
Abstract. Acute myeloid leukemia (AML) is a heterogeneous
disease with respect to biology and clinical course. Until now
the basis for prognostic evaluation and therapeutic decision
has been the karyotype, genetic FLT3 abnormalities and the
initial chemotherapy response. A question that has emerged
is if extensive gene expression analysis may supplement or
partly replace current diagnostics. In an attempt to address
this question, we performed cDNA microarray analysis on
peripheral blood samples of 25 patients with newly diagnosed
AML with high blast counts. The patients were randomly
selected from a large group of consecutive patients. Leave-
one-out crossvalidation (LOOCV) showed with high accuracy
that gene expression classifiers could predict if leukaemia
samples belonged to the FAB AML-M1 or to the FAB AML-
M2 groups. An unsupervised two-dimensional hierarchical
cluster analysis generated 3 patient subgroups. Except for an
accumulation of samples classified as FAB M1 and M2 in
cluster 3, there was no evident relationship between the clusters
and the FAB classification. Each subgroup displayed clearly
distinguished gene expression patterns validated using real-
time quantitative PCR analysis. The identification of specific
gene expressions that together constitute regulatory modules
must complement cluster analyses in order to achieve an
accurate basis for prognosis and prediction.

Introduction

Acute myeloid leukaemia (AML) is an aggressive malignant
disorder characterized by accumulation of immature myeloid
progenitors in the bone marrow (1). AML can be divided into a
heterogeneous majority and the less frequent acute promyelo-
cytic leukaemia (APL) variant characterized by promyelocyte
accumulation, chromosomal translocations involving 17q21,
susceptibility to differentiation induction and good prognosis
(2). The major prognostic parameters for non-APL variants
are response to the initial chemotherapy cycle and the genetic
abnormalities of the malignant cells (3,4). However, several
prognostically important genetic abnormalities are associated
with specific signs of differentiation in the malignant cells
[e.g. inv(16); t(8;21)], suggesting that molecular mechanisms
involved in regulation of differentiation may also contribute
to the prognostic impact of these abnormalities (5). Recent
DNA microarray studies suggest that AML classification can
be further improved in terms of distinguishing AML from
acute lymphoblastic leukaemia (ALL) (6-8), defining acute
leukemias with MLL-abnormalities as a possible new entity
separate from AML and ALL (9) and identifying new sub-
groups of AML with specific patterns of gene expression
(10,11). Specific gene expression patterns are associated with
prognostically important genetic abnormalities [i.e. t(8;21),
inv16, t(8;21), t(15;17), 11q23-aberrations] (12-14). Prognostic
molecular markers have also been found in AML blasts with
normal cytogenetics (15,16).

Several new therapeutic approaches are now considered
in AML, including differentiation induction through inhibitors
of intracellular signaling and drugs targeting gene transcription
(17). In a recent article, we emphasised the importance of
collecting biological material as a part of future population-
based clinical studies of AML, and at least two approaches
are possible for integration of DNA microarray analysis in
future clinical studies (18). Firstly, microarrays may be used to
monitor effects of treatment, e.g. the effects of differentiation-
induced therapy or therapeutic approaches targeting gene
transcripts. This may imply patterns associated with the
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various morphologically defined subsets within both the
French-American-British (FAB) and the more recent World
Health Organization classification (5,19). Secondly, the
experience from highdose cytarabine therapy has demon-
strated how the genetic characteristics of malignant cells can
be used for prognostic classification of AML patients (20).
DNA microarray analysis may then represent an additional
approach for identification of new subsets with different
responses to therapy. In the present study, we have therefore
investigated native AML blasts derived from 25 patients by
DNA microarray analysis. Patients were randomly selected
from a larger consecutive group (21), and sample collection
as well as RNA preparation were highly standardized (18).
Despite considerable patient heterogeneity, the DNA micro-
array analysis allowed us to: i) identify differentiation-
associated gene expression patterns; and ii) classify the patients
into three major subgroups with abnormalities in the expression
of genes involved in intercellular signalling, intracellular

signaling, regulation of transcription, and tyrosine kinase-
associated signaling using unsupervised hierarchical cluster
analysis.

Materials and methods

Patient materials. The study was approved by the local Ethics
Committee and samples collected after informed consent.
During the time period of 1991-2001 we collected peripheral
blood AML blasts from 64 consecutive patients with high
blood blast counts (21). Cytogenetic analysis was performed
for the last 48 of these 64 patients; 28 patients had a normal
karyotype, 3 patients had a favourable [all inv(16)] and 5 had
an unfavourable karyotype according to the definitions used
(3,4). A total of 98 patients with AML were admitted to our
institution during the same time period. A similar karyotype
distribution was also observed for the whole patient group
(the last 73 of the 98 patients examined, 6 patients having a
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Table I. Clinical and biological characteristics of acute myeloid leukemia patients.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Pts. Sex Age Previous FAB Non-supervised Membrane molecule expressiona Cytogenetic FLT3 WBC

malignant disease classification AML clusterd CD13 CD14 CD15 CD33 CD34 abnormality abnormalityb countsc

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
0043 F 64 AML-M1 C1 + - nt - - Normal - 84

0041 F 48 AML-M1 C3 + - - + + del(7)(q22) ITD 30

0050 M 64 MDS AML-M1 C3 + - + + + 37-46XY D835 12

0047 M 30 AML-M1 C1 - - nt + - Normal - 78

0048 F 54 Breast cancer AML-M1 C3 + - nt + + nt ITD 35

0033 F 63 AML-M1 C3 + - + - + nt - 76

0031 M 83 AML-M2 Outgroup + - nt + + nt - 49

0032 F 45 AML-M2 C2 + - - + - Normal ITD, D835 123

0034 F 52 AML-M2 C3 + - nt + + Normal - 58

0036 F 51 AML-M2 C1 + - + + - Normal ITD, wt- 154

0040 M 77 Hodgkin's disease AML-M2 Outgroup + - - + + del(7),-20 ITD 62

0049 F 58 AML-M2 C3 + - + + - Normal ITD, wt- 41

0008 F 64 AML-M4 C2 - - + + + Normal - 123

0024 M 29 AML-M4 Outgroup + - + + + Normal ITD, D835 19

0038 F 38 AML-M4 C1 - + + + - Normal - 228

0037 F 45 Ovary carcinoma AML-M4 C2 + - + + - Normal - 70

0051 M 81 MDS AML-M4 Outgroup - + nt - - nt - 61

0023 F 78 AML-M4-5 C1 + + - + - -4-5,+der(8)T(8;?) - 93

0025 M 64 AML-M4-5 C2 + - - + + Normal ITD, wt- 135

0007 M 82 AML-M5 C1 + + + + - 45X - 198

0027 F 75 AML-M5 C1 + - + + + Normal ITD 104

0035 F 34 AML-M5 C1 - - + + - t(9;11)(p22;q23) D835 286

0045 F 58 AML-M5 C1 - + + + - t(2;3)(q37;q21), - 58

t(2;4;10)(q13;

q21)q21),

der(11q),19q+

0044 M 33 AML-M5 C1 + - + + - Normal ITD 131

0046 F 71 AML-M5 C2 + + + + - Normal D835 64
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
F, female; M, male; AML, acute myeloid leukemia; MDS, myelodysplastic syndrome. The patient age is given in years. aPatients were regarded as positive when >20% of the blast
cells stained positive judged by flow cytometric analysis. bFLT3 abnormalities were internal tandem duplicatons (ITD), Asp(D) 835 mutations (D835), and loss of wild-type (wt-);
nt, not tested. cWhite blood cell (WBC) counts in peripheral blood are expressed as x109/l (normal range 3.5-10.5x109/l). The WBC included at least 80% leukemia blasts.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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favorable karyotype). We investigated AML blasts derived
from 25 patients (Table I; median age 58 years with variation
range 29-83 years) that were randomly selected from the 64
consecutive patients with high peripheral blood blast counts
(21). According to the FAB classification patients were
classified as AML-M0/M1 (undifferentiated, 6 patients), AML-
M2 (neutrophil differentiation, 6 patients) and AML-M4/M5
(monocyte differentiation, 13 patients). One ALL sample was
included as a test sample.

Preparation of AML blast. Peripheral blood samples were
collected on glass tubes (sample tubes with acidum cotrose-
dextrose solution A; Becton-Dickinson) and leukemic peri-
pheral blood mononuclear cells (PBMC) were isolated by
density gradient separation (Ficoll-Hypaque specific density
1.077; NycoMed, Oslo, Norway;) immediately after sampling.
We selected patients with a high percentage of AML blasts
among the blood leukocytes (Table I), and highly enriched
AML cell populations could therefore be prepared by
density gradient separation alone (>95% blast cells judged
by light microscopy). Cells were frozen without delay and
stored frozen in liquid nitrogen (22). Cells were thawed and
RNA prepared according to strictly standardized procedures
(18).

Microarray analysis. Total RNA was extracted according to
standard protocols (23). Synthesis of T7 RNA polymerase
promoter-containing double-stranded cDNA and the gener-
ation of T7 RNA polymerase amplified RNA (cRNA) were
performed as previously described (18) and according to the
manufacturer's instructions (Ambion). Aminoallyl-dUTP
incorporation followed by cross-coupling of Amersham
Cy5- and Cy3-NHS esters was used for fluorochrome
labeling of nucleic acids (18). AML sample cRNAs and the
referance cRNAs made out of a pool of 18 different cell lines
(Supplementary Table I) were labelled with Cy5 and Cy3,
respectively.

The Human 1 cDNA Microarray system from Agilent
containing 12.814 cDNA clones selected from the Incyte
collection was used for the detection of gene expression in
the AML samples. Hybridization and washing of the arrays
were performed as recommended by Agilent (cDNA Micro-
array Kit Protocol). An Axon scanner recorded signal intensities
at 532- and 633-nm laser lines, and the GenePix Pro software
was used for feature extraction and creation of the GenePix
intensity report file.

Normalization and analysis of DNA microarray data. After
subtraction of background intensities for each spot, missing
signals were floored using the value of 20. This procedure
may include potentially interesting genes, i.e. genes that are
detectably expressed only for a subset of patients, and we
therefore performed data preparation using this method. The
flooring of missing signals allowed us to produce log ratios
for all spots, including those spots where the signal was only
present in one channel. The resulting intensities were again
subjected to the intra-array normalization procedure lowess
and a gene expression data matrix was produced (24). The
lowess method (25) was used to correct for dye-specific effects
and log-ratios calculated producing a data matrix with one

row per spot (gene) and one column per sample (array). We
calculated each gene's two-sample t-score in one FAB class
versus the other FAB classes, thereby identifying genes most
consistently high or low in one FAB class relative to the other
samples. P-values corresponding to the t-scores were found
using the t-distribution with n-2 degrees of freedom, where n
is the number of samples included in the calculation.

Crossvalidation, validation using permutation test and two-
way cluster analysis. We used a leave-one-out crossvalidation
(LOOCV) with the diagonal linear discriminant (DLD) (26)
approach to test whether it is possible to predict FAB class
M1, M2, M4, and M5 from the gene expression data. In this
analysis, the samples labelled M4-5 were excluded. Each class
was treated separately and we evaluated whether a classifier
could be learnt that discriminates this one class from the others.
In LOOCV, one sample (patient) is held back, a classifier is
learnt using data on the remaining training samples and tested
on the held back sample. This procedure is repeated with
each patient as test sample and the prediction accuracy is the
percentage of (held back) samples that are correctly classified.
In this way, we obtained prediction accuracies for each FAB
class. For each class, a permutation test was performed (1000
permutations of FAB labels followed by LOOCV) to assess
whether an equally good accuracy could be obtained by
chance.

The gene expression differences in AML samples between
FAB classes M1, M2, M4 and M5 were visualized by taking
the genes with the highest t-scores for each class as input to a
two-way hierarchical cluster analysis using the J-Express Pro
software (www.molmine.com) (27). We also included the
two samples belonging to the AML FAB class M4-5 in the
two-way cluster analysis to visualize their distribution
compared to the other FAB classes.

Unsupervised cluster analysis. In order to explore possible new
subtypes by analysis of the expression data, we performed an
unsupervised hierarchical clustering of the 25 AML samples.
For this, we selected genes with the highest variance among
the AML blasts. Before clustering using J-Express Pro, the
expression profile of each gene was centered by subtracting
the mean over all samples for that gene. The genes and tissue
were then hierarchically clustered using average linkage
(WPGMA) (28) and Pearson correlation (29) as similarity
metrics.

Testing of association between clusters and FAB classes. We
performed a contingency table Chi-squared test (29) for
association between clusters and FAB classes. Due to the
relatively small number of samples, the samples were divided
into two classes: one class containing samples with FAB
class M1 and M2, and one class containing samples with
FAB class M4 and M5. For each cluster, we performed a 2x2
contingency table test concerning significant high or low
FAB representation in each cluster.

qPCR in the low density array (LDA) format. TaqMan low
density arrays (LDA) are customisable, 384-well microfluidic
cards for real-time PCR (Applied Biosystems). Each LDA
card was configured for 95 different genes in duplicates
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including Celera gene IDs. Hexamer-primed single-stranded
cDNA corresponding to 10 ng of total RNA was diluted in
TaqMan Universal buffer (Applied Biosystems) and added to
each loading well. Using the above configuration each sample
occupied 4-wells or one half of each card. The samples were
distributed to the microwells by centrifugation for 1 min at
343 x g. The cards were sealed and placed in the ABI 7900HT
Sequence Detection System using the following cycling
parameters: 2 min at 50˚C, 10 min at 95˚C, and 40 alternate
cycles of 15 sec at 95˚C and 60 sec at 60˚C. SDS2.2 software
was applied for relative quantitation (RQ/2-ΔΔCt) analysis
using GAPDH as normalizer and one sample as calibrator.
The data were exported to Excel for further exploration and
visualization.

Pathway assist analysis of molecular interactions and cellular
processes. Pathway Assist is a software supplied with a
molecular interaction and pathway database (ResNet), which
contains 500000 links to >50000 proteins extracted from
5000000 Medline full-length articles. Selected genes from
each cluster (C1- C3) were used as input genes in an analysis
using Pathway Assist software v3.2 (www.ariadnegenomics.
com) to explore and visualise biological pathways, molecular
interaction and cellular processes characteristic for each
cluster. The pathways were built by using three commands: i)
direct interaction between input genes; ii) common targets
for input genes; and iii) common regulators for input genes.

Results

Differential gene expression for each FAB subclass versus the
other AML samples. The gene expression profile was examined
in native human AML blasts derived from 25 patients using the
Human 1 cDNA Microarray from Agilent. In order to analyse
the expression data for all genes, we first performed a flooring
of background intensity values and calculated log2-ratio values
based on all spots (30). We had previously found both variation
and considerable overlap between gene lists based upon either
floored or filtered datasets (30). A disadvantage with filtered
data is the possible removal of genes that are expressed in
only a minor subset of the tumors (30,31). In total, 6502 out
of 12814 genes were over- or under-expressed compared to
the reference probe, using a one sample t-test (29) and setting
the p-value threshold to 0.05.

All arrays were selected for building a class prediction
model: M1 AML (n=6), M2 AML (n=6), M4 AML (n=5),
M5 AML (n=6). We calculated each gene's two-sample t-
score in one FAB class versus the other FAB classes, thereby
identifying the genes with the most consistent high or low
expression in each FAB group compared with the remaining
samples. For the 100 top scoring genes the t-scores were as
follows for the different FAB classes: M1 from 10.18 to 4.02
(p-values of 1.4143E-9 to 6.1389E-4), M2 from 5.31 to 3.16
(p-values of 2.8911E-5 to 4.7359E-3), M4 from 6.02 to 3.02
(p-values of 5.6065E-6 to 6.3893E-3), M5 from 4.67 to 3.11
(p-values of 1.3043E-4 to 5.3606E-3). Considering that 12814
genes were tested, we expected some genes to be high scoring
by chance. We expected 7.7 genes to score higher than 4.0,
given the number of tests performed. Thus, we suspect only 8
of the 100 genes in our list for M1 to be false positives. We

also expected 55 genes to score higher than 3.2, and 69.2
genes to score higher than 3.1 by chance. As a consequence
of this, we expected the false discovery rate to be rather high
for the gene lists for M2, M4 and M5. Still, we observe more
genes than expected with high scores for these three classes.

Class prediction by use of leave-one-out crossvalidation
(LOOCV). In order to evaluate the ability of subsets of
expressed genes to predict FAB subclass specificity, LOOCV
was employed. The prediction accuracy did not increase when
>10 genes were included (we tried 10, 20, 30, ...100). The
prediction success rates were 88% for M1, 84% for M2 and
80% for M4 and 60% for M5 versus all other samples when
10 genes were included in the classifier. Prediction accuracy
did not increase when >10 genes were included. It should be
emphasized that, for each of the n test samples, new gene
subsets were extracted based only upon the (n-1) training
samples in each round of the LOOCV. In this way, it was
avoided that information based upon the test sample was
included in the classifiers. Classification of M1 versus non-M1,
M2 versus non-M2, etc. gives an impression of the degree
of separability of each FAB class from the other classes.
This is a preliminary step to multiclass prediction, e.g. direct
classification into categories M1, M2, M4 and M5.

Validation using random permutations of AML sample labels.
To further test the significance of the prediction accuracies
achieved using LOOCV, a permutation test was performed.
The FAB labels were permuted randomly followed by LOOCV
as described above. Again the design was such that information
did not leak from the test samples into the classifiers, which
were derived from only the training set of samples. This
permutation process was repeated 1000 times for each FAB
subclass in order to obtain sufficient data for estimating the
distribution of prediction success on random labels. The
prediction success rates achieved with randomly permuted
labels were then compared with that of the original correct
labelling. For M1, 981 of 1000 rounds had lower prediction
accuracy than the correct labelling. Using the corresponding
tests for M2, M4 and M5, 960, 922 and 812 of 1000 rounds of
permuted labels, respectively, gave a lower prediction accuracy
than with correctly labelled samples. The permutation results
gave approximate p-values of the prediction success rates
obtained for the four FAB classes: 0.019 for M1, 0.040 for M2,
0.078 for M4 and 0.188 for M5. Thus, all class prediction
success rates are higher than expected on average, although
only significantly higher for M1 and M2.

Study of the 100 most differentially expressed genes for each
FAB class. To investigate the correlations between FAB class
labels and the expression profiles of the genes, we applied
two-way hierarchical cluster analysis. The 100 genes were
identified using a supervised analysis step where we calculated
the t-score of each gene, quantifying how well it separates
AML samples according to the FAB classes, and selected the
top 100 from the resulting list for each FAB class. The resulting
dendrogram visualises the relationships between the expression
profiles of these genes and how they enable separation between
the FAB classes (Supplementary Fig. 1). The 100 top t-scores
ranked from 10.2 to 3.1 (p-values 1.4143E-9 to 6.3893E-3,
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respectively). In FAB M1, only 27% of the 100 genes with
the highest t-score showed overexpressed mRNAs relative to
the other FAB classes. For comparison, 92% were upregulated
in M2, 77% in M4 and 43% in FAB M5. More detailed
information on the most consistently differentially expressed
genes between FAB classes ranked by p-value is shown in
Supplementary Table II. GenBank accession numbers,
descriptions of genes and fold changes (D) are given.

Unsupervised hierarchical cluster analysis of AML samples.
Based upon the 500 genes with highest variance in the floored
dataset, an unsupervised hierarchical clustering of the 25
samples generated three main clusters of AML samples and
an outgroup close to clusters 2 and 3 (Supplementary Fig. 2,
black). The robustness of the clusters was tested by the
inclusion of various numbers of genes in the cluster analysis.
The main clusters persisted although the outgroup samples
redistributed in different ways when 800, 500, 250, 100 or 50
genes were used. LOOCV gave the samples of cluster 1 versus
the other samples (Supplementary Fig. 2, blue) a prediction
accuracy of 96%; samples of cluster 2 versus the other samples
(purple, middle of Supplementary Fig. 2), a 92% accuracy;
and samples of cluster 3 versus the other samples (red, right
of Supplementary Fig. 2), a 92% accuracy. A permutation test
revealed the same success or better for randomly permuted
labels for 0/1000 permutations for cluster 1 and 4/1000
permutations for clusters 2 and 3. The analysis was based
upon the 50 genes with the highest t-score in the model.

Testing for association between clusters and FAB classes. A
2x2 contingency table Chi-square test did not demonstrate
significant associations between FAB class and cluster 1 or
cluster 2 [Chi-square values of 2.16 (p=0.23) and 1.96 (p=0.32),

respectively]. The Chi-square test revealed, however, a
significant association between FAB M1 and M2 samples
and patient cluster 3 (p=0.0052).

Independent validation of gene expression data using real-
time quantitative PCR and flow cytometry. Using the real-
time quantitative PCR LDA format, 95 different genes were
independently validated. In total, 17 of the genes in clusters
C1-C3 were included in this analysis. The correspondence
between gene expression according to the cDNA microarray
(Agilent) and the quantitative PCR data (LDA) is displayed
in Fig. 1. Validation of CD34 expression using flow cytometry
analyses of the same samples was published previously (31).

Single genes that differed between the AML sample clusters
of the unsupervised cluster analysis. In total, 76 genes exhibited
a fold change between 50 and 3 for samples of one cluster
compared to all other samples. In Supplementary Table III,
the genes are ranked according to fold change accompanied
by overall very strong p-values. Table II contains functional
sorting in addition to fold change ranking. Cluster 1 samples
shared a 25- to 4-fold higher expression of many immuno-
regulatory cytokine receptors compared to the remaining
samples (Table II). Monocyte/macrophage markers, MAC-1·

(CD11b) and CYBB/gp91PHOX typically expressed in
myeloid cells differentiated beyond the promyelocyte stage,
were consistently upregulated in cluster 1. c-KIT mRNA was
relatively strongly repressed in cluster 1 samples, while colony
stimulating factor 1 receptor (CSF1R) that may substitute for
KIT was overexpressed. TNFRSF1B forms a heterocomplex
with TNF-receptor 1 and mediates the recruitment of two anti-
apoptotic proteins, c-IAP1 and c-IAP2. TNFRSF1B, BIRC1/
NAIP as well as MDR that mediate anti-apoptotic signals were
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Figure 1. Correspondence between cDNA microarray and LDA gene expression. Total RNA was extracted from AML blasts and the relative mRNA
expression levels were determined by qPCR TaqMan low density arrays (●, LDA) and Agilent cDNA microarrays (◊, Array). LDA analysis used GAPDH as
normalizer and one sample as calibrator. GAPDH was used for normalisation of cDNA microarray values. The correlation coefficients between Array and
LDA values were calculated and visualized for each of the following genes: BIRC1, CD163, IL10R1, GATA-2, KIT (cluster 1, 8 patients); CDKNA1, AML1,
GATA-2 (cluster 2, 5 patients); and KIT, ITG6A, GUCY1B3 (cluster 3, 6 patients).
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Table II. Genes with altered expression in AML clusters 1-3.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Altered expression of genes with important common characteristics Additional genes with altered expression
–––––––––––––––––––––––––––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––––––––––––––––
GenBank Symbol Gene name D GenBank Symbol Gene name D
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
AML cluster 1

Receptors and membrane molucules involved in cell signalling Regulation of transcription and cell cycle

↑ NM_006847 LILRB4 Leukocyte immunoglobulin-like receptor sfB4 25

↑ U95626 CCRL2 Chemokine (C-C motif) receptor-like 2 20 ↑ AA573434 KLF4 Kruppel-like factor 4 (gut)tf 8

↑ D10925 CCR1 Chemokine (C-C motif) receptor 1 17 ↑ AA844153 AHR Aryl hydrocarbon receptor 5

↑ U20350 CX3CR1 Chemokine (C-X3-C motif) receptor 1 16 ↑ NM_004536 GAS7 Growth arrest-specific 7 4

↑ AF245703 TLR8 Toll-like receptor 8 15 ↑ NM_004536 NAIP Baculoviral IAP repeat-containing 1 4

↑ AA402981 KCTD12 Voltage-sensitive potassium channel complex 13 ↑ M81934 CDC25B Cell division cycle 25B 3

↑ NM_004244 CD163 CD163 antigen, Scavenger receptor 12 ↑ U66306 RXRA Retinoid X receptor, · 3

↑ U00672 IL10RA Interleukin 10 receptor, · 11 ↓ NM_006022 TSC22 TGF ß-stimulated protein 6

↑ X04011 CYBB Cytochrome b-245, ß, gp91PHOX 10

↑ Z82244 HO-1 Heme oxygenase (decycling) 1 9

↑ M_003264 TLR2 Toll-like receptor 2 8

↑ M18044 ITGAM MAC-1·, CD11b (p170) 8

↑ U37518 TNFSF10 Tumor necrosis factor (ligand) superfamily 10 8

↑ AL034562 PTPNS1 Protein tyrosine phosphatase, non-receptor S1 6

↑ M32315 TNFRSF1B TNFR superfamily, member 1B 4

↑ X03663 CSF1R Colony stimulating factor 1 receptor (v-fms) 4

↑ Y00081 IL-6 Interleukin 6 3

↓ NM_000222 KIT Stem cell factor receptor (SCFR) 14

AML cluster 2 

Regulation of transcription and cell cycle Membrane molecules, soluble mediators

↑ M68891 GATA-2 GATA binding protein 2 transcription factor 14 ↑ J03745 MMP2 Matrix metalloproteinase 2 20

AL031846 CBX7 Chromobox protein homolog 7 13 ↓ V00522 HLA-DR ß3 MHC, class II, DR ß3 15

↑ U66838 CCNA1 Cyclin A1 11 ↓ X13334 CD14 CD14 antigen 11

↑ U79260 MGC5149 Similar to FTO protein and MLL5 8 ↓ NM_003474 ADAM12 A disintegrin and metalloproteinase 12 6

↑ U51869 CPBP Core promoter element binding protein 5

↑ AW380330 PBXIP1 Hematopoietic PBX-interacting protein 4 Others

↑ AI825989 ZFP36L2 EGF-response factor 2 4 ↑ M73720 CPA3 Carboxypeptidase A3 (mast cell) 81

↑ D43968 RUNX1 Acute myeloid leukemia 1 transcription factor 3

↓ M32011 NCF2 Neutrophil cytosolic factor 2 (gp67PHOX) 10

↓ NM_004166 CCL15 Chemokine (C-C motif) ligand 15 5

↓ AA203476 PTTG1 Pituitary tumor-transforming 1 4

↓ D14134 RAD51 DNA repair protein RAD51 homolog 1 3

↓ Z93016 PRG5 p53-responsive gene 5 3

AML cluster 3

Soluble mediators, cell membrane receptors Regulation of transcription, development andcell cycle

↑ AL035091 CD34 CD34 antigen 15 ↑ AB037762 MEF-2 Myelin gene expression factor 2 5

↑ X06182 KIT Stem cell factor receptor (SCFR) 4 ↓ AB007854 GAS7 Growth arrest-specific 7 3

↑ M62424 F2R Coagulation factor II (thrombin) receptor 4 ↓ U49278 UBE2V1 Ubiquitin-conjugating enzyme E2 v 1 3

↑ AF186111 EGFL7 EGF-like-domain, multiple 7/NEU1 4 

↑ NM_002845 PTPRM Protein tyrosine phosphatase, receptor type, M 4

↑ AB032994 CYFIP2 p53 inducible protein 4

↑ X66533 GUCY1B3 Guanylate cyclase 1, soluble, ß 3 4

↑ M34667 PLCG1 Phospholipase C, Á 1 3

↑ X53586 ITGA6 Integrin, · 6/CD49f 2

↓ NM_080792 PTPNS1 Protein tyrosine phosphatase, non-receptor S1 5

↓ NM_004119 FLT3 fms-related tyrosine kinase 3 5

↓ M62880 ITGB7 Integrin, ß 7 5

↓ AI828515 TNFSF13 Tumor necrosis factor (ligand) SF13 5
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
D is relative gene expression.
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7- to 4-fold overexpressed in this cluster. For the possible
functional relationship of upregulated CD163, IL10RA, HO-1
and MDR1, see Supplementary Fig. 3 and Discussion.

Cluster 2 was characterized by upregulation (D=2.5-14)
of several hematopoietic transcription factors. GATA-2
(D=14) is ubiquitously expressed in hematopoietic cells, with
particularly high expression in early hematopoietic progenitors
as well as mast cell lineages, and declines with blood cell
maturation (32). Other myeloid-specific factors that may
enforce leukemisation are RUNX1, PBXIP. A striking feature
of cluster 2 was an average 50-fold overexpression of carboxy-
peptidase A3, an enzyme associated with mast cell granules.
The body's sole histamine-producing enzyme, histidine
decarboxylase, was also highly upregulated in these samples
(D=35.0). EGF-2 response factor, also known as butyrate
response factor 2, is among the most consistently upregulated
genes in cluster 2 (D=3.9).

Cluster 3 samples exhibited an average of 15-fold up-
regulation of CD34 mRNA, and 2.5- to 4-fold overexpression
of integrin · 6 (ITGA6), coagulation factor II (thrombin)
receptor (F2R), and c-KIT, all membrane molecules associated
with myeloid progenitor cells. As shown in the Pathway
Assist-derived Supplementary Fig. 4, c-KIT and thrombin
receptor F2R and CD34 may all activate the PI3K pathway
and AKT1. The receptor tyrosine kinase c-KIT was relatively
overexpressed and FLT3 was underexpressed, while tyrosine
phosphatases PTPNS1 (D=5) and PTPRM (D=4) were over-
and underexpressed, respectively, in cluster 3 (Table II).

Discussion

The most important prognostic parameters in AML are
currently the karyotype, genetic FLT3 abnormalities and
response to the initial chemotherapy course (3,4). These
parameters probably mirror important parts of the complex
epigenetic and genetic alterations in AML, and demonstrate
that the peripheral AML cells comprise information that
determines highly effective anti-leukemic treatment in a subset
of the cases (20). Based on the fact that most AML patients
are >60 years of age, and that the overall long-term survival
in AML is <50%, there is a striking need for new therapeutics
with more acceptable systemic toxicity (33). Our present
study suggests that additional use of DNA microarrays can
identify differentiation-associated gene expression patterns
and define new patient subsets. The results thereby indicate
that this approach may become useful for understanding the
pathogenesis involved, for additional prognostic classification
of patients and monitoring of differentiation induction therapy.
We only included patients with high blast counts in the
peripheral blood, and highly enriched AML blast populations
could be prepared by density gradient separation of blood
samples. This simple technique has a minimal risk of inducing
functional alterations in the blasts [for a detailed discussion and
additional references, see Bruserud et al (34)]. Furthermore,
cells were collected, separated, frozen and thawed according
to strictly standardized procedures (22).

Our patients were randomly selected from a larger group
of consecutive patients with high peripheral blood blast counts
(21). Our previous study demonstrated that a normal karyo-
type was detected for nearly 60% of our patients, whereas

favourable and unfavourable karyotypes were detected only
for small patient subsets (6% and 11%, respectively) (21).
This distribution is similar to other studies (3,4,35) except for
the low frequency of favourable karyotypes that is probably
due to the relatively large number of elderly patients in our
study (median age 59 years) (21,36). Furthermore, the higher
frequencies of FLT3/ITD [40% versus 27%, Bruserud et al
(21)] and D-835 mutations [20% versus 7%, Glenjen et al
(37)] among our patients may reflect our selection of patients
with a high degree of leukemization.

The present study found gene expression classifiers with
a significant, although not very high, ability to predict FAB
subclasses of AML. Both LOOCV and permutations were
used to validate the prediction accuracies. Only M1 and M2
samples had expression signatures that were strong enough
for use in a classification model. One biological reason may
be that samples of FAB classes M1 and M2 are more homo-
geneous, while FAB classes M4 and M5 contain samples of
more diverse gene expression. It is not unexpected that the
most striking characteristic of undifferentiated AML cells
(FAB-M0/M1) was downregulation of several genes involved
in cell differentiation and organ development. On the other
hand, granulocytic differentiation (FAB-M2) was associated
with a heterogeneous gene expression pattern with regard to
molecular function. In contrast, AML cells with monocytic
differentiation (FAB-M4/M5) showed altered expression of
genes mainly involved in intracellular signal transduction
and regulation of DNA-repair, cell cycle events or DNA
transcription (Supplementary Table II). This last observation
is consistent with reports regarding essential regulation of gene
expression during monocyte differentiation (38,39). Previous
studies have reported that unsupervised cluster analysis sorted
AML samples according to cytogenetic abnormalities rather
than FAB phenotypes (12) and that gene expression correlates
with the common AML translocations [t(8;21), t(15;17),
inv(16)], and translocations involving 11q23 have also been
described (12,40-42). However, these abnormalities are un-
common, especially among the elderly majority of the
consecutive population-based patient group. Even though we
investigated highly heterogeneous patients randomly selected
from a consecutive group with another distribution of cyto-
genetic abnormalities due to high age, our results are in agree-
ment with these previous studies of relatively young selected
patients: gene expression classifiers did not predict FAB sub-
classes with a very high accuracy but, according to t-scores, we
were able to distinguish patients of a particular FAB subclass
from the others.

Unsupervised hierarchical cluster analysis has a potential
to reveal gene clusters shared by subsets of patient samples.
This analysis is independent of previous sample classification
such as FAB classification. Instead, the samples may segregate
into new clusters or groups that share significant gene
expression patterns. When the 500 genes with highest variance
across the samples were selected for the unsupervised hier-
archical cluster analysis, as visualized in Supplementary Fig. 2,
three main clusters of 25 AML samples resulted. In addition,
four patient samples segregated as an outgroup. LOOCV and
permutation tests showed that classifiers were able to predict
the three main clusters of heterogeneous AML samples with
a very high accuracy. Except for a significant accumulation
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of FAB M1 and M2 samples in cluster 3, there was no evidence
that the non-supervised clustering was affected by FAB sub-
classes. The segregation of many M1 and M2 samples into
cluster 3 therefore supports the above proposal that the M1 and
M2 samples of this study may share more gene expression
patterns than M4 and M5 samples. It has been pointed out
that the differentiation stage of the lineage, as reflected in the
FAB classification, may direct unsupervised clustering to an
extent that could obscure gene expression of more critical
significance for prognosis and prediction (16). This idea is
partly supported by the results described above. Supervised
and unsupervised cluster analysis may therefore have to be
supplemented by directed search and identification of
expression of a number of genes that together constitute a
critical regulatory module. In the future, the identification of
precisely characterized modules of genes may provide the best
targets for tailored treatment. We present several putatative
gene expression modules.

The expression of a number of genes in clusters 1, 2 and 3
(Table II and Supplementary Table III) appears relevant for
the pathogenesis of AML. When several consistently regulated
genes fit together into one regulatory module, the probability
of functional relevance is high compared to observations on
single genes. This is exemplified in cluster 1 by the relative
overexpression of CD163 (D=12) and IL10RA (D=10).
Although not previously described in AML, there are several
reports that CD163 and IL-10 may be involved in a regulatory
loop (43-45) that leads to heme oxygenase 1 (HO-1) induction
(46,47). Examination of the 100 top scoring genes revealed that
HO-1 is indeed consistently upregulated (D=8.6, p=2.8274E-4)
in cluster 1 samples. Recently, resistance to apoptosis has been
reported in gastric cancer cells with elevated HO-1 and c-IAP2
activity (48). We noticed that NAIP/BIRC1 (IAP repeat-
containing 1) was also overexpressed (D=4, p=7.5774E-4) in
cluster 1 (Supplementary Fig. 3). It is therefore of interest to
further explore whether the IL-10, CD163, HO-1 regulatory
module has been diverted and selected to counteract terminal
differentiation and apoptosis (49) and thus enhance the prolifer-
ation and survival of these AML blasts. Another pathway that
may be specifically activated in this group of AML patients
is the NF-κB pathway indicated by upregulation of NF-κB-
targeted genes such as ICAM-1, IL-6, TNFRSF1B and NAIP
(50).

Altered expression of genes encoding transcription and
chromatin condensation and cell cycle regulation factors was
common for cluster 2 samples. Increased expression of the
GATA-2, RUNX1, CBX7, cyclin A1 and defender against cell
death 1 (DAD1) and repression of NCF2 (D=11) that is tran-
scribed exclusively in myeloid cells that have differentiated
beyond the promyelocyte stage, may contribute to leukemi-
sation of hematopoietic cells with normal cytogenetics.

In cluster 3, hematopoietic stem cell marker CD34 mRNA
was highly expressed. Attempts have been made to define a
core gene expression pattern associated with stem cells
(‘stemness’) (51,52). This concept has met with difficulty
since there is very little overlap between gene lists extracted
by three different groups in order to define ‘stemness’ (53,54).
A comparison of three independently derived lists of ‘stemness’
genes showed only one common gene, integrin · 6 (ITGA6),
in the three studies (54). Intriguingly, this particular gene

(ITGA6, p=5.8212E-5) is the second most consistently
upregulated gene in cluster 3. CD34, KIT and thrombin
receptor have all been associated with stem cell expression
(55) and were all consistently and highly overexpressed in
cluster 3 (Table II) suggesting that samples of cluster 3 share
important features associated with gene expression of early
myeloid precursors and possibly bone marrow stem cells
(Supplementary Fig. 4).

Cluster 1 to cluster 3 subsets defined by unsupervised
cluster analysis indicate that patient subpopulations may differ
with regard to pathogenesis. Cluster 1 was characterized by
altered expression of several soluble mediators and membrane
molecules, including receptors for immunoregulatory cytokines,
which may in turn activate anti-apoptotic genes and genes
that mediate drug resistance. Cluster 2 (patients with normal
cytogenetics) was characterized by altered expression of genes
encoding the transcription/cell cycle machinery and intra-
cellular signaling molecules. The characteristic pattern of
receptor tyrosine kinase and phosphatase expression of cluster
3 samples was striking, including a prominent KIT/FLT3 (56)
expression ratio in combination with downregulation of the
tyrosine phosphatase PTPNS1. Such patterns may be helpful
in the pursuit of new therapeutic approaches.

To conclude, our present results demonstrate that gene
expression profiles can be used to: i) characterize the differ-
entiation status of native human AML cells; and ii) define
new subsets among highly heterogeneous AML patients. We
suggest that supervised and unsupervised cluster analyses
will have to be complemented with exact identification of
regulatory gene modules that may or may not segregate into
specific clusters. The new tools for global analysis of gene
expression supplemented with appropriate validation and
experiments have the potential to achieve this goal.
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Supplementary Table I. Cell lines used as reference probe.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Cell lines Tissue description ATCC No./References
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
GA-10 B lymphocyte; Burkitt's lymphoma CRL-2392
MOLT-4 T lymphoblast; acute lymphoblastic leukaemia CRL-1582
U-937 Histiocytic lymphoma CRL-1593.2
ST486 Ascites; B lymphocyte; Burkitt's lymphoma CRL-1647
K-562 Bone marrow; chronic myelogenous leukemia (CML) CCL-243
KG-1a Bone marrow; acute myelogenous leukaemia (AML) CCL-246.1
Jurkat Á1.wt T lymphocyte; acute T cell leukaemia CRL-2679
HL-60 Peripheral blood; promyeloblast; promyeloblast; acute promyelocytic leukaemia CCL-240
MCF7 Mammary gland; breast; epithelial; metastatic site: pleural effusion adenocarcinoma HTB-22
U-2 OS Bone; osteosarcoma HTB-96
HEL 299 Lung; fibroblast; normal CCL-137
HeLa Cervix; epithelial; adenocarcinoma CCL-2
Placenta Human placenta; normal a

HUV-EC-C Umbilical vein; vascular endothelium; endothelial; normal b

SaOS-2 Bone; osteosarcoma HTB-85
RF-48 Stomach; metastatic site: ascites gastric adenocarcinoma CRL-1863
NCI-N87 Stomach; metastatic site: liver gastric carcinoma CRL-5822
HLF-a Lung; epidermoid carcinoma CCL-199
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aObtained from Professor Helga Salvesen, Haukeland University Hospital. bHUVEC cell line was made by Therese Visted, University of
Bergen (e-mail: therese.visted@pki.uib.no).
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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Supplementary Figure 1. Two-way cluster analysis of AML samples. Supervised two-way cluster analysis based upon 100 genes with top t-scores
discriminating patients of FAB classes M1 (blue), M2 (violet), M4 (red) and M5 (green). The two samples classified as FAB M4-5 are included in the two-way
cluster analysis (black). The corresponding p-values of the genes characteristically expressed in M1, M2. M4 and M5 ranged from 1.4143E-9 to 6.3893E-3.
Gene clusters are indicated by vertical bars and a few selected genes of each cluster were extracted and highlighted in the same colour.

Supplementary Figure 2. Unsupervised two dimensional hierarchical cluster analysis of gene expression in AML. Unsupervised two dimensional hierarchical
cluster analysis of different FAB classes based upon 500 of 12814 genes with highest variance. The clustering defines three sample clusters: cluster 1 (blue),
cluster 2 (purple), cluster 3 (red). The gene profiles were centered by subtracting the mean before clustering. Characteristic genes of each cluster are indicated
to the right.
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Supplementary Table II. Genes that separate the AML FAB classes.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
A
GenBank Gene symbol Gene name Relative gene expression p-value

D
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Genes overexpressed in M1
AK024443 NTE Similar to neuropathy target esterase, anti apoptotic 3.0 3.7247E-4
NM_006064 RAGB GTP-binding protein ragB 2.6 1.9828E-4
X93093 ICAM4 Intercellular adhesion molecule 4 2.1 1.6744E-4
X87344 MDR/TAP Transporter 2, ATP-binding cassette, sub-family B 2.1 3.9473E-4
AB046830 MI-ER1 Mesoderm induction early response 1 2.0 2.0080E-4
X91826 ZNF75a Zinc finger protein 75a 1.9 1.3696E-4
M84337 PAP Pancreatitis-associated protein 1.7 4.9653E-4
M93215 MRC1 Mannose receptor, C type 1 1.6 1.9629E-6

Genes underexpressed in M1
J03202 LAMC1 Laminin, Á 1 2.7 3.9831E-4
AW843848 PLA2G2A Phospholipase A2, group IIA 2.1 3.6911E-4
AF196481 MID2 Midline 2 2.0 4.8791E-4
AW971101 ARHGAP8 Rho GTPase activating protein 8 2.0 5.8626E-6
D87953 NDRG1 N-myc downstream regulated gene 1 1.9 5.4704E-6
NM_002252 KCNS3 Potassium voltage-gated channel 1.9 1.2604E-5
U53476 WNT7A Proto-oncogene Wnt7a 1.9 3.7536E-5
U42391 MYO9B Myosin IXB 1.8 1.0559E-5
AB011103 KIF5C Kinesin family member 5C 1.8 3.4434E-5
NM_002387 MCC Mutated in colorectal cancers 1.8 2.4439E-4
AW160589 APOE Apolipoprotein E 1.6 2.7438E-7
NM_006489 NOVA1 Neuro-oncological antigen 1 1.6 1.9385E-5
AL035702 RASAL1 RAS protein activator like 1 1.6 1.7686E-4
L33404 KLK7 Kallikrein 7 (stratum corneum) 1.6 9.3908E-6
AB009849 KLK8 Kallikrein 8 1.5 1.8622E-7
AI572906 STAG3 Stromal antigen 3 1.5 1.0456E-5
M69225 BPAG1 Bullous pemphigoid antigen1 1.5 1.4143E-9
AK023655 TMC5 Transmembrane channel-like 5 1.4 1.3093E-6
U43842 BMP4 Bone morphogenetic protein 4 1.4 2.3826E-4
M96860 DPP6 Dipeptidylpeptidase 6 1.3 4.2772E-6
NM_000266 NDP Norrie disease (pseudoglioma) 1.2 8.0898E-9

Genes overexpressed in M2
AW269972 TSPAN-2 Tetraspan 2 6.2 0.0020256
AK000996 DNAPTP4 DNA pol transactivated protein 4 5.0 3.1239E-4
Z24725 MIG-2 Pleckstrin homology domain containing C1 4.3 5.5451E-4
J04469 CKMT1 Creatine kinase, mitochondrial 1 (ubiquitous) 4.0 5.7904E-4
AF080071 CTNNAL1 Catenin (cadherin-associated protein), ·-like 1 4.0 0.0024472
S56805 EDN1 Endothelin 1 3.6 2.6668E-4
L34789 CDH1 E-cadherin 3.4 3.0812E-4
AA143153 CYP11A1 Cytochrome P450, 11 sf A1 3.4 1.2900E-4
X52003 TFF1 Trefoil factor 1 3.3 0.0015604
AK000178 FLJ20171 Hypothetical nucleic acid binding protein 3.3 1.0714E-4
U82671 MAGEA1 Melanoma antigen, family A, 1 3.1 6.3487E-4
NM_002522 NPTX1 Neuronal pentraxin I 3.1 4.1349E-4
AI219825 CDH1 E-cadherin (epithelial) 3.0 1.4154E-4
AJ245599 FJX1 Four jointed box 1 (Drosophila) 3.0 8.7494E-5
NM_005368 MB Myoglobin 3.0 9.8454E-5
AF083124 RAB25 RAB25, member of RAS oncogene family 3.0 1.0446E-4
X04385 VWF Von Willebrand factor 3.0 2.4684E-4
M26628 MME Membrane metallo-endopeptidase/CD10 2.9 2.7408E-4
NM_001204 BMPR2 Bone morphogenetic protein receptor, type II 2.8 0.0012506
U28249 MAT-8 Mammary tumor protein 8 2.7 0.0022710
M22490 BMP4 Bone morphogenetic protein 4 2.6 0.0025805
AF179896 MEIS2e Meis1, myeloid ecotropic viral int 1 homolog 2 2.6 0.0037418
AJ222700 TSC22 Transforming growth factor ß-stimulated 2.5 0.0023206
AA234460 PPP2R5A Protein phosphatase 2, regulatory subunit B (B56) 1.7 1.1564E-4
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Supplementary Table II. Continued.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
A
GenBank Gene symbol Gene name Relative gene expression p-value

D
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Genes underexpressed in M2
AA993270 RNASE6 RNase A k6 8.0 0.0042152
AI828515 TNFSF13 Tumor necrosis factor (ligand) superfamily, 13 6.0 0.0041853
NM_003906 MCM3AP Minichromosome maintenance deficient 3 1.8 0.0010823

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
B
GenBank Gene symbol Gene name Relative gene expression p-value

D
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Genes overexpressed in M4
Z62661 CpG island DNA genomic Mse1 fragment 3.3 7.0084E-4
U02368 PAX3 Paired box gene 3 3.1 0.0043684
AL137735 ABS2 Ankyrin repeat and SOCS box-containing 2 3.0 0.0027760
AK000555 ASB6 Ankyrin repeat and SOCS box-containing 6 3.0 0.0011355
AA777749 LMO7 LIM domain only 7 2.8 0.0022797
F17759 GPD1 Glycerol-3-phosphate dehydrogenase 1 2.6 8.5218E-6
X59842 PBX2 Pre-B-cell leukemia transcription factor 2; HOX12 2.5 0.0044071
V00597 PTH Parathyroid hormone 2.4 4.2872E-4
AF141882 APMCF1 Signal recognition particle receptor 2.4 4.0106E-4
AA779336 C4BPB Complement component 4 binding protein, ß 2.3 5.3546E-5
AL163248 ZNF294 Zinc finger protein 294 2.3 1.7194E-4
X90568 TTN Titin 2.3 2.0182E-4
NM_003874 CD84 CD84 antigen 2.3 2.8752E-4
M34046 PAEP Progestagen-associated endometrial protein 2.1 7.5400E-5
AB002361 KIAA0363 Similar to · NAC protein, NACA 2.1 2.3867E-4
AF250226 ADCY6 Adenylate cyclase 6 2.0 1.4458E-4
AP000500 Chromosome 3p21.3, anti-oncogene region 1.8 2.4579E-4
AB039723 FZD3 Frizzled homolog 3 1.4 9.2867E-4
AF155104 MED6 Mediator of RNA polymerase II transcription, S6 homolog 1.4 3.2020E-4

Genes underexpressed in M4
U80456 SIM2 Single-minded homolog 2 3.5 0.0022416
U10990 NR2C2 Nuclear receptor subfamily 2,C 3.3 5.6064E-6
AF081535 CDC45L Cell division cycle 45-like 3.2 0.0011646
X77743 CDK7 Cyclin-dependent kinase 7 2.7 0.0039741

Genes overexpressed in M5
AK027180 MEF2D MADS box transcription enhancer factor 2 5.5 5.2806E-4
NM_004536 NAIP Baculoviral IAP repeat-containing 1 4.5 0.0037580
BE271713 PTPN18 Protein tyrosine phosphatase 4.3 0.0016970
NM_002698 POU2F2 POU domain, class 2, transcription factor 3.3 0.0015483
AI741331 BAK1 BCL2-antagonist/killer 1 3.2 1.3042E-4
U68723 CHES1 Checkpoint suppressor 1 2.9 1.9165E-4
U49278 UEV-1 Ubiquitin-conjugating enzyme E2 variant 1 2.5 9.4665E-4

Genes underexpressed in M5
AK001241 FLJ10379 Hypothetical protein FLJ10379 5.9 0.0015801
S68287 AKR1C4 Aldo-keto reductase family 1, member C4 4.3 9.2731E-4
AB046663 MFTC Mitochondrial folate transporter/carrier 3.5 4.8732E-4
U59912 MAD MAX dimerization protein 1 3.5 0.0038577
L35263 MAPK14 Mitogen-activated protein kinase 14 3.3 0.0013878
AA761901 MYBL1 v-myb myeloblastosis viral oncogene like 1 3.2 0.0013150
AF054989 SETMAR SET domain and mariner transposase fusion gene 3.0 0.0013803
Y09321 TAF4B TATA-binding protein associated factors 2.9 4.5509E-4
AAF81070 SEB-4 Similar to ssDNA binding protein SEB4 2.6 5.3294E-4
AB011414 ZNF443 Kruppel-type zinc finger (C2H2) 2.5 7.3397E-4
AB017365 FZD7 Frizzled homolog 7, Frizzled receptor 2.5 0.0037855
AA455410 CDKN4 Cyclin-dependent kinase inhibitor 1B (Kip1, p27) 2.2 0.0026842

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
D is relative gene expression.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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Supplementary Table III.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
A, Differential expressed genes in AML cluster 1 (C1)
GenBank Gene symbol Gene name Relative gene expression p-value

D
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Genes overexpressed in C1
NM_006847 LILRB4 Leukocyte immunoglobulin-like receptor sfB 4 25.0 6.0010E-5
U95626 CCRL2 Chemokine (C-C motif) receptor-like 2 20.0 2.1689E-5
D10925 CCR1 Chemokine (C-C motif) receptor 1 16.9 2.7644E-6
U20350 CX3CR1 Chemokine (C-X3-C motif) receptor 1 16.4 5.7489E-6
AF245703 TLR8 Toll-like receptor 8 14.8 5.8377E-7
AA402981 KCTD12 Potassium channel tetramerisation domain containing 12 13.9 3.1412E-5
NM_004244 CD163 CD163 antigen, Scavenger receptor 12.0 3.7383E-5
AX017610 WO9947655 Similar to CD20-like precusor mRNA 11.8 4.0021E-4
AF012281 PDZD1 PDZ domain containing 1 11.1 1.6133E-5
U00672 IL10RA Interleukin 10 receptor, · 10.6 1.4853E-4
J04142 CD1D CD1D antigen, d polypeptide 10.5 9.9480E-6
X04011 CYBB Cytochrome b-245, ß polypeptide, gp91phox 10.4 1.1829E-4
M87842 LGALS2 Lectin, galactoside-binding, soluble, 2 9.9 2.5241E-6
Z82244 HO-1 Heme oxygenase (decycling) 1 8.6 3.3551E-4
J03745 ANX5 Annexin A5 8.3 3.1703E-5
NM_003264 TLR2 Toll-like receptor 2 8.0 1.4047E-4
U37518 TNFSF10 Tumor necrosis factor (ligand) superfamily 10 8.1 3.6638E-5
AA573434 KLF4 Kruppel-like factor 4 (gut) transcription factor 8.1 3.8469E-4
M18044 ITGAM MAC-1·, CD11b (p170) 7.9 4.3479E-4
AW015376 NCF1 Neutrophil cytosol factor 1 7.6 1.9885E-4
X83289 MDR1/ABCB1 Multidrug resistance 1 7.5 1.4778E-4
AF282618 RISC Retinoid-inducible serine carboxypeptidase 7.0 8.2971E-5
X78947 CTGF Connective tissue growth factor 6.9 1.6649E-4
AL034562 PTPNS1 Protein tyrosine phosphatase, non-receptor S1 6.0 6.2263E-6
AF034970 DOK2 Docking protein 2 6.0 4.9222E-5
BE293414 ANXA2 Annexin A2 5.7 3.4704E-7
AA844153 AHR Aryl hydrocarbon receptor 5.1 3.5884E-5
X03663 CSF1R Colony stimulating factor 1 receptor (v-fms) 4.5 2.3262E-4
M32315 TNFRSF1B TNFR superfamily, member 1B 4.3 6.8904E-5
NM_004536 NAIP Baculoviral IAP repeat-containing 1 4.3 8.6550E-4
M15395 ITGB2 MAC-1ß, CD18 3.7 2.0915E-4
AB007854 GAS7 Growth arrest-specific 7 3.6 5.8188E-4
U66306 RXRA Retinoid X receptor, · 3.2 3.0909E-4
M81934 CDC25B Cell division cycle 25B 3.0 2.0141E-4
Y00081 IL-6 Interleukin 6 2.5 1.6578E-4

Genes underexpressed in C1
NM_000222 KIT Stem cell factor receptor (SCFR) 14.3 5.2996E-5
AI819896 ITM2A Integral membrane protein 2A 11.9 3.6744E-4
Z35227 ARHH Ras homolog gene family, member H 6.7 8.8347E-5
X70683 SOX4 SRY (sex determining region Y)-box 4 5.9 1.9885E-4
NM_006022 TSC22 TGF ß-stimulated protein 5.5 5.5508E-5

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
B, Differential expressed genes in AML cluster 2 (C2)
GenBank Gene symbol Gene name Relative gene expression p-value

D
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Genes overexpressed in C2
M73720 CPA3 Carboxypeptidase A3 (mast cell) 81.8 2.0007E-5
M27717 CPA3 Carboxypeptidase A3 (mast cell) 50.0 1.4622E-5
M60445 HDC Histidine decarboxylase 35.0 1.4716E-4
J03210 MMP2 Matrix metalloproteinase 2 20.1 2.9270E-9
AI133467 DSC2 Desmocollin 2 19.0 3.9789E-5
AW873072 DSC2 Desmocollin 2 14.8 1.7857E-4
M68891 GATA-2 GATA binding protein 2 transcription factor 14.5 5.0162E-5
AL031846 CBX7 Chromobox protein homolog 7 13.0 3.6592E-5
U66838 CCNA1 Cyclin A1 11.3 3.1566E-4
U79260 FTO Fatso 7.8 8.1133E-4
D25217 MLC1 Megalencephalic leukoencephalopathy 7.5 6.3287E-4
U51869 CPBP Similar to core promoter element binding protein 5.5 5.2311E-4
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Supplementary Table III. Continued.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
B, Differential expressed genes in AML cluster 2 (C2)
GenBank Gene symbol Gene name Relative gene expression p-value

D
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Genes overexpressed in C2
AW380330 PBXIP1 Hematopoietic PBX-interacting protein 4.4 9.0979E-4
AI825989 ZFP36L2 EGF-response factor 2 3.9 8.2812E-4
M61906 PIK3R1 Phosphoinositide-3-kinase, regulatory subunit 1 3.6 1.8857E-4
D43968 RUNX1 Acute myeloid leukemia 1 transcription factor 2.5 2.4381E-4
U84214 DAD1 Defender against cell death 1 1.8 5.2159E-5

Genes underexpressed in C2
V00522 HLA-DRB3 Major histocompatibility complex, class II, DR ß3 14.6 1.6546E-4
M14662 HLA-DRB1 Major histocompatibility complex, class II, DR ß1 12.0 2.3413E-4
X00457 HLA-DRA1 Major histocompatibility complex, class II, DP ·1 11.6 3.5939E-4
NM_000433 NCF2 Neutrophil cytosolic factor 2 (p67PHOX) 11.3 0.0010103
X13334 CD14 CD14 antigen 10.9 8.4406E-4
J03745 ANXA5 Annexin V 10.4 3.1472E-4
M32011 NCF2 Neutrophil cytosolic factor 2 (p67PHOX) 10.4 5.6149E-4
J03745 ANX5 Annexin A5 10.3 3.1472E-4
M24364 HLA-DQB1 Major histocompatibility complex, class II, DQ ß1 10.1 1.6546E-4
AI765830 BLVRA Biliverdin reductase A 8.1 3.3305E-4
D14665 ADAM9 A disintegrin and metalloproteinase domain 9 7.8 0.0010558
M23254 CANP2 Calpain 2 7.3 8.0661E-4
NM_003474 ADAM12 A disintegrin and metalloproteinase domain 12 (meltrin ·) 6.2 4.6973E-5
M26038 HLA-DRB3 Major histocompatibility complex, class II, DR ß5 6.2 1.4960E-4
BE244440 HLA-DRA Major histocompatibility complex, class II, DR · 5.2 1.6802E-4
NM_004166 CCL15 Chemokine (C-C motif) ligand 15 4.6 7.0302E-5
AA203476 PTTG1 Pituitary tumor-transforming 1 4.4 4.6634E-4
AK001323 ECT2 Epithelial cell transforming sequence 2 oncogene 3.4 0.0010097
D14134 RAD51 DNA repair protein RAD51 homolog 1 3.3 0.0010610
Z93016 WAP1 p53-responsive gene 5 3.0 8.6981E-4

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
C, Differential expressed genes in AML cluster 3 (C3)
GenBank Gene symbol Gene name Relative gene expression p-value

D
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Genes overexpressed in C3
AL035091 CD34 CD34 antigen 15.0 3.3273E-4
M86609 AKR1C1 Aldo-keto reductase C 6.3 6.4644E-6
AB037762 MEF-2 Myelin gene expression factor 2 4.5 8.4979E-5
S68287 AKR1C1 Aldo-keto reductase C 4.3 5.9716E-5
M62424 F2R Coagulation factor II (thrombin) receptor 4.2 2.3010E-4
X66533 GUCY1B3 Guanylate cyclase 1, soluble, ß 3 4.0 3.0817E-4
AI678022 PTPRM Protein tyrosine phosphatase, receptor type, M 4.0 3.4608E-4
X06182 KIT Stem cell factor receptor (SCFR) 3.9 0.0019252
AF186111 EGFL7 EGF-like-domain, multiple 7/NEU1 3.6 0.0031686
AA100426 MOX2 OX-2 membrane glycoprotein precursor 3.3 0.0021809
U96922 NPP4B Inositol polyphosphate-4-phosphatase, type II 3.1 1.8965E-4
M34667 PLCG1 Phospholipase C, Á 1 2.7 0.0014567
X53586 ITGA6 Integrin, · 6/CD49f 2.3 7.4027E-5

Genes underexpressed in C3
M62880 ITGB7 Integrin, ß 7 5.2 0.0010669
AI828515 TNFSF13 Tumor necrosis factor (ligand) superfamily, 13 5.1 0.0024154
NM_004119 FLT3 Fms-related tyrosine kinase 3 4.8 0.0024840
AL034562 PTPNS1 Protein tyrosine phosphatase, non-receptor S1 4.6 3.4608E-4
U02687 FLT3 Fms-related tyrosine kinase 3 4.4 0.0024840
D00017 ANXA2 Annexin A2 3.5 0.0024005
AB007854 GAS7 Growth arrest-specific 7 3.2 0.0018785
U13697 CASP1 Caspase 1 3.0 0.0025037
AX011749 WO9955858 Similar to AHNAK 3.0 1.3911E-6
U49278 UBE2V1 Ubiquitin-conjugating enzyme E2 variant 1 2.8 2.5605E-4

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
D is relative gene expression.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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Supplementary Figure 3. Analysis of molecular interactions and cellular processes using Pathway Assist. Highly expressed genes in cluster 1 (C1), supposed
to be involved in a regulatory loop that lead to heme oxygenase 1 induction, were used as input genes (blue) for analysis. Three genes, CD163, BIRC1 and
IL10RA, were validated using QPCR LDA. The common regulator for these genes selected by Pathway Assist was IL-6 (pink) or the functional class
cytokines (yellow). Both IL-6 and other cytokines and CSF1R (v-fms) were represented among the most differentially overexpressed genes in C1. Red lines,
positive effect; green lines, negative effect; gray dotted lines, effect of unknown function; grey solid lines, a direct binding between HMOX1 and NF-κB
complex.

Supplementary Figure 4. Networks of molecular interactions and cellular processes activated in cluster 3 using CD34, c-KIT, F2R and ITGA6 as input genes.
CD34, c-KIT, F2R and ITGA6 (blue) are membrane molecules characteristic of myeloid progenitor cells and were highly expressed in this cluster, while
FLT3 (green) was underexpressed. The expression profile of the genes was mainly controlled with QPCR LDA. CD34 has previously been validated using
flow cytometry (31). Downstream targets for the selected genes were p53, AKT1, STAT1 (pink) and PI3-kinase (PI3K) complex. Lines with arrows, positive
effect; violet lines, protein-protein binding; green lines, protein modification; blue square on the line between CD34 and TP53, positive effect of CD34 on
molecular synthesis of p53; green square, positive effect on gene expression; line with green circle, possibility for PI3K to bind to the AKT1 promoter.
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