Bzl SPANDIDOS
7] ,§, PUBLICATIONS

INTERNATIONAL JOURNAL OF ONCOLOGY 62: 36, 2023

Chromobox proteins in cancer: Multifaceted functions
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Abstract. Chromobox (CBX) proteins are important
epigenetic regulatory proteins and are widely involved in
biological processes, such as embryonic development, the
maintenance of stem cell characteristics and the regulation
of cell proliferation and apoptosis. Disorder and dysfunction
of CBXs in cancer usually lead to the blockade or ectoptic
activation of developmental pathways, promoting the occur-
rence, development and progression of cancer. In the present
review, the characteristics and functions of CBXs were first
introduced. Subsequently, the expression of CBXs in cancers
and the relationship between CBXs and clinical characteris-
tics (mainly cancer grade, stage, metastasis and relapse) and
prognosis were discussed. Finally, it was described how CBXs
regulate cell proliferation and self-renewal, apoptosis and the
acquisition of malignant phenotypes, such as invasion, migra-
tion and chemoresistance, through mechanisms involving
epigenetic modification, nuclear translocation, noncoding
RNA interactions, transcriptional regulation, posttranslational
modifications, protein-protein interactions, signal transduc-
tion and metabolic reprogramming. The study also focused on
cancer therapies targeting CBXs. The present review provides
new insight and a comprehensive basis for follow-up research
on CBXs and cancer.
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1. Introduction

In 1978, Lewis (1) discovered the polycomb group (PcG)
protein in Drosophila melanogaster, which controls recog-
nition, differentiation and the somatotype in these flies.
Subsequently, the PcG protein was identified in all meta-
zoans and indicated to exhibit a high degree of evolutionary
conservation (2); this protein regulates a variety of biological
processes during embryonic development, such as cell fate and
lineage determination, cell memory, stem cell function and
tissue homeostasis (3-5). In 1986, the heterochromatin protein
1 (HP1) protein was discovered in Drosophila melanogaster.
HP1 is a nonhistone chromosome protein that mediates gene
silencing through heterochromatin formation and structural
maintenance (6,7). Chromobox (CBX) proteins are important
members of the PcG protein family and HP1 protein family.
Forming a class of epigenetic regulators, CBXs are extensively
involved in various biological processes, including embryonic
development, the maintenance of stem cell characteristics, the
regulation of cell proliferation and apoptosis (8-10). Increasing
evidence demonstrates that CBXs are involved in the regula-
tion of tumor biological processes, such as the cell cycle (11),
chemotherapy sensitivity (12), radiotherapy sensitivity (13),
tumor cell stemness (14) and tumor metabolism (15), and have
a key role in tumor occurrence and development. Identifying
the mechanisms by which CBXs regulate tumors may provide
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promising novel targets for anticancer strategies. To date,
numerous chromatin regulatory factors have been identified as
targets for anticancer therapy (16). Furthermore, small-mole-
cule inhibitors of these targets have been developed and entered
the clinical evaluation stage. Of note, the histone deacetylase
(HDAC) inhibitors, such as vorinostat and romidepsin (17),
have been approved by the Food and Drug Administration
for clinical use. However, they erase/write epigenetic marks
throughout the genome, thereby activating/inhibiting a series
of genes with carcinogenic and antitumor functions (18,19).
Therefore, treatment with nonspecific HDAC inhibitors may
lead to unintended consequences. It is thought that targeted
readers may specifically activate an antiproliferation pathway
or inhibit a tumor growth pathway. Small-molecule regula-
tors of histone readers, such as bromodomain inhibitors, are
under investigation in clinical trials, highlighting their great
potential as treatments (20,21). As histone readers, CBXs are
expected to become a new target in tumor therapy. Therefore,
a comprehensive and in-depth understanding of the function of
CBXs and information on the recent research status of its role
in tumors have important guiding significance for researchers.

Although several recent articles have reviewed the roles
of HP1 family proteins (22) and PcG family proteins (23-25)
related to CBXs in cancer, none of these articles have summa-
rized or analyzed the biological functions of all of the members
of the CBX family (CBX1-8) in cancers. The present review
is a comprehensive and systematic review focusing on the
biological functions, regulatory mechanisms and prognostic
and therapeutic value of all the members of the CBX family
in cancers. It is expected that the present review will provide
new insight and a comprehensive basis for follow-up research
on CBXs and cancer.

2. Constituent members of CBXs

To date, eight genes encoding CBXs have been identified in the
mammalian genome: CBX/ (chromosomal location: 17q21.32),
CBX?2 (chromosomal location: 17q25.3), CBX3 (chromosomal
location: 7p15.2), CBX4 (chromosomal location: 17q25.3), CBX5
(chromosomal location: 12q13.13), CBX6 (chromosomal loca-
tion: 22q13.1), CBX7 (chromosomal location: 22q13.1) and CBX8
(chromosomal location: 17q25.3). The CBXs encoded by these
genes have similar chemical structures. Of note, the N-terminal
region carries a chromatin-binding domain (chromodomain,
CHD). Furthermore, according to the similarity of their
C-terminal domains, CBXs may be further classified into CBXs
in the PcG family and CBXs in the HP1 family.

3. Characteristics and functions of PcG family CBXs

CBXs of the PcG family include CBX2, CBX4, CBX6, CBX7
and CBX8. In addition to the highly conserved CHD at their
N-terminal region, all of these CBXs carry a conserved poly-
comb repressor box in their C-terminus. In addition, adjacent
to the CHD, all vertebrate CBXs carry a DNA-binding motif
and an AT-hook motif (in CBX?2) or an AT-hook-like motif
(in the other CBXs) (Fig. 1). AT-hook motifs are basic amino
acid clusters that recognize AT-enriched sequences in DNA
and are necessary for histone-independent DNA binding (26).
The AT-hook motifin CBX2 may direct this CBX to chromatin,

which indicates that CBX2 may bind DNA independent of
histone H3 lysine K27 trimethylation (H3K27me3) (27). The
AT-hooklike motif also binds DNA (28).

PcG proteins mainly suppress the expression of target
genes at the transcriptional level by forming multisubunit
complexes called polycomb repression complexes (PRCs)
and by modifying histones (29). PRCs comprise two main
protein complexes: PRC1 and PRC2. In mammals, PRC1 may
be further subclassified into two main complexes, namely,
canonical PRC1 (cPRC1) and noncanonical PRC1 (ncPRC1).
In contrast to ncPRC1, cPRC1, which carries unique CBXs and
polyhomeotic-like protein (PHC), is thought to mainly mediate
chromatin contraction (30). In addition to CBXs, the three
other core proteins of cPRC1 are PHC, i.e. PHC1/2/3, really
interesting new gene protein 1 (RINGI), i.e. RING1A/1B, and
polycomb group ring finger protein (PCGF), i.e. PCGF2/4 (31).
cPRCI1 is able to recognize the H3K27me3 mark through the
CHD in CBXs (32-34) (Fig. 2A). In addition, the combination
of the polycomb repressor box domain and RINGI1 protein
binds CBXs to form cPRC1. Mammalian CBXs are able to
recognize both the histone H3 lysine K9 trimethylation
(H3K9me3) and H3K27me3 modifications, but the affinity
is not identical (32). The chromatin domains of CBX2 and
CBXT7 have affinity for both H3K9me3 and H3K27me3, CBX4
has a stronger affinity for H3K9me3 and CBX6 has a weak
affinity for both modifications (35). In addition, serine 42 in
the CHD of CBX2 is the key residue for casein kinase (CK)2
phosphorylation. Unmodified CBX2 preferentially binds
H3K9me3, but the phosphorylation of serine 42 induces a shift
in the preference of CBX2 from H3K9me3 to H3K27me3 (36).
The plasticity of this function contributes to the dynamic
regulation of target genes and connects the extracellular envi-
ronment with changes in chromatin availability. In contrast
to cPRC1, ncPRC1 carries RINGI and YY1-binding protein
(RYBP)/YY1-associated factor 2 (YAF2), not CBXs and
PHC (37). The ncPRC1 complex carrying RYBP/YAF2 has
a higher enzymatic activity against histone H2A lysine K119
(H2AK119) (38,39). All PRC1 complexes deposit a ubiquitin
group at H2AK119 that is executed via its E3 ubiquitin ligase
RING1A/1B, which forms a heterodimer with one of the six
PCGFs (PCGF1-6) (38,40).

Another major PRC is PRC2. PRC2 is also highly
conserved among species and is composed of the enhancer
of zeste homolog protein (EZH)1/2, embryonic ectoderm
development protein (EED), suppressor of zeste 12 protein
(SUZ12) and retinoblastoma binding-associated protein
46/48 (RBAP 46/48) (37). As the catalytic subunit of the
complex, EZH1/2 catalyzes the H3K27me3, but it needs to be
activated by other factors. EED and SUZ12 are essential for
histone methyltransferase (HMT) activity. SUZ12 is critical
for regulating HMT activity and EED regulates the substrate
specificity of the EZH1/2 complex to mediate specific HMT
activity against histone H3 lysine K27 or histone H1 lysine
K26 (41,42) (Fig. 2A).

Although both PRC1 and PRC2 are involved in the
posttranslational modifications (PTMs) of histones, the
difference in their targets leads to different biological func-
tions. PcG proteins recruit PRC1 mainly through H3K27me3
induced by PRC2, which leads to the monoubiquitination of
H2AK119 (H2AK119ubl) and ultimately inhibits target gene
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Figure 1. Conserved regions of CBX proteins. CBX, chromobox; aa, amino
acid; PcG, polycomb group; HP1, heterochromatin protein 1.

transcription. Furthermore, H2AK119ubl placed by PRCI1
recruits PRC2 (39) (Fig. 2A). Therefore, once directed to
chromatin, PcG amplifies its own activity. Further in-depth
research revealed the presence of additional PRC recruitment
mechanisms. First, the PRC complex may target DNA by inter-
acting with noncoding RNA (ncRNA). For instance, CBXs in
the PRC1 complex interact with X inactive specific transcript
RNA to target inactive X chromosomes (43) or interact with
the ncRNA antisense RNA (AS) in the INK4 locus, ANRIL, to
target and inactivate INK4A sites (44). Evidence has indicated
that PRCI is recruited to CpG islands by lysine demethylase
2B and causes the ubiquitination of H2AK119, after which the
recruitment of PRC2 leads to an increase in the abundance
of H3K27me3, which binds PRCI through interactions with
CBXs (39). In summary, the recognition of H3K27me3 by
CBXs is the main mechanism by which transcriptionally
repressed polycomb complexes are recruited and proliferate.
The recognition of H3K27me3 by CBXs is considered to be
the key to PRCI1 localization. In fact, genome-wide studies
have indicated that PRC1 is clearly located in H3K27me3
marked domains (45). Traditionally, PcG complexes suppress
target genes at the transcriptional level mainly through histone
modification. However, in recent years, increasing evidence
has suggested that PcG complexes are able to activate tran-
scription and modify nonhistone substrates to participate in
a variety of biological processes, such as the cell cycle and
tumor development (46). One mechanism is recruitment
through transcription factors (TFs). The cPRC1 complex
colocalizes with runt-related transcription factor (RUNX)1
and core-binding factor subunit [ through direct interac-
tion with PCGF4 (47). Therefore, the active sites recruiting
PRC1 may interact with TFs and remain bound during the
transcriptional activation of target genes. Another mechanism
is mediated through interactions with ncRNA and PTMs. The
methylation state of CBX4 determines the specific ncRNA
it binds, thereby determining whether coactivators or coin-
hibitors are recruited. Furthermore, the significance of the
regulation of PRC1 subunits by PTMs has been demonstrated
via CK2-mediated RING1B phosphorylation, which inhibits
PRC1 activity, thereby promoting gene activation (48).
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4. Characteristics and functions of HP1 family CBXs

In mammals, the HP1 family is composed of three different
but highly conserved nonhistone homologs: CBX1/HP1§,
CBX3/HP1y and CBX5/HPla (49,50). The CHDs of HP1
and PcG share >60% amino acid sequence identity (51).
The CHD of HPI is critical for the association of HP1 with
chromatin through the specific CHD interaction with histone
H3 lysine K9 dimethylation (H3K9me2)/H3K9me3, and the
higher level of H3K9me?2/3, the stronger binding affinity to
the CHD (52,53). A second unique conserved domain called
the chromoshadow domain (CSD) is located in the carboxyl
terminal region of the HP1 protein (54) (Fig. 1). The overall
structure of the CSD is similar to that of the CHD, but these
domains exhibit different functions. The CSD acts mainly as
a dimer domain and HP1 proteins easily form homodimers
and heterodimers through their CSDs (52,55,56). The most
notable function of HP1 is the formation heterochromatin, the
compact form of chromatin. In the chromatin structure, the
formation of heterochromatin results in transcriptional inac-
tivation or silencing of genes. One model of heterochromatin
formation is based on the methylation-induced binding of HP1,
the histone H3 lysine K9 (H3K9) and cyclic recruitment. All
three HP1 proteins recognize and bind to the H3K9me2 and
H3K9me3 marks, which then recruit the H3K9 methyltrans-
ferase suppressor of variegation 3-9 homolog 1 (SUV39HI)
to methylate adjacent H3K9 residues. This process creates
new binding sites for additional HP1 proteins, forming a
positive feedback loop that causes the formation of inhibitory
H3K9me3 marks along specific chromosome regions (53). The
diffusion of H3K9me3 marks is accompanied by the recruit-
ment of numerous proteins, inducing chromatin contraction
and gene silencing by embedding genes to make them impos-
sible to transcribe (53,57-59) (Fig. 2B). This model also extends
to DNA methylation, as both HP1 and SUV39H1 recruit DNA
methyltransferases. Of note, in certain cases, histone H3K9
methylation precedes DNA methylation (60,61), supporting the
view that these molecules are involved in a recruitment cycle
during gene silencing.

5. Expression of CBXs in cancers and the relationship
between CBXs and clinical characteristics and prognosis

Immunohistochemistry, western blot and quantitative PCR
analyses of clinical tumor samples have confirmed abnormal
changes in CBX expression in numerous cancer types, and
these changes have been closely associated with the malignant
phenotype of tumors and cancer prognosis. Furthermore,
with the recent rapid development of bioinformatics, analyses
based on public gene sequencing databases, such as The
Cancer Genome Atlas (62), Gene Expression Omnibus (63),
GEPIA (64), cBioPortal (65) and the Human Protein
Atlas (66), have provided strong evidence that CBXs may be
used as biomarkers for cancer prognosis. To date, CBXs have
been proven to be differentially expressed in 17 cancers, are
closely related to clinical characteristics and may be used as
biomarkers for cancer prognosis (Table I).

Expression of CBXs in cancers. Compared with normal tissues
or paracancerous tissues, the expression of all or some of
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Figure 2. Transcriptional repression by (A) PRCs and (B) HP1. PRC, polycomb repression complex; HP1, heterochromatin protein 1; CBX, chromobox; PHC,
polyhomeotic-like protein; RING, really interesting new gene protein; PCGF, polycomb group ring finger protein; EZH1/2, enhancer of zeste homolog protein
1/2; EED, embryonic ectoderm development protein; SUZ12, suppressor of zeste protein 12; RBAP46/48, retinoblastoma binding-associated protein 46/48;
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the CBX1/2/3/4/5/8 members is upregulated in most cancer
tissues, including glioma (67-69), tongue squamous cell carci-
noma (TSCC) (70), head and neck squamous cell carcinoma
(HNSCC) (71), breast cancer (BC) (15,72-80), non-small cell
lung cancer (NSCLC) (81-85), esophageal cancer (EC) (86-90),
gastric cancer (GC) (91-98), pancreatic adenocarcinoma
(PAAD) (99,100), colorectal cancer (CRC) (101-104), urinary
bladder cancer (UBC) (105), sarcoma (106) and osteosar-
coma (107,108). As a tumor suppressor, CBX7 is expressed
at low levels in most tumors, such as glioma, HNSCC (71),
EC (87,88), GC (93-98), PAAD (109), CRC (103,104), clear cell
renal cell carcinoma (ccRCC) (110), ovarian cancer (OC) (111),
cervical carcinoma (CCA) (112) and skin cutaneous melanoma
(SKCM) (113), while all CBX members, including CBX7 in
hepatocellular carcinoma (HCC) (11,114-122), have been
proven to be tumor-promoting factors. The expression of CBX6
is different in different cancer types, with low expression in
glioma (67,68), BC (77,80), CRC (103,104), ccRCC (110) and
OC (111), but high expression in HNSCC (71), sarcoma (106)
and SKCM (113). The results of studies on the expression of
CBX in the same type of cancer are not completely consis-
tent. For instance, the results of Hu et al (111) indicated that
the expression of CBX1 was low in OC, while Xu et al (123)
reported that CBX1 was highly expressed in OC. The expres-
sion of CBX6 in GC was high in one study (94) and low in

another (98). In addition, three studies have shown low expres-
sion of CBX7 in BC (15,77,80), while one study showed high
expression of CBX7 in BC (78). This may be due to sample
heterogeneity, different data sources or research methods;
therefore, larger sample sizes, multiple analytic methods and
multicenter research designs are required to obtain more
credible results. The details of CBX expression are presented
in Table I.

CBXs are related to the clinical characteristics of patients
with cancer. As indicated in Table I, the expression of
CBX3 is positively correlated with the tumor grade and/or
stage of most cancer types, such as glioma and TSCC (70),
lung adenocarcinoma (LUAD) (84), GC (91), HCC (116),
CRC (101) and osteosarcoma (107), while the expression of
CBX7 is negatively correlated with the tumor stage and grade
of LUAD (84) and CCA (112). In addition, higher expression
of CBX1/2/4/5/6/8 was associated with a higher tumor stage
and grade in certain cancer types (11,67,69,74,76,80,84,86,90,
99,104,108,111,118). Furthermore, higher expression of CBX3
was associated with a larger size of glioma (69) and osteo-
sarcoma (107). Similarly, the expression of CBX2 in BC (74)
and CBX1/4 in HCC was proven to be positively correlated
with the tumor size (11,115). High expression of CBX3
in TSCC (70), HNSCC (71), NSCLC (81), CRC (101) and
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Table I. Continued.

Clinical characteristics

Prognosis

Expression

Research

Tumor
size 1

Cancer
type

(Refs.)

methods

0S| Others

Stage? Metastasis T Relapse 1 Others

Grade 1

CBX21t BI (106)

CBX1/3/571

CBX7|
CBX31

CBX1/3/4/5/6/8

Sarcoma

CBX6/7|: RFS|
CBX31: DFS|

(107)
(108)
(113)

BI

CBX31

CBX31
CBX41

CBX31

CBX3

Osteosarcoma

gPCR
BI

CBX4

Osteosarcoma
SKCM

CBX51 CBX7]

CBX7/8

CBX2/3/5/6

CBX, chromobox; 1, upregulation; |, downregulation; TSCC, tongue squamous cell carcinoma; HNSCC, head and neck squamous cell carcinoma; BC, breast cancer; NSCLC, non-small cell lung cancer; LUAD, lung adeno-
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carcinoma; EC, esophageal cancer; GC, gastric cancer; HCC, hepatocellular carcinoma; PAAD, pancreatic adenocarcinoma; CRC, colorectal cancer; ccRCC, clear cell renal cell carcinoma; UBC, urinary bladder cancer; OC,

ovarian cancer; CCA, cervical carcinoma; SKCM, skin cutaneous melanoma; IDH, isocitrate dehydrogenase; HER-2, human epidermal growth factor receptor-2; EGFR, epidermal growth factor receptor; OS, overall survival;
RFS, relapse-free survival; DFS, disease-free survival; PES, progression-free survival; PPS, post-progression survival; DMFS, distant metastasis-free survival; DSS, disease-specific survival; BI, bioinformatics; WB, western blot;

gPCR, quantitative PCR; IHC, immunohistochemistry.

osteosarcoma (107) was reported to be associated with more
robust metastatic characteristics, indicating that CBX3 has
an important role in tumor metastasis. High expression of
CBX2/3/8 in glioma (67,69), CBX2 in EC (89) and CBX1 in
HCC (115) was indicated to lead to a high probability of tumor
recurrence. In terms of other cancer characteristics, CBX2/6/7
is closely related to the isocitrate dehydrogenase mutation in
glioma (68), CBX2 is related to a human epidermal growth
factor receptor (EGFR)2-positive status of BC (74) and
CBX3 is related to EGFR mutation in NSCLC (82). CBXI1,
CBX3 and CBX7 are also associated with vascular invasion
in HCC (115), HNSCC (71) and CCA (112), respectively. The
expression of CBX1/2/3/4/5/8 in OC was reported to be related
to an increase in chemoresistance (111,123).

CBXs are cancer prognostic biomarkers. The differential
expression of CBX family members is closely related to the
overall survival (OS), relapse-free survival, disease-free
survival, progression-free survival, disease-specific survival,
post-progression survival and distant metastasis-free survival
of patients with cancer, and it has great potential as a prognostic
marker of cancer (Table I). High expression of CBX1 is associ-
ated with shorter OS of patients with LUAD (84), GC (94),
HCC (114),0C (123) and sarcoma (106). Furthermore,increased
expression of CBX2 in BC (15,72-75,77), HCC (114,122) and
OC (111,123,124) indicates poor prognosis. CBX3 is a poor
prognostic factor in as many as 13 tumor types (67,69-71,80
,81,84,86-88,101,106,110,111,114,116,122,123). CBX4 is of
prognostic value in BC (76,80), LUAD (85), EC (86-88),
GC (92,94,95,98), HCC (11) and ccRCC (110). In addition,
patients with BC (80), LUAD (84), GC (94-98), CRC (103),
sarcoma (106), SKCM (113) with upregulated CBX5 and
HNSCC (71) and ccRCC (110) with downregulated CBXS5 have
poor prognosis. CBX6 may be either a poor prognostic factor
or a favorable prognostic factor, depending on the type of
cancer (67,77,94,96-99,103,110,117,122). CBX7 acts as a tumor
suppressor in glioma (68), BC (15,77), LUAD (83,84,125),
HCC (114,119), PAAD (99,109), ccRCC (110), CCA (112),
sarcoma (106) and SKCM (113). When the expression of CBX7
is low, the OS of patients is shorter, but its relationship to
survival in EC (86-88) and GC (94-98) is controversial. High
expression of CBXS in patients with glioma (67), BC (79),
HCC (120,121), CRC (102), ccRCC (110) and UBC (105) lead
to unfavorable prognosis, but patients with LUAD (84) with
low CBX8 expression exhibit a shorter OS. In diffuse large
B-cell lymphoma (DLBCL), CBX1/2/3/5/6/8 are expressed
at high levels and CBX7 at low levels, but no significant
correlation has been identified between CBX1-8 expression
and prognosis, indicating that these CBXs may not be used as
prognostic markers in patients with DLBCL (126).
Compared with their expression in normal tissues or
paracancerous tissues, CBXs may be upregulated or down-
regulated in different types of cancers and differences in their
expression levels are closely related to clinical characteristics,
such as tumor size, clinical grade and stage, metastasis,
relapse, vascular invasion, gene mutation, chemoresistance and
prognosis. In general, CBX1/2/3/4/5/6/8 are tumor-promoting
factors in most cancers, while CBX7 is a tumor-suppressing
factor in almost all cancers. In addition to the abnormal
expression of CBX genes, single nucleotide polymorphisms
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Figure 3. Schematic representation of various regulatory mechanisms of CBXs in cancer. CBX, chromobox; PPI, protein-protein interaction; Ub, ubiquitin;
PTM, posttranslational modification; ncRNA, noncoding RNA; IncRNA, long noncoding RNA; miRNA, microRNA; circRNA, circular RNA; ORF, open

reading frame; H3K27me3, histone H3 lysine K27 trimethylation.

(SNPs) of CBX genes are closely related to cancer and may be
prognostic biomarkers for cancer. The SNPs CBX4 rs2289728
and CBX7 rs139394 confer protection against HCC. These two
SNPs inhibit the expression of CBX4 and CBX7, reducing the
risk of HCC (127). The survival rate of patients with HCC with
the homozygous CBX4 SNP AA (rs77447679-AA) is signifi-
cantly decreased (128). Considerable evidence indicates that
CBXs exhibit broad clinical application prospects as markers
for cancer diagnosis and prognosis.

6. CBXs regulate biological tumor processes through
epigenetic modification, nuclear translocation, ncRNA
interactions, transcriptional regulation, PTMs, protein-
protein interactions (PPIs), signal transduction and
metabolic reprogramming

The mechanisms underlying the involvement of CBXs in
regulating the occurrence and development of cancer are
complex and multifaceted. As epigenetic regulators, CBXs
classically regulate chromatin status and the expression of
target genes via epigenetic modification, such as histone meth-
ylation/acetylation and DNA/RNA methylation. CBXs also
promote/inhibit a variety of biological processes in tumors,
including cell proliferation, migration, invasion and drug

resistance; the cell cycle; and tumor cell stemness, through
novel regulatory mechanisms, such as nuclear translocation,
ncRNA interactions, transcriptional regulation, PTMs, PPIs,
signal transduction and metabolic reprogramming. Fig. 3 illus-
trates the various regulatory mechanisms of CBXs in cancer.

Histone methylation/acetylation. As outlined in Table II,
CBXs regulate malignant phenotype changes in tumors
through histone modification. The depletion of CBX3 in pros-
tate carcinoma (PCa) cells inhibits their proliferation, induces
apoptosis and inhibits tumorigenicity. Mechanistically, c-Myc
may upregulate CBX3 by directly binding the E-box element
in the first intron of the CBX3 gene, and upregulated CBX3 in
turn inhibits the expression of miR-451a by enhancing H3K9
methylation at the promoter region (129). CBX4 and histone
H3 lysine K4 trimethylation (H3K4me3) coordinate and
combine with the cell division cycle (CDC)20 promoter region
to promote CDC20 expression and significantly enhance and
maintain GC cell proliferation, migration and metastasis
invivo (92).Dicerisupregulated in cholangiocellular carcinoma
(CCCA) and its nuclear form may interact with CBX5. The
nuclear Dicer/CBX5 complex appears to promote H3K9me3
and DNA methylation of the secreted frizzled-related protein 1
(SFRP1) promoter and promote the proliferation and invasion
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Table II. CBXs regulating malignant phenotype changes in tumors through histone modification.

Cancer type Malignant phenotype changes Regulation mechanism (Refs.)
PCa Proliferation; tumorigenesis; CBX3 inhibits the expression of miR-451a by increasing (129)
apoptosis H3K9 methylation at the promoter regions
GC Proliferation; migration; metastases; CBX4 coordinates with H3K4me3 to bind the CDC20 92)
stemness promoter region and thus promote CDC20 expression
CCCA Proliferation; invasion The Dicer/CBX5 complex inhibits SFRP1 by promoting (130)
the H3K9me3 modification and DNA methylation of the
SFRP1 promoter
NEPC Proliferation; cell cycle; apoptosis CBXS5 reduces the expression of AR and RE1-mediated (131)
silencing of TF by enriching H3K9me3 at the gene
promoter
BC Growth; stemness CBXS positively regulates Notch network genes by (79)
maintaining the level of H3K4me3 at the promoter
HCC Growth; migration; invasion; CBX8 actives BMP4 transcription by regulating (120)
stemness; EMT H3K27me3 at the promoter of BMP4
CRC Migration; invasion; metastases CBX4 inhibits RUNX2 expression by recruiting HDAC3 (132)
to the RUNX?2 promoter
ccRCC Proliferation; growth; migration CBX4 interacts with HDACI to inhibit the expression of (133)
KLF6
Glioma Proliferation; cell cycle; migration; CBXT7 silences cyclin E1 by binding to its promoter and (134)
invasion recruiting HDAC2
TCA Malignant progression CBX7 upregulates the expression of E-cadherin by (135)
interacting with HDAC2 to increase the acetylation of
histone H3 and H4 at the E-cadherin promoter
ocC Growth; migration CBXS8 and SET bind to the promoter of SUSD2 to establish (136)

H2AK119ubl and block the acetylation of histone H3,
resulting in transcriptional inhibition of SUSD2

CBX, chromobox; PCa, prostate carcinoma; GC, gastric cancer; CCCA, cholangiocellular carcinoma; NEPC, neuroendocrine prostate cancer;
BC, breast cancer; HCC, hepatocellular carcinoma; CRC, colorectal cancer; ccRCC, clear cell renal cell carcinoma; TCA, thyroid carcinoma;
OC, ovarian cancer; EMT, epithelial to mesenchymal transition; H3K9, histone H3 lysine K9; H3K4me3, histone H3 lysine K4 trimethylation;
CDC20, cell division cycle 20; SFRP1, secreted frizzled-related protein 1; AR, androgen receptor; RE1, repressor element-1; TF, transcription
factor; BMP4, bone morphogenetic protein 4; RUNX2, runt-related transcription factor 2; HDAC, histone deacetylase; KLF6, Kruppel-like
factor 6; SET, SE translocation protein; SUSD2, sushi domain containing 2; H2AK119ub1, monoubiquitination of histone H2A lysine 119.

of CCCA cells by inhibiting SFRP1 (130). CBX5-knockout
in neuroendocrine prostate cancer (NEPC) cells inhibits
proliferation and induces apoptotic death, resulting in tumor
growth arrest. Mechanistically, CBX5 reduces the expres-
sion of androgen receptor (AR) and repressor element-1
(REI)-mediated silencing of TF by enriching H3K9me3 on
the respective gene promoter (131). CBXS positively regulates
Notch signal transduction to promote breast cell tumorigenesis
by maintaining the level of H3K4me3 at the promoter of Notch
network genes (79). Forced overexpression of CBXS8 induced
the epithelial-mesenchymal transition (EMT), invasive cell
migration and stem cell-like characteristics, all of which are
related to increased tumor growth and metastasis, in mice.
Mechanistically, CBXS8 regulates the H3K27me3 modification
at the promoter of the bone morphogenetic protein (BMP)4
gene, which is related to active BMP4 transcription and
therefore to the activation of mothers against decapentaplegic
homolog (SMAD) and mitogen-activated protein kinase
(MAPK) (120).

Evidence suggests that CBX4 has an inhibitory role in CRC;
itinhibits CRC metastasis by HDAC3 to the RUNX?2 promoter to
inhibit RUNX?2 expression (132). CBX4 promotes the prolifera-
tion and migration of ccRCC cells by interacting with HDAC1
to transcriptionally inhibit the expression of Kruppel-like factor
6 (133). By binding the cyclin E1 promoter and recruiting
HDAC2, CBX7 silences cyclin El and causes glioma cell cycle
arrest in the GO/G1 phase (134). CBX7 increases the acetylation
of histone H3 and H4 at the E-cadherin promoter by interacting
with HDAC2 and upregulates the expression of E-cadherin,
explaining the correlation between the loss of CBX7 expression
and the highly malignant phenotype of thyroid carcinoma (135).
CBX8 is upregulated in OC. Overexpression and knockdown
experiments have indicated that CBX8 promotes the growth and
migration of OC cells in vitro. Mechanistically, CBX8 and SE
translocation protein (SET) bind the promoter of sushi domain
containing 2 (SUSD2) to establish H2AK119ubl and block
the acetylation of histone H3, resulting in the transcriptional
inhibition of SUSD2 (136).
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Table III. CBXs regulating malignant phenotype changes in tumors through DNA/RNA methylation.

Cancer Malignant phenotype

type changes Regulation mechanism (Refs.)

HCC Proliferation CBX1 knockdown regulates the level of MAT2A, leading to a decrease (137)
in the total level of SAM and methylated DNA

NSCLC Proliferation HMT G9a cooperates with CBXS and DNMT1 to regulate epigenetic (138)
gene expression through H3K9me2 and DNA methylation

HCC Stemness TLR4 enhances the interaction between CBX5 and DNMT3B, (139)
resulting in transcriptional inhibition of TERRA

CCCA Proliferation Downregulation of CBX5 reduces H3K9me3 enrichment and the (140)
DNA methylation rate of the SFRP1 promoter, thus restoring the
expression of SFRP1

CC Stemness; When m6A methylation is increased, CBXS interacts with KMT2B (12)

chemosensitivity and RNA polymerase II to promote LGRS expression

CBX, chromobox; HCC, hepatocellular carcinoma; NSCLC, non-small cell lung cancer; CCCA, cholangiocellular carcinoma; CC, colon
cancer; MAT2A, methionine adenosyltransferase 2A; SAM, S-adenosylmethionine; HMT, histone methyltransferase; DNMT, DNA meth-
yltransferase; H3K9me?2, histone H3 lysine K9 dimethylation; TERRA, telomere repeat-containing RNA; SFRP1, secreted frizzled-related
protein 1; KMT2B, lysine methyltransferase 2B; LGRS, leucine-rich repeat-containing G-protein coupled receptor 5.

DNA/RNA methylation. CBX1 promotes the proliferation of
hepatoma cells and CBX1 knockdown regulates the level of
methionine adenosyltransferase 2A, leading to a decrease
in the totals level of S-adenosylmethionine and methylated
DNA and inhibiting the proliferation of hepatoma cells (137).
HMT G9a cooperates with CBX5 and DNA methyltransferase
(DNMT)1 to regulate epigenetic gene expression through
H3K9me2 and DNA methylation, activates the Wnt/f3-catenin
signaling pathway and promotes the growth of NSCLC in vitro
and in vivo (138). In HCC, Toll-like receptor 4 enhances
the interaction between CBX5 and DNMT3B and inhibits
the attachment and extension of RNA polymerase II in the
promoter region of telomere repeat-containing RNA (TERRA)
with telomere duplication, thereby inhibiting the transcription
of TERRA (139). The downregulation of CBX5 in CCCA
may reduce H3K9me3 enrichment and the DNA methylation
rate of the SFRP1 promoter, thus restoring the expression of
SFRPI and inhibiting CCCA cell proliferation (140). When
m6A methylation is increased, CBXS interacts with lysine
methyltransferase 2B and RNA polymerase II to promote
leucine-rich repeat-containing G-protein coupled receptor
5 expression, which helps to increase the stemness of colon
cancer (CC) and reduce the chemical sensitivity of CC (12).
Details are provided in Table III.

Nuclear translocation. Yi et al (141) suggested that the
subcellular localization of CBX3, not its expression, is closely
related to the progression of CCA. Details are presented in
Table IV. The nuclear output of high-risk human papillo-
mavirus-mediated CBX3 reduces the stability of p53 in the
progression of CCA through ubiquitin-conjugating enzyme E2
L3 (UBE2L3)-mediated polyubiquitination of p53. Exosomal
circ_0006790 derived from bone marrow mesenchymal stem
cells promotes the nuclear translocation of CBX7 and recruits
DNA methyltransferase to its promoter region to increase
the DNA methylation of SI00A11; thus, inhibiting SI00A11

transcription may downregulate SIO0A11 in pancreatic ductal
adenocarcinoma (PDAC) cells and inhibit PDAC growth,
metastasis and immune escape (142). In osteosarcoma, meta-
bolic glutamate receptor 4 may interact with CBX4 to limit
its nuclear localization and affect the transcriptional activity
of hypoxia-inducible factor (HIF)-la, which affects cell
proliferation, migration and invasion (143).

ncRNA interactions. CBXs may interact with ncRNA [long
ncRNA (IncRNA), microRNA (miRNA) or circular RNA
(circRNA)] to regulate target genes or to be regulated as target
genes, participating in the occurrence and development of
tumors. Details are presented in Table V.

The expression of CBX2 is positively regulated by the
IncRNA prostate cancer associated transcript 6 (PCAT6)
sponging of miR-185-5p in PDAC (144),IncRNA cancer suscep-
tibility 9 (CASC9) sponging of miR-497-5p in UBC (145) and
LINCO00261 sponging of miR-8485 in NEPC (146), which
increases the acquisition of the respective malignant cancer
phenotype. Targeting CBX2 with miR-342-5p mediates the
inhibition of the Wnt/B-catenin signaling pathway, which
significantly reduces the proliferation, invasion, migration
and viability of OC cells and promotes their apoptosis (147).
The let-7a/CBX2 axis has an important role in the progression
of osteosarcoma (148). Circ_0061140 is able to mediate the
proliferation, migration, invasion and paclitaxel sensitivity of
OC cells by regulating the miR-136/CBX2 axis in vivo (149).

CBX3, a target gene, is regulated by a competing
endogenous RNA axis, which includes the IncRNA
RP11-279C4.1/miR-1273g-3p/CBX3 axis in glioma (150),
the IncRNA KCNQI opposite strand/antisense transcript
1/miR-29a-3p/CBX3 (151) and LINC01006/miR-433-3/CBX3
axis (152) in HCC, the IncRNA small nucleolar RNA host
gene (SNHG) 17/miR-375/CBX3 axis in colon adenocar-
cinoma cells (153) and the LINC00857/miR-370-3p/CBX3
axis in DLBCL (154). LINC00998 may stabilize CBX3 to
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Table IV. CBXs regulating malignant phenotype changes in tumors through nuclear translocation.

Cancer type Malignant phenotype changes Regulation mechanism (Refs.)
CCA Proliferation The nuclear output of CBX3 reduces the stability of p53 (141)
through UBE2L3-mediated polyubiquitination of p53
PAAD Growth; migration; invasion; Exosomal circ_0006790 promotes the nuclear translocation (142)
immune escape of CBX7 and recruits DNA methyltransferase to its promoter
region to increase the DNA methylation of SI00A11
Osteosarcoma Proliferation; migration; GRM4 may interact with CBX4 to limit its nuclear (143)

invasion

localization and affect the transcriptional activity of HIF-1a

CBX, chromobox; CCA, cervical carcinoma; PAAD, pancreatic adenocarcinoma; UBE2L3, ubiquitin-conjugating enzyme E2 L3; GRM4,

metabolic glutamate receptor 4; HIF-1a., hypoxia-inducible factor-1a.

promote H3K9me3 in the c-Met promoter region and further
weaken the activation of the c-Met/AKT/mammalian target
of rapamycin (mTOR) signaling pathway, which inhibits
the proliferation of glioma in vitro and in vivo (155). CBX3
regulated by miR-139 (156) and miR-30a (157) promotes
HCC growth, migration and invasion by regulating cell cycle
progression and CRC growth, respectively. Overexpression
of circ_EZH2 significantly promotes the growth, migration
and invasion of glioma cells and inhibits their apoptosis. The
carcinogenic function of CBX3 depends on its inhibition of
dimethylarginine dimethylaminohydrolase 1 and sponging of
miR-1265 (158).

The IncRNA SNHG5/miR-181c-5p axis in NSCLC (159),
the LINC00265/miR-144-3p axis in GC (160) and the IncRNA
forkhead box P4 AS1/miR-136-5p axis in CCA (161) upregu-
late the expression of CBX4 and promote cancer progression.
The IncRNA RNA associated with metastasis-11 (RAMSI11)
promotes the growth and metastasis of PCa cells by binding
CBX4 and activating the expression of topoisomerase Ila
(TOP2a) (162). miR-129-5p (163) and miR-515-5p (164)
in BC, miR-507 in GC (165), miR-6838-5p in HCC (166)
and miR-497-5p in CCA (167) target CBX4 to regulate the
biological characteristics of human cancers. BMP2 increases
miR-181b levels to directly target and inhibit CBX4 expression
in adamantinomatous craniopharyngioma (ACP), resulting
in reduced regulation of CBX4-dependent HDAC3 nuclear
translocation, RUNX?2 activation/osteoblast differentiation
and calcium deposition in ACP (168). CBX4 is upregulated
in BC and shows carcinogenic activity mediated through
the activation of the miR-137-mediated Notchl signaling
pathway (76). MiR-424 inhibits the nuclear translocation of
the Yes-associated protein (YAP)! that has been induced
by CBX4, and CBX4 and inhibits the proliferation and stem
cell-like characteristics of HCC cells (169). Circ_PVT1 (170)
and circ_0008039 (171) also enhance the expression of CBX4
separately through competitive binding to miR-21-5p and
miR-515-5p, respectively, thereby promoting the progression
of laryngocarcinoma and BC.

LINCO02381 may interact and cooperate with
CCAAT/enhancer-binding protein 3 to bind the CBX5
promoter and transcriptionally activate CBXS5 to promote
glioma cell proliferation and apoptosis (172). The IncRNA
SNHGI11/miR-2355-5p/CBXS5 axis regulates the proliferation

and migration of triple-negative BC cells (173). Overexpression
of miR-675 promotes the growth of hepatoma cells in vitro
and in vivo. Mechanistically, miR-675 inhibits the expression
of CBXS5 in human hepatoma cells, leading to a decrease
in H3K9me3 and H3K27me3 abundance and triggering
the transcription, translation, small ubiquitin-like modifier
(SUMOylation) and activation of early growth response 1
(EGR1), which upregulates the IncRNA H19 and induces and
activates tumor-specific pyruvate kinase M2 (PKM?2) (174).
MiR-675 in conjunction with PKM2 triggers the upregulation
of c-Myc by increasing the interaction between H3K9me3 and
CBXS5, which contributes to the malignant progression of liver
cancer stem cells (175). Overexpression of CBXS5 or inhibi-
tion of miR-589-5p in renal cell carcinoma (RCC) reverses the
inhibitory effect of silencing lysyl oxidase like 1-AS1 on the
proliferation and migration of RCC cells (176). Circ_0037866
may sponge miR-384 to increase the expression of its target,
CBX35, thereby promoting the survival, invasion and migration
of RCC cells in vitro and in vivo (177).

The expression of the IncRNA miR-100HG and CBX6 was
enhanced in HCC cells. Knocking out miR-100HG inhibited
the viability, migration and invasion of HCC cells by targeting
the miR-146b-5p/CBX6 axis (178).

The IncRNA SNHG?7 interacts with miR-181, upregulates
CBX7 and inhibits the proliferation and migration of LUAD
cells in vitro and in vivo via the Wnt/B-catenin pathway (179).
CBX7 has been confirmed to be a functional target of
miRNA-19 in NSCLC (180), miR-9 in UBC (181), miR-375 in
PCa (182) and miR-18a in OC (183). CBX7, which is negatively
regulated by high mobility group AT-hook (HMGA)I, nega-
tively regulates the expression of miR-181b, which leads to BC
progression (184). CircRNA Golgi phosphoprotein 3 and its
binding protein CBX7 may promote the proliferation of PCa
cells and inhibit their apoptosis (185).

CBXS, an oncogene, upregulates EGR1 and miR-365-3p
to stimulate the AKT/B-catenin pathway, which promotes
the growth and metastasis of HCC (121). CBX8 may be an
independent RNA-binding protein (RBP) that regulates the
maturation of miRNAs. CBX8 may inhibit the nuclear output
of premiR-378a depending on its own nuclear localization and
interaction with premiR-378a, thus inhibiting the maturation
of miR-378a. MiR-378a-3p inhibits the malignant expression
of human CC cells by targeting protein disulfide-isomerase
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Table V. CBXs regulating malignant phenotype changes in tumors through ncRNA interactions.
Cancer type Malignant phenotype changes ncRNA interactions (Refs.)
PAAD Proliferation; migration; invasion IncRNA PCAT6/miR-185-5p/CBX2 (144)
UBC Proliferation IncRNA CASC9/miR-497-5p/CBX2 (145)
NEPC Proliferation; metastases LINC00261/miR-8485/CBX2/FOXA2 (146)
oC Proliferation; apoptosis; migration; invasion miR-342-5p/CBX2/Wnt/p-catenin (147)
Osteosarcoma Proliferation; growth; invasion miRNA let-7a/CBX2 (148)
oC Proliferation; apoptosis; migration; circ_0061140/miR-136/CBX2 (149)
invasion; chemosensitivity
Glioma Proliferation; migration; invasion; IncRNA RP11-279C4.1/miR-1273g-3p/CBX3 (150)
self-renewal
HCC Proliferation; apoptosis; migration; invasion IncRNA KCNQ10T1/miR-29a-3p/CBX3 (151)
HCC Proliferation; migration; invasion LINC01006/miR-433-3/CBX3 (152)
COAD Proliferation; migration; invasion IncRNA SNHG17/miR-375/CBX3 (153)
DLBCL Proliferation; apoptosis LINC00857/miR-370-3p/CBX3 (154)
Glioma Proliferation; cell cycle LINC00998/CBX3/c-Met/ AKT/mTOR (155)
HCC Growth; migration; invasion miR-139/CBX3 (156)
CRC Proliferation; growth miR-30a/CBX3/CDKN1A (157)
Glioma Growth; apoptosis; migration; invasion circ. EZH2/miR-1265/CBX3 (158)
NSCLC Proliferation IncRNA SNHG5/miR-181c-5p/CBX4 (159)
GC Proliferation LINC00265/miR-144-3p/CBX4 (160)
CCA Proliferation; migration; invasion IncRNA FOXP4-AS1/miR-136-5p/CBX4 (161)
PCa Proliferation; migration; invasion IncRNA RAMS11/CBX4/TOP2a. (162)
BC Proliferation miR-129-5p/CBX4 (163)
BC Proliferation; migration; invasion miR-515-5p/CBX4 (164)
GC Proliferation; apoptosis; invasion miR-507/CBX4/Wnt/B-catenin/HIF-1a (165)
HCC Proliferation; metastases; angiogenesis; miR-6838-5p/CBX4/ERK (166)
self-renewal
CCA Proliferation; cell cycle miR-497-5p/CBX4 (167)
ACP Osteoblast differentiation and calcium BMP2/miR-181b/CBX4/HDAC3/RUNX?2 (168)
deposition
LC Proliferation; migration; invasion circ_PVT1/miR-21-5p/CBX4/Wnt4/B-catenin (170)
BC Proliferation; migration CBX4/miR-137/Notch1 (76)
HCC Proliferation; stemness miR-424/CBX4/YAP1 (169)
BC Proliferation; migration; invasion circ_0008039/miR-515-5p/CBX4 (171)
Glioma Proliferation; apoptosis LINCO02381/CEBPB/CBX5 (172)
BC Proliferation; migration IncRNA SNHG11/miR-2355-5p/CBX5 (173)
HCC Proliferation miR-675/CBX5/EGR1/H19/PKM2 (174)
HCC Stemness miR-675/PKM2/CBX5/c-Myc (175)
RCC Proliferation; migration IncRNA LOXL1-AS1/miR-589-5p/CBX5 (176)
RCC Proliferation; migration; invasion circ_0037866/miR-384/CBX5 (177)
HCC Proliferation; migration; invasion IncRNA MIR100HG/miR-146b-5p/CBX6 (178)
LUAD Proliferation; migration Inc RNA SNHG7/miR-181/CBX7/ (179)
Wnt/3-catenin
NSCLC Proliferation; migration; invasion miRNA-19/CBX7 (180)
UBC Invasion miR-9/CBX7 (181)
PCa Proliferation; migration; invasion miR-375/CBX7 (182)
OC Proliferation; migration; invasion; EMT miR-18a/CBX7/ERK/MAPK (183)
BC Proliferation; cell cycle HMGA1/CBX7/miR-181b (184)
PCa Proliferation; cell cycle; apoptosis circ._ GOLPH3/CBX7 (185)
HCC Growth; migration CBXS8/EGR1/miR-365-3p/AKT/B-catenin (121)
CC Proliferation; apoptosis; migration; invasion CBX8/miR-378a-3p/PDIA4/caspase 3/ (186)
caspase 7
DLBCL Proliferation; apoptosis miR-429/CBX8 (187)
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Table V. Continued.

Cancer type Malignant phenotype changes ncRNA interactions (Refs.)
BC Proliferation; migration; invasion circ_0005230/miR-618/CBX8 (188)
CCA Proliferation; migration; invasion circ_8924/miR-518d-5p/519-5p/CBX8 (189)

CBX, chromobox; PAAD, pancreatic adenocarcinoma; UBC, urinary bladder cancer; NEPC, neuroendocrine prostate cancer; OC, ovarian
cancer; HCC, hepatocellular carcinoma; COAD, colon adenocarcinoma; DLBCL, diffuse large B-cell lymphoma; CRC, colorectal cancer;
NSCLC, non-small cell lung cancer; GC, gastric cancer; CCA, cervical carcinoma; PCa, prostate carcinoma; BC, breast cancer; ACP,
adamantinomatous craniopharyngioma; LC, laryngocarcinoma; RCC, renal cell carcinoma; LUAD, lung adenocarcinoma; CC, colon cancer;
EMT, epithelial to mesenchymal transition; ncRNA, noncoding RNA; IncRNA, long noncoding RNA; miR, microRNA; circ, circular RNA;
PCAT®6, prostate cancer associated transcript 6; CASC9, cancer susceptibility 9; FOXA2, forkhead box A2; KCNQ10OT1, KCNQ1 opposite
strand/antisense transcript 1; SNHG, small nucleolar RNA host gene; CDKN1A, cyclin dependent kinase inhibitor 1A; EZH2, enhancer of
zeste homolog 2; FOXP4-AS1, forkhead box P4 antisense RNA 1; RAMS11, RNA associated with metastasis-11; TOP2a., topoisomerase
[la; HIF-1a, hypoxia-inducible factor-1a; ERK, extracellular signal-regulated kinase; BMP2, bone morphogenetic protein 2; HDAC, histone
deacetylase; RUNX2, runt-related transcription factor 2; YAP1, Yes-associated protein 1; CEBPP, CCA AT/enhancer-binding protein §; EGR1,
early growth response 1; PKM2, pyruvate kinase M2; LOXL1-AS1, lysyl oxidase like 1 antisense RNA 1; MAPK, mitogen-activated protein

kinase; HMGAT, high mobility group AT-hook 1; GOLPH3, Golgi phosphoprotein 3; PDIA4, protein disulfide-isomerase A4.

A4, resulting in an increase in caspase-3 and caspase-7
activity (186). MiR-429 targets CBX8 to promote apoptosis
in DLBCL (187). The increased expression of circ_0005230
in BC (188) and circ_8924 in CCA (189) promotes CBX8
expression by sponging miR-618 and miR-518d-5p/519-5p,
respectively, to regulate cell proliferation, migration and
invasion and is associated with poor prognosis.

Transcriptional regulation. All CBXs may upregulate or
downregulate the expression of oncogenes or tumor suppressor
genes at the transcriptional level (Table VI).

In CC, CBXI1 inhibits the expression of matrix metallopep-
tidase (MMP)2 at the transcriptional level and regulates CC
cell metastasis (190).

CBX2 depletion decreases cell viability and induces
apoptosis in metastatic PCa cell lines. Mechanistically,
numerous key regulatory factors, such as aurora kinase
(AURK)A, AURKB, cyclin B1, marker of proliferation Ki-67
(MKI67), cyclin dependent kinase (CDK) 1 and CDC25A,
are downregulated by CBX2 to control cell proliferation and
metastasis (191).

CBX3 promotes cell proliferation by directly suppressing
the expression of nuclear receptor corepressor 2 (NCOR?2) and
zinc finger and BTB domain containing 7A in LUAC (192) and
CDKG6/p21 in CC (193). CBX3 also mediates tumor promotion
by regulating the expression of CDK1 and proliferating cell
nuclear antigen (PCNA) in PAAD cells (194), inhibiting the
expression of SMAD-specific E3 ubiquitin protein ligase 2 and
promoting the activation of the TGF-f signaling pathway (195).

CBX4 regulates telomerase reverse transcriptase-mediated
cadherin 1 transcription and promotes the migration and
invasion of BC cells (196). In lung cancer, CBX4 knockdown
effectively blocks the cell cycle in the GO/G1 phase by inhibiting
the expression of CDK?2 and cyclin E and reduces the forma-
tion of filamentous pseudopodia by inhibiting MMP2, MMP9
and C-X-C motif chemokine receptor 4 (CXCR4). In addition,
CBX4 promotes cell proliferation and metastasis by regulating
PCGF4 expression (197). Knocking down CBX4 results in the
downregulation of PCNA and cyclin E2 and the upregulation

of pl16, followed by decreased cell proliferation and blocked
cell cycle progression (11). CBX4 promotes osteosarcoma
metastasis by recruiting general control non-derepressible 5 to
the RUNX2 promoter to upregulate RUNX?2 at the transcrip-
tional level, and CKla inhibits osteosarcoma cell migration
and invasion by inhibiting CBX4 (198).

CBXS5 inhibits BC cell migration and invasion. The E2F
transcription factor 5 (E2F5) regulates CBXS5 transcription,
and E2F5 consumption increases the expression of CBXS5
in invasive BC cells (199). The RNA binding motif protein
X-linked (RBMX) reverse transcriptional gene product RBMX
like 1 (RBMXLI1) is an RBP that directly binds mRNA and
affects the transcription of the CBX5 locus in acute myeloid
leukemia. RBMX/L1 controls leukemic cell survival by
regulating chromatin status through its downstream target
CBX5 (200).

The expression of CBX6 is negatively regulated by EZH2,
which may inhibit cell proliferation and induce GO/G1 cell
cycle arrest in BC cells (201). Knocking out CBX6 promotes
MMP2 expression and tumor invasion in pleural mesothe-
lioma (202). CBX6 upregulates the expression of Snail and
zinc finger E-box binding homeobox 1 (ZEBI) promotes the
proliferation, migration and invasion of HCC cells (118).

In glioma, overexpression of exogenous CBX7 induces
apoptosis and inhibits cell proliferation, migration and inva-
sion, as it reduces the expression of CDK2 and cyclin A2 (203)
and the core EMT factor ZEB1 (204). CBX7 blocks the binding
of twist family bHLH transcription factor 1 (TWISTI) to the
EPH receptor A2 (EPHA?2) promoter, inhibits the expression
of EPHA?2, and inhibits the growth and metastasis of basal-like
BC (205). CBX7 inhibits the expression of pl6™k** and p14*RF in
PCa cells and affects their growth (206). CBX7 acts as a tumor
suppressor to downregulate the expression of the oncogenes
phosphodiesterase 4B (207) and aldo-keto reductase family 1
member B10 (14), promoting the proliferation, migration and
invasion of UBC cells at the transcriptional level.

CBXa8 is overexpressed in numerous cancers and has been
indicated to promote the invasion and migration of glioma,
BC and lung cancer in vitro and in vivo. Mechanistically,
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Table VI. CBXs influencing malignant phenotype changes in tumors through regulation at the transcrip-tional level.

Cancer type Malignant phenotype changes Transcriptionally regulated gene (Refs.)
CC Migration CBX1-MMP2 (190)
PCa Proliferation; apoptosis CBX2-AURKA/AURKB/ cyclin (191)
B1/MKI67/CDK1/CDC25A

LUAD Proliferation; migration CBX3-NCOR2/ZBTB7A (192)
CC Proliferation; cell cycle CBX3-CDK6/p21 (193)
PAAD Proliferation; growth; migration; invasion CBX3-CDK1/PCNA (194)
PAAD Proliferation; growth; migration; invasion CBX3-SMURF2 (195)
BC Migration; invasion CBX4-cadherin 1 (196)
NSCLC Proliferation; cell cycle; migration CBX4-CDK2/cyclin E/PCGF4 (197)
HCC Proliferation; cell cycle CBX4-cyclin E2/p16 11
Osteosarcoma Migration; invasion CK1a-CBX4-GCN5/RUNX2 (198)
BC Migration; invasion E2F-CBX5 (199)
AML Proliferation; apoptosis RBMXLI-CBXS5 (200)
BC Proliferation; migration; invasion EZH2-CBX6 (201)
PM Migration; invasion CBX6-MMP2 (202)
HCC Proliferation; migration; invasion CBX6-Snail/ZEB1 (118)
Glioma Proliferation; cell cycle miR-18a-CBX7-CDK2/cyclinA2 (203)
Glioma Proliferation; migration; invasion CBX7-DKK1/ZEB1 (204)
blIBC Growth; migration; invasion; metastases CBX7-TWIST1/EPHA2 (205)
PCa Proliferation CBX7-p16™K44/Rb; CBX7-p14**F/p53 (206)
UBC Proliferation; migration; invasion CBX7-PDE4B (207)
UBC Proliferation; migration; invasion; stemness CBX7-AKR1B10 (14)
Glioma, BC, NSCLC Migration; invasion CBX8-WNK2/MMP2/RAC1 (208)
ESCC Proliferation; migration; invasion; metastases CBX8-Snail (209)
CC Proliferation IGF1-CBX8 (210)
CRC Proliferation; migration; invasion; metastases CBX8-p53/ITGB4 (102)
Leukemia Tumorigenesis CBX8-HOX 211)

CBX, chromobox; CC, colon cancer; PCa, prostate carcinoma; LUAD, lung adenocarcinoma; PAAD, pancreatic adenocarcinoma; BC, breast
cancer; NSCLC, non-small cell lung cancer; HCC, hepatocellular carcinoma; AML, acute myeloid leukemia; PM, pleural mesothelioma;
bIBC, basal-like BC; UBC, urinary bladder cancer; ESCC, esophageal squamous cell carcinoma; CRC, colorectal cancer; MMP2, matrix
metallopeptidase 2; AURK, aurora kinase; MKI67, marker of proliferation Ki-67; CDK, cyclin dependent kinase; CDC25A, cell division
cycle 25A; NCOR2, nuclear receptor corepressor 2; ZBTB7A, zinc finger and BTB domain containing 7A; PCNA, proliferating cell nuclear
antigen; SMURF2, SMAD specific E3 ubiquitin protein ligase 2; PCGF4, polycomb group ring finger protein 4; GCNS5, general control
non-derepressible 5; RUNX2, runt-related transcription factor 2; RBMXL1, RNA binding motif protein X-linked like 1; EZH2, enhancer of
zeste homolog 2; ZEBI1, zinc finger E-box binding homeobox 1; DKK1, Dickkopf-related protein 1; TWIST1, twist family bHLH transcrip-
tion factor 1; EPHA2, EPH receptor A2; PDE4B, phosphodiesterase 4B; AKR1B10, aldo-keto reductase family 1 member B10; WNK2,
with-no-lysine kinase 2; RAC1, Rac family small GTPase 1; IGF1, insulin like growth factor 1; ITGB4, integrin subunit 34; HOX, homeobox.

CBX8 promotes cell invasion and migration by targeting
with-no-lysine kinase 2, resulting in increased expression
and activity of Rac family small GTPase 1 (RAC1) and
MMP2 (208). CBX8 may have contradictory roles in esophageal
squamous cell carcinoma (ESCC), promoting cell proliferation
and inhibiting metastasis, and this newly reported function of
CBXS depends on its binding to the Snail promoter, thereby
inhibiting the transcription of Snail (209). Insulin-like growth
factor 1 promotes the proliferation of CC cells by promoting
CBX8 expression (210). Knocking down CBXS inhibits the
proliferation of CRC cells in vitro and in vivo, mainly by
increasing p53 and its downstream effectors. However, the
knockdown of CBX8 enhances the migration, invasion and
metastasis of CRC cells in vitro and in vivo, partially by

directly upregulating integrin subunit 34, thereby reducing
the activity of ras homolog (Rho)A (102). CBX8 is necessary
for mixed lineage leukemia (MLL)-AF9-induced transcrip-
tional activation and leukemia development. By contrast, the
elimination of CBX8 by a point mutation in MLL-AF9 and
the specific elimination of the MLL-AF9-CBXS interaction
abrogates both the upregulation of the homeobox gene and the
transformation of MLL-AF9-positive leukemia (211).

PTMs. Protein PTMs, such as phosphorylation, acetylation,
SUMOylation and ubiquitination, reveal the great complexity
of the proteome. PTMs have important roles in signal trans-
duction, protein stability and conversion, protein-to-protein
recognition and interaction, and spatial localization by
changing the structure and function of the protein. CBXs
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Table VII. CBXs regulating malignant phenotype changes in tumors through posttranslational modifications.

Cancer type  Malignant phenotype changes Regulation mechanism (Refs.)

HCC Proliferation; apoptosis CBX2 knockdown inhibits the expression of WTIP, stimulates the (212)
Hippo pathway, and leads to the phosphorylation-induced
inactivation of YAP

Glioma Proliferation; tumorigenesis CBX3 directly suppresses PARK2 and STUBI at the transcriptional (213)
level to reduce the ubiquitination of EGFR

HCC Angiogenesis CBX4 promotes HCC via HIF-1a ubiquitination and VEGF (214)
upregulation

BC EMT Increased SENP7L decreases the SUMOylation of CBX5 (215)

BC Chemosensitivity Ubiquitinated CBXS is recruited to ncRNA-rich chromatin loci to (216)
promote DNA damage and is associated with chemosensitivity in
BC mediated via SUMOylated CBX5/ncRNA

EC Proliferation; radiosensitivity ~ The inhibition of CBX8 increases the phosphorylation of p21, (90)

Weel and choline kinase 1

CBX, chromobox; HCC, hepatocellular carcinoma; BC, breast cancer; EC, esophageal cancer; EMT, epithelial to mesenchymal transition;
WTIP, Wilms' tumor protein 1-interacting protein; YAP, Yes-associated protein; PARK2, Parkinson disease 2; STUBI1, stress induced phospho-
protein 1 homology and U-box containing protein 1; EGFR, epidermal growth factor receptor; HIF-1a, hypoxia-inducible factor-1a; VEGF,
vascular endothelial growth factor; SENP7L, SUMO specific peptidase 7 long transcript; SUMOylation, small ubiquitin-like modifier.

activate or inhibit cancer-related signaling pathways through
the PTM of key proteins in a pathway (Table VII).

CBX2 knockdown in HCC inhibits the proliferation
of HCC cells and promotes their apoptosis. The following
mechanisms underlie these effects: CBX2 knockdown
inhibits the expression of Wilms' tumor protein 1-interacting
protein, stimulates the Hippo pathway and leads to the
phosphorylation-induced inactivation of YAP (212). CBX3
directly suppresses Parkinson disease 2 and stress-induced
phosphoprotein 1 homology and U-box containing protein 1
at the transcriptional level to reduce the ubiquitination of
EGFR, significantly promoting the proliferation, invasion and
tumorigenesis of glioblastoma multiforme cells in vitro and
in vivo (213). CBX4 promotes HCC via HIF-1a ubiquitnation
and vascular endothelial growth factor upregulation (214). In
BC, SUMO specific peptidase 7 long transcript (SENP7L)
has enhanced abundance. Increased SENP7L decreases
the SUMOylation rate of CBX5 and promotes abnormal
proliferation and the EMT (215). Ubiquitinated CBXS is
recruited to ncRNA-rich chromatin loci to promote DNA
damage and is associated with chemosensitivity in BC (216).
The inhibition of CBX8 decreases cell proliferation in vitro
and in vivo and increases the phosphorylation of p21, Weel
and choline kinase 1, resulting in CDK inhibition and cell
cycle delay (90).

PPIs. Table VIII indicates that CBX regulates tumor progres-
sion through PPIs. CBX1 interacts with the TF HMGA?2
to activate the Wnt/B-catenin signaling pathway, which
promotes cell proliferation and migration in HCC (115). In
PCa, CBXI1 is an androgen/AR coactivator involved in the
proliferation and progression of AR-expressing PCa cells into
castration-resistant PCa (217). Mechanistically, CBX1 inter-
acts with AR to enhance the DNA-binding capacity of AR,
particularly prostate-specific antigen enhancers and androgen

response elements in promoter regions, and to increase the
transcription of AR target genes. CBX2 cooperates with
EZH?2 to downregulate several peroxisome proliferator-acti-
vated receptor signaling pathway genes and tumor suppressor
genes by cooperating with or binding their promoters,
respectively (218). CBX7 binds the E-box to inhibit TWIST1
function and tumorigenicity and reduce the metastatic poten-
tial of secondary epithelial ovarian cancer cells (219). CBX8
promotes tumorigenesis and radioresistance of ESCC cells by
targeting apoptotic peptidase activating factor 1 (13). CBX8
is upregulated in HCC, interacts with Y-box-binding protein
1 and regulates the cell cycle to promote the proliferation of
HCC cells (220). Karyopherin subunit alpha 2 (KPNA?2) and
CBX8 are highly expressed in UBC. The interaction between
KPNA?2 and CBX8 promotes the proliferation, migration and
invasion of bladder cancer cells by mediating the PR/SET
domain 1/c-Fos pathway (221).

Signal transduction. Although certain studies have not clari-
fied the tumor regulatory mechanism of CBX at the molecular
level, they have made clear that CBX functions through a
specific signal transduction pathway (Table IX).

It has been indicated that CBX2 promotes mTORCI1
signal transduction and inhibits the activity of the dimerisa-
tion partner, retinoblastoma link, E2F and MuvB-complex to
drive the growth of BC cells (222). CBX2 depletion inhibits
the proliferation, migration and invasion of GC cells by inac-
tivating the YAP/p-catenin pathway (223). CBX3 induces the
proliferation and invasion of glioma (224) and BC cells (73)
through the activation of the PI3K/AKT pathway. CBX3
decreases the G1/S phase transition mediated through p21
to promote tumor proliferation and is associated with poor
prognosis in TSCC (70). Upregulation of CBX3 promotes
smoking-related LUAD progression by activating the RACI
pathway via the inhibition of Rho GTPase activating protein
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Table VIII. CBXs regulating malignant phenotype changes in tumors through PPIs.

Cancer type Malignant phenotype changes PPIs (Refs.)
HCC Proliferation; migration CBX1-HMGA2 (115)
PCa Proliferation; malignant; progression CBX1-AR (217)
NSCLC Growth; metastases CBX2-EZH2 (218)
seOC Growth; metastases CBX7-E-box (219)
ESCC Proliferation; apoptosis; radiosensitivity CBX8-APAF1 13)

HCC Proliferation; cell cycle CBX8-YBX1 (220)
UBC Proliferation; migration; invasion CBX8-KPNA2 (221)

CBX, chromobox; PPI, protein-protein interaction; HCC, hepatocellular carcinoma; PCa, prostate carcinoma; NSCLC, non-small cell lung
cancer; seOC, secondary epithelial ovarian cancer; ESCC, esophageal squamous cell carcinoma; UBC, urinary bladder cancer; HMGA2, high
mobility group AT-hook 2; AR, androgen receptor; EZH2, enhancer of zeste homolog 2; APAF1, apoptotic peptidase activating factor 1; YBX1,

Y-Box binding protein 1; KPNA2, karyopherin subunit alpha 2.

24 (225). Wang et al (85) found that the overexpression of
CBX4 significantly promoted the proliferation and invasive
growth of human and mouse LUAD cells by activating the
Wnt/B-catenin pathway. CBX4 may promote tumor growth by
activating the HIF-1a signaling pathway in osteosarcoma (108).
Zheng et al (117) confirmed that CBX6 significantly promoted
the growth of HCC cells both in vitro and in vivo through
S100A9 and the noncanonical NF-kB/MAPK pathway. CBX7
inhibits cell proliferation, migration and invasion by inhib-
iting the YAP/Tafazzin/connective tissue growth factor/JNK
pathway in glioma (226), the Wnt/B-catenin pathway in
BC (227), the ERK/MAPK pathway in lung squamous cell
carcinoma (83), and the phosphatase and tensin homolog/AKT
axis in pancreatic cancer (228). CBX7 positively regulates the
stem cell-like characteristics of GC cells by inhibiting p16
and activating the AKT/NF-kB/miR-21 pathway (229). CBX7,
an oncogene, is involved in the occurrence and development
of GC, partially through the pl6™** regulatory pathway, to
mediate tumorigenesis, cell migration and cancer metas-
tasis (230). CBX8 effectively activates PI3K/AKT signaling
by upregulating insulin receptor substrate 1, which has been
indicated to drive the proliferation of PAAD (100). CBX8
depletion delays the cell cycle progression of UBC cells at the
G2 and M phases mediated through the p53 pathway (105).

Metabolic reprogramming. As indicated in Table X, in BC,
CBX2/CBX7 and metabolic reprogramming are directly
related. Upregulated CBX2 expression leads to enhanced
glycolysis, which in turn promotes the proliferation of BC
cells, while decreased CBX7 expression leads to increased
glycolysis, which in turn promotes the proliferation of BC
cells (15). CBX3 promotes cell proliferation and regulates
glycolysis by inhibiting fructose-bisphosphatase 1 (FBP1) in
pancreatic cancer, and abrogating the CBX3-FBP1 signaling
axis may effectively prevent aerobic glycolysis and inhibit cell
proliferation (231).

7. Cancer therapies targeting CBXs

Studies have indicated that proteins mediate chemotherapy
and radiosensitivity in cancer. The HDAC inhibitor vorinostat

exerts its anti-leukemic effect by enhancing SUMO-triggered
ubiquitin-mediated CBX2 stability (232). CBX3 inhibits
UBE2L3, which enhances the stability of the tumor
suppressor pS3 in CCA cells and makes CCA cells sensitive to
cisplatin (233). RAMSI11-dependent CBX4 recruitment of tran-
scriptionally activated TOP2a increases the resistance of CRC
to topoisomerase inhibitors (234). A chimera composed of the
CBXS5 protein fused to the estrogen receptor-DNA-binding
domain and AR-ligand-binding domain is an effective tran-
scriptional inhibitor and participates in the gene silencing
effect associated with long-term 4-hydroxytamoxifen (OHT)
therapy, inducing drug resistance to OHT (235). Resveratrol
inhibits the proliferation of oral squamous cell carcinoma and
induces apoptosis by inhibiting CBX7/AKT and activating the
pl6 signaling pathway (236). The retention of CBX7 decreases
lung cancer cell proliferation (at least partially through the
downregulation of phosphorylated ERK and phosphorylated
p38) and increases the apoptosis rate after irinotecan and etopo-
side therapy (at least partially through the downregulation of
Bcl-2, phosphorylated AKT and phosphorylated JNK) (237).
CBX7 downregulates ETS proto-oncogene 1 to inactivate the
tumor necrosis factor signaling pathway, which inhibits the
proliferation of ccRCC cells and enhances the sensitivity of
ccRCC cells to tyrosine kinase inhibitors (238) With decreases
in EZH2 and EED, CBX8 depletion leads to the accumulation
of spontaneous DNA damage and increases the sensitivity
of tumor cells to radiation or H,0, exposure (90). CBXS8
antagonizes the effect of the sirtuin 1 inhibitor sirtinol on the
premature senescence of K562 chronic myeloid leukemia cells
through the AKT/Rb/E2F transcription factor 1 pathway (239).

Although small-molecule inhibitors targeting
histone-modifying enzymes have been used in the clinic,
these treatments nonspecifically erase/write epigenetic marks
throughout the entire genome, which may lead to unintended
consequences. CBXs, as epigenetic readers, show broad
prospects for cancer treatment, and certain small molecule
inhibitors targeting CBXs have been found.

The CBX2 chromatin domain-selective probe SW2_152F
has good cell permeability,selectively inhibits CBX2-chromatin
binding in cells and blocks the neuroendocrine differentiation
of PCa cell lines in response to androgen deprivation (240).
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Table IX. CBXs regulating malignant phenotype changes in tumors through signal transduction.

Cancer type Malignant phenotype changes Correlated signaling pathway (Refs.)
BC Proliferation; growth CBX2/mTORC1/DREAM (222)
GC Proliferation; migration; invasion CBX2/YAP/B-catenin (223)
Glioma Proliferation; tumorigenesis; invasion; stemness CBX2/PI3K/AKT (224)
BC Proliferation; growth; invasion CBX2/PI3K/AKT (73)

TSCC Proliferation CBX3/p21 (70)

LUAD Growth; invasion CBX3/ARHGAP24/RAC1 (225)
LUAD Proliferation; invasion CBX4/Wnt/p3-catenin (85)

Osteosarcoma Growth; cell cycle; apoptosis CBX4/HIF-1a (108)
HCC Growth CBX6/S100A9/NF-xB/MAPK (117)
Glioma Migration CBX7/YAP/Tafazzin/CTGF/INK (226)
BC Tumorigenesis CBX7/DKK1/Wnt/f3-catenin (227)
PAAD Proliferation; migration; invasion CBX7/PTEN/AKT (228)
NSCLC Proliferation; apoptosis; migration; invasion CBX7/ERK/MAPK (83)

GC Stemness CBX7/p16/AKT/NF-kB/miR-21 (229)
GC Tumorigenesis; migration; metastases CBX7/pl6™KsA (230)
PAAD Proliferation HIF-10/CBX8/IRS1/PI3K/AKT (100)
UBC Proliferation; cell cycle CBX8/p53 (105)

CBX, chromobox; BC, breast cancer; GC, gastric cancer; TSCC, tongue squamous cell carcinoma; LUAD, lung adenocarcinoma; HCC,
hepatocellular carcinoma; PAAD, pancreatic adenocarcinoma; NSCLC, non-small cell lung cancer; UBC, urinary bladder cancer; mTORC1,
mechanistic target of rapamycin complex 1; DREAM, dimerisation partner, retinoblastoma link, E2F and MuvB; YAP, Yes-associated protein;
PI3K, phosphatidylinositol-3-kinase; AKT, protein kinase B; ARHGAP24, Rho GTPase activating protein 24; RACI1, Rac family small
GTPase 1; HIF-1a, hypoxia-inducible factor-1a; NF-xB, noncanonical nuclear factor-kappaB; MAPK, mitogen-activated protein kinase;
CTGF, connective tissue growth factor; JNK, c-Jun N-terminal kinase; DKK1, Dickkopf-related protein 1; PTEN, phosphatase and tensin
homolog; ERK, extracellular signal-regulated kinase; IRS1, insulin receptor substrate 1.

Table X. CBXs regulating malignant phenotype changes in tumors through metabolic reprogramming.

Cancer type Malignant phenotype changes Regulation mechanism (Refs.)
BC Proliferation CBX2/glycolysis (15)
BC Proliferation CBX7/glycolysis (15)
PAAD Proliferation CBX3/glycolysis (231)

CBX, chromobox; BC, breast cancer; PAAD, pancreatic adenocarcinoma.

UNC3866 is arecently reported polypeptide inhibitor of methyl
lysine reading function in CBXs, i.e. CBX2/4/6/7/8. UNC3866
inhibits the proliferation of PCa cells (241). Compared with
its affinity for CBX2, UNC3866 has a higher affinity for
CBX7 (242). When UNC3866 is used to inhibit CBX4, the
tumorigenicity and stem cell-like characteristics of stem
cells are markedly reduced (169). Milosevich et al (243,244)
developed several CBX6/8-biactive CBX inhibitors based on
peptide mimics in 2016 and 2021, respectively. These inhibi-
tors were effective against both CBX6 and CBX8 and affected
the proliferation of rhabdomyoma tumor cell lines. CBX7i
was the first generation of chromatin domain small-molecule
inhibitors (245). CBX7i increases DNA damage and apoptosis
induced by adriamycin and increases the toxicity of doxoru-
bicin in BC (246). Simhadri et al (247) optimized the scaffolds
of trimethyl lysine, a series of effective peptide antagonists, to

target CBX7. Ren et al (248) also found two different kinds
of small-molecule CBX7 CHD antagonists. Class A MS452
derivatives inhibit the binding of CBX7 CHD/methyl lysine
by blocking H3K27me3 binding, while the class B compound
MS351 uniquely inhibits the binding of the CBX7 CHD to
H3K27me3. Lamb et al (249) reported that the first potent posi-
tive allosteric modulator (PAM) peptidomimetic, UNC4976,
a PRCl-specific chemical probe with high cellular activity, is
an effective inhibitor of CBX7. PAM activation of UNC4976
regulates PRC1, driving it away from the target region of
H3K27me3, by antagonizing the specific recruitment of CBX7
to the target gene via H3K27me3 and increasing nonspecific
binding to DNA and RNA. Ren et al (245) found a small mole-
cule, MS37452, that inhibits the binding of the CBX7 CHD to
H3K?27me3 and suppresses the transcription of pl6/CDK inhib-
itor 2A, the target gene of the polycomb inhibitory complex, by
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abrogating the binding of CBX7 to INK4A/ARF loci in PCa
cells. Simhadri ef al (250) created a low-molecular-weight
inhibitor of CBX7 (33F) via the rational modification of the
structure of methyl-reading protein lethal 3 malignant brain
tumor-like protein inhibitor 1. Denton et al (251) identified an
effective and selective inhibitory peptide, PSL, against CBX7
and CBX8 and confirmed that the acylation of this inhibitory
peptide by 5-methylisoxazole-3-carboxylic acid (PSL-81)
increased the potency and selectivity of CBX8. Treatment with
UNC7040 effectively and selectively removes PRC1-carrying
CBX8 from chromatin, abrogates gene silencing and reduces
the proliferation of different cancer cell lines (252).

8. Conclusion and prospects

In the present review, the characteristics and functions of
CBX proteins were introduced and the expression of CBX1-8
in cancers and the relationship between the expression of
CBXs and clinical characteristics (mainly cancer grade,
stage, metastasis and relapse) and prognosis were compre-
hensively discussed. How CBXs regulate cell proliferation
and self-renewal, apoptosis and the acquisition of malignant
phenotypes such as invasion, migration and chemoresistance
through mechanisms involving epigenetic modification, nuclear
translocation, noncoding RNA interactions, transcriptional
regulation, posttranslational modifications, protein-protein
interactions, signal transduction and metabolic reprogramming,
were also discussed in-depth.

In summary, CBXs have key roles in the occurrence and
development of cancers. Several issues related to the roles
of CBXs in cancer remain to be addressed. For instance,
different CBXs have different roles in promoting/suppressing
cancer. However, it remains elusive which CBX protein is the
key driver of all cancers. As noncoding RNAs and signaling
pathways regulate the expression of CBXs, targeting these
noncoding RNAs and pathways is an alternative approach to
control CBX expression. CBXs regulate tumor development
through a variety of signaling pathways. It remains elusive
whether activators or inhibitors of these pathways work in
synergy with CBX inhibitors. Due to the key role of CBXs
in carcinogenesis, targeting CBXs may be a cancer treatment
method. Numerous compounds have been proven to target
several CBXs. The identification of specific inhibitors of
CBXs for the individualized treatment of cancer would be an
optimal outcome. In addition, the safety and efficacy of these
CBX inhibitors in clinical cancer treatment remain to be deter-
mined. Therefore, further study of the roles played by CBXs
in the occurrence and development of cancers will help us to
design new cancer treatment strategies that work by targeting
CBXGs.
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