhibitors and hypomethylating agents (136), targeting
tumor-associated metabolic and energetic signaling path-
ways (137), although more clinical data are required to support
such a treatment strategy.

Notably, in hematopoietic tumors, UHRF1 expression is
associated with tumor aggression (138). Alhosin et al (139)
reported that thymoquinone could induce apoptosis in ALL
cells, at least in vitro, in a p73-dependent manner. Other
research suggests that UHRF1 facilitates the degradation of
promyelocytic leukemia (PML) protein (140). Knockdown of
UHRF1 could restore PML protein expression and inhibit cell
migration and capillary formation in vitro (140). Furthermore,
UHREF]1 stabilizes receptor tyrosine kinase-like orphan

receptor 1 in pre-B cells of ALL, which decreases the sensi-
tivity to chemotherapy (141). Our previous study also suggested
that UHRF1 acts as pro-tumor factor by promoting T-ALL cell
survival (121). Further investigations could focus on whether
UHREFI can be used as a potential therapeutic target.

9. Conclusions

The various functions of MIF go far beyond its initial
description as a pro-inflammatory chemical kinase-like
protein in the early 1930s. This improved understanding of
its complex and multiple functions is enabled and supported
by in vitro experiments and investigations using transgenic
animal models, often in combination with MIF inhibitors.
An improved understanding of the relevant MIF signaling
mechanisms in leukemia can be obtained by studying the
complex MIF interactions with various receptors and their
downstream signaling pathways, which may eventually
provide a novel platform for therapeutic strategies in the
future.
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