
Abstract. The aim of this report is to review and evaluate, in
a comprehensive manner, the published data regarding the
contribution of genetic polymorphisms to risk of head and neck
cancer (HNC). All relevant studies available in MEDLINE
and published before July 2007 were identified. Studies
carried out in humans that compared HNC patients with at
least 1 standard control group were considered for analysis.
Two hundred and eighteen publications and 3 published meta-
analyses were identified. Seventy-five (34%) studies were
conducted in Asian, 72 (33%) in American, and 68 (31%) in
European countries. The most widely studied gene was
GSTM1 (58 studies), followed by GSTT1 (42 studies), GSTP1
(codon 105, 22 studies) and p53 (codon 72, 20 studies).
GSTM1, GSTT1, GSTP1, XRCC1 codons 194 and 399, and
CYP1A1 codon 462 were examined by meta-analyses, and
significant relations were found between the GSTM1-null
genotype and an increased risk for HNC. In addition,
increased risk for HNC was associated consistently with the
ALDH2*1/*2, p53 codon 72 Pro/Pro and EPHX1 codon 113
Tyr/His and His/His genotypes. Cohort studies that simulta-
neously consider multiple genetic and environmental factors
possibly involved in carcinogenesis of the head and neck are
needed to ascertain not only the relative contribution of these
factors to tumor development but also the contributions of their
putative interactions.

Contents

1. Introduction

2. Review of the studies

3. Discussion

1. Introduction

Head and neck cancers (HNCs), including cancers of the oral
cavity, pharynx and larynx, represent the 6 most frequent
cancers and the seventh leading cause of cancer-related death
worldwide. There are approximately 540,000 new cases
and 271,000 deaths annually worldwide for a mortality of
approximately 50% (1). HNCs represent approximately 3%
of all cancers in the United States whereas these cancers
are much more prevalent in other areas of the world, such
as India, Thailand and Brazil (1,2). Standard therapeutic
approaches, which focus on surgery, irradiation and chemo-
therapy (alone or in combination), have been modified
over the last 30 years; however, the overall survival of HNC
patients has not improved substantially. For patients affected
by early-stage cancers with a high disease-specific survival
rate, secondary tumors represent the most common cause of
death (3). Furthermore, patients with advanced cancers have
a high risk of primary treatment failure and death. 

Development of HNC is a multifactorial process associated
with a variety of risk factors. Major risk factors in developed
countries include smoking tobacco and drinking alcohol, and
chewing betel quid (4,5). For tobacco smoking, a dose-response
trend has been reported. Relative risks of developing laryngeal
and oropharyngeal cancers are 1.8 and 1.3, respectively, for
persons who smoke ≤30 cigarettes per day and 7.7 and 2.9,
respectively, for persons who smoke >30 cigarettes per day
compared with non-smokers (6). Alcohol consumption is
also linked to increased risk of HNCs. For persons who
consume >4 drinks (=47.5 g of pure ethanol) per day, the
relative risks of developing laryngeal and oropharyngeal
cancers are 4.5 and 7.2, respectively, compared with non-
drinkers (6). A synergistic effect was observed in persons who
both smoke tobacco and drink alcohol. The relative risks of
developing laryngeal and oropharyngeal cancers are 34.6 and
21.2, respectively, among those who smoke >30 cigarettes a
day and consume >4 drinks per week. 

Genetic factors as well as environmental factors play a
role in development of HNC and of other cancers (7-13).
Individual variations in cancer risk have been associated with
specific variant alleles of different genes that are present in a
significant proportion of the normal population. Recent studies
have suggested that genetic polymorphisms may underlie
some of the causes and events involved in carcinogenesis of
the head and neck. A variety of genes may be associated
with carcinogenesis, including genes involved in carcinogen
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metabolism, alcohol metabolism, folate metabolism, DNA
repair and cell-cycle control and oncogenes. Here we review
and evaluate, in a comprehensive manner, the most recent
published evidence regarding the relative contribution of
genetics to susceptibility to HNC in humans.

We identified all studies related to the association of
genetic polymorphisms with HNC risk published before
July 2007 and listed in MEDLINE (National Library of
Medicine). Only reviews published in English were considered.
Studies of HNC patients with at least 1 standard control
group were considered for analysis. Studies without control
subjects or based only on serologic or histochemical assays
were excluded. Studies that evaluated only the role of genetic
factors as prognostic markers and those that described somatic
mutations in tumor tissue were also excluded. Two hundred
and eighteen publications (14-231) and 3 published meta-
analyses (232-234) were identified. We extracted the first
author, the year of publication, the country where the study
was conducted, the size of each study, the selection and
features of patients and control subjects, the availability and
use of information on environmental factors (mainly smoking
and alcohol) and the reported results.

Genes are named according to the HUGO Gene Nomen-
clature Committee (HGNC; http://www.gene.ucl.ac.uk/
nomenclature/). Polymorphisms are termed according to the
proposed nomenclature of Antonarakis et al. In short, a
polymorphism designation that starts with a number refers to
a nucleotide position, and subsequent letters indicate the
nucleotide change. A polymorphism designation that starts
with a letter (or 2 letters separated by a slash) indicates an
amino acid substitution (single-letter amino acid code), and
the number following it is the codon position. Metabolic
gene allele nomenclature is according to that recommended
by Garte et al (http://www.gsec.net).

2. Review of the studies

Of the 218 studies identified in our review, 75 (34%) were
conducted in Asian countries, 72 (33%) in American countries,
and 68 (31%) in European countries. For countries, 55 (25%)
studies were conducted in the United States, 29 (13%) in
China including Taiwan and Hong Kong and 15 (7%) each
in Germany and Japan, respectively. The most intensively
studied genes were those encoding enzymes involved in
carcinogen metabolism. The most widely studied gene was
GSTM1 (58 studies) followed by GSTT1 (42 studies), GSTP1
(codon 105, 22 studies) and p53 (codon 72, 20 studies).
Summaries of genetic polymorphisms and risk of HNCs and
meta-analyses are shown in Tables I-IX and X, respectively.

Carcinogen metabolic genes (Table I). Carcinogen metabolic
enzymes, which are involved in the activation of carcinogens,
convert endogenous and/or exogenous carcinogens into
DNA-binding metabolites and can thereby influence inter-
mediate effect markers, such as DNA adducts, and ultimately,
risk for cancer. Accumulating data suggest that genetic
polymorphisms in genes controlling carcinogen metabolism
underlie individual variations in cancer risk (7,14-110,235).
Most carcinogens undergo activation by Phase I enzymes,
often as an oxidation reaction, and detoxification by Phase II

enzymes. The cytochrome P450 enzyme superfamily, including
CYP1A1, CYP2E1 and CYP2A6, constitutes the majority of
Phase I enzymes, while the glutathione S-transferases (GSTs)
and N-acetyltransferases (NATs) are primarily responsible
for detoxification of xenobiotics. 

CYP1A1. CYP1A1 is involved in the activation of major
classes of tobacco procarcinogens, such as polyaromatic
hydrocarbons and aromatic amines, and is present in many
epithelial tissues (236). An Ile-Val substitution in codon 462
of CYP1A1, which is in the heme-binding region, results in a
2-fold increase in microsomal enzyme activity and, in
Caucasians, is in complete linkage disequilibrium with the
CYP1A1 MspI polymorphism, which is also associated with
increased catalytic activity (7). 

We identified 15 studies (14-28) with data regarding the
relation of the CYP1A1 Ile-Val substitution at codon 462 to
HNC. In 4 studies (14,19,22,24), the risk for HNC in subjects
with the Ile/Val and/or Val/Val genotypes was significantly
higher than that for subjects with the Ile/Ile genotype,
suggesting that the Val allele may be associated with increased
risk for HNC. A meta-analysis of studies that examined the
association of the CYP1A1 Ile-Val substitution with risk for
HNC revealed that the Ile/Val and Val/Val genotypes tend to
increase HNC risk with odds ratios (ORs) [95% confidence
interval (CI)] compared with Ile/Ile of 1.32 (0.95-1.82) (232). 

CYP2E1. CYP2E1 is primarily responsible for the metabolic
activation of many low molecular weight carcinogens,
including certain nitrosoamines, which may be involved in
carcinogenesis of the esophagus (237,238). This enzyme is
also believed to participate in the oxidation of other com-
pounds, such as ethanol, to produce reactive free radicals that
may initiate lipid peroxidation and consequently influence
carcinogenesis (133). The variant c2 allele, which contains a
novel RsaI/PstI site in the 5'-flanking region of the CYP2E1
gene, appears to be associated with decreased enzyme activity. 

Ten (15,17,18,27,28,35,40,43,46) of the 15 (67%) studies
(15,17,18,27,28,35,39-44,46,47) suggested that the c1/c2
genotype of CYP2E1 may increase risk for HNC compared
with the c1/c1 genotype. Results of 6 (18,28,39-41,44) of 7
(86%) studies (17,18,28,39-41,44) suggested that the c2/c2
genotype may increase risk for HNC. 

GSTs. GSTs are a family of multifunctional enzymes that
metabolize a variety of xenobiotics with a large overlap in
substrate specificity (239,240). Individuals who are homo-
zygous for the null GSTM1 or null GSTT1 alleles lack the
respective enzyme function. The null GSTM1 genotype
appears to be common in both Asians and Caucasians, whereas
the frequency of the null GSTT1 genotype varies among
ethnicities. The null genotypes of GSTM1 and GSTT1 appear
to be associated with increased risk of esophageal (235),
gastric (241) and lung (242) cancers. 

For HNCs, 36 (62%) ORs from 58 studies of the null
GSTM1 genotype vs. the positive genotype were >1, sug-
gesting that the null GSTM1 genotype may be associated
with increased risk for HNC. Sixteen (28%) (30,35,55,58,
62,64,66-68,71,72,74,79,84-86) of the studies showed a
significantly higher risk for HNC in subjects with the null
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GSTM1 genotype than in subjects with the positive genotype.
No studies showed a significantly lower risk in patients with the
null GSTM1 genotype than in those with the positive genotype.
Two meta-analyses (232,233) of studies that examined the
association of GSTM1 with risk for HNC revealed that the
null genotype significantly increases the risk with ORs (95%
CI) of 1.23 (1.06-1.42) and 1.50 (1.21-1.87) compared with
the positive genotype.

Twenty-three (55%) ORs from 42 studies of the null
GSTT1 genotype vs. the positive genotype were >1, and 7
studies (56,64,72,83,85,95,96) showed a significantly higher
risk for HNC in subjects with the null genotype than in those
with the positive genotype, suggesting that the null GSTT1
genotype may be associated with increased risk for HNC. In
contrast, only 1 study showed a significantly lower risk with
the null GSTT1 genotype than the positive genotype. A meta-
analysis (232) of studies that examined the association of
GSTT1 with risk of HNC revealed that the null genotype
tends to increase HNC risk with ORs (95% CI) of 1.17
(0.98-1.40) compared with positive genotype.

GSTP1 is a major GST isoform that eliminates thymidine
and uracil propenal, products of DNA oxidation (243,244).
An Ile to Val substitution at codon 105 (exon 5) has been
identified. The 105Val form shows altered affinity and
enzymatic activity for some substrates. Four (18%) (77,88-90)
of the 22 studies (18,20,21,25,31,33,63,69,73,77,80,82,84,
87-94) showed a significantly higher risk for HNC in persons
with the Ile/Val and/or Val/Val genotypes than in those with
the Ile/Ile genotype. No studies showed a significantly lower
risk with the Ile/Val and/or Val/Val genotypes than the Ile/Ile
genotype. The 105Val allele might be associated with an
increased risk for HNC. One meta-analysis revealed that the
Ile/Val and Val/Val genotypes tend to increase HNC risk
with ORs (95% CI) of 1.10 (0.92-1.31) compared with the
positive genotype (232).

NATs. Two NAT isozymes, NAT1 and NAT2, are polymorphic
and catalyze both O-acetylation (activation) and N-acetylation
(usually detoxification) of aromatic and heterocyclic amine
carcinogens. Molecular epidemiologic studies suggest that
genetic polymorphisms in NAT1 and NAT2 modify risk of
developing certain cancers (245). For HNC, all 7 (100%)
ORs (18,23,33,42,97,100,101) for the slow NAT2 genotype
vs. the rapid genotype were >1, suggesting that the slow NAT2
genotype may be associated with an increased risk for HNC.

EPHX1. The human microsomal epoxide hydrase (mEH),
which is encoded by EPHX1, cleaves a range of alkene and
arene oxides to form trans-dihydrodiols. For some polycyclic
aromatic hydrocarbons, including benzo[a]pyrene, dihydrodiol
derivatives are substrates for additional metabolic reactions that
produce more highly reactive and carcinogenic compounds.
Two amino acid-altering polymorphisms, Tyr113His and
His139Arg, have been identified in EPHX1 and both are
associated with alterations in mEH activity. The EPHX1
His113 variant shows a 40% decrease in EH activity, whereas
the EPHX1 Arg139 variant shows 25% increased enzyme
activity (246). These polymorphic alleles have been linked
to increases in risk for lung (247), colon (248) and ovarian
(249) cancers. 

Five (83%) ORs (73,92,103,104) from 6 studies (37,73,92,
103,104) of the EPHX1 Tyr/His genotype vs. the Tyr/Tyr
genotype were <1, and 3 studies (92,103) showed a signifi-
cantly lower risk for HNC in subjects with the Tyr/His
genotype than in those with the Tyr/Tyr genotype. Five (83%)
ORs (73,92,103,104) from 6 studies (37,73,92,103,104) of the
His/His genotype vs. Tyr/Tyr genotype were <1, and 1 study
(92) showed a significantly lower risk for HNC in subjects
with the His/His genotype than in those with the Tyr/Tyr
genotype. These results suggest that the His allele at codon
113 may be associated with an increased risk for HNC. 

ORs for the His/Arg genotype vs. the His/His genotype at
codon 139 of EPHX1 varied from 0.69 to 1.21. However, 5
(83%) ORs (37,92,103,104) from 6 studies (37,73,92, 103,104)
of the Arg/Arg genotype vs. the His/His genotype were >1,
suggesting that the Arg/Arg genotype at codon 139 may be
associated with an increased risk for HNC.

Alcohol metabolic enzymes (Table II). Alcohol consumption is
classified as a risk factor for HNC according to data from
epidemiologic studies (6). Alcohol intake increases exposure to
high levels of acetaldehyde, the principal metabolite of alcohol,
which increases risk of cancers such as HNC. Acetoaldehyde
is produced mainly from ethanol via oxidation by alcohol
dehydrogenase (ADH) and is subsequently detoxified into
acetate by aldehyde dehydrogenase (ALDH)-2. 

ALDH2. ALDH2 is a polymorphic gene, and an individual's
genotype at this locus determines blood acetaldehyde concen-
trations after drinking. A single point alteration in ALDH2
results in the ALDH2*2 allele. The protein encoded by
ALDH2*2 has a Glu to Lys substitution at residue 487,
resulting in an inactive subunit and the inability to metabolize
acetaldehyde. The ALDH2*2 allele is rare in Western popu-
lations but prevalent in East Asian populations including
Chinese, Korean, Thai, and Japanese populations (250,251)
ALDH2*2/*2 homozygotes have serum acetaldehyde levels
that are 13 times higher and heterozygotes have levels 4 times
higher than those in *1*1 homozygotes (252). ALDH2*2/*2
homozygotes are characterized by a facial flushing response
after alcohol consumption with nausea, drowsiness, headache
and other unpleasant symptoms. 

Six studies (17,66,117-120) reported a relation between
ALDH2 polymorphisms and risk for HNC, and all were
conducted in Japanese populations. Four (67%) studies
(66,117,118,120) showed a significantly increased risk for
HNC in *1/*2 heterozygotes compared with *1/*1 homo-
zygotes. In contrast, 1 (119) of 2 (50%) studies (17,119)
showed a lower risk for HNC in *2/*2 homozygotes than in
*1/*1 homozygotes. 

ADH3. ADH isoenzymes, which are primarily involved in
ethanol oxidation, consist of subunits encoded by ADH2 and
ADH3. In contrast to ADH2, ADH3 is highly polymorphic in
Caucasians. Of the 2 allelic variants, the ADH3*1 allele is
associated with higher enzyme activity than the ADH3*2 allele
and occurs in Caucasians at frequencies of 55-63% (253).

In 5 (43,58,111-113) of 8 (63%) studies (43,58,111-116),
ADH3*2/*1 heterozygotes showed decreased risk for HNC
compared with *2/*2 homozygotes. However, in 6 (43,58,
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Table I. Studies on polymorphisms of carcinogen metabolic enzymes and risk of head and neck cancer.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene and poly- Tumor Cases Controls Result-1b OR and 95% CIc Result-2b OR and 95% CIc Covariates Ref.
morphic site sitea

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
CYP1A1 codon 462 OC 133 133 Ile/Val+Val/Val 2.6 (1.2-5.7) Age, sex, ethnicity 14

vs. Ile/Ile

CYP1A1 codon 462 OC, P, L 380 193 Ile/Val vs. Ile/Ile 1.08 (0.65-1.79)d Val/Val vs. Ile/Ile 0.51 (0.07-3.66)d - 15

CYP1A1 codon 462 OC, P, L, 185 207 Ile/Val+Val/Val 1.15 (0.68-1.93)d - 16

O vs. Ile/Ile

CYP1A1 codon 462 OC 92 147 Ile/Val vs. Ile/Ile 1.31 (0.71-2.42) Val/Val vs. Ile/Ile 1.30 (0.38-4.50) Age, sex, smoking 17

CYP1A1 codon 462 OC, P, L 145 164 Ile/Val vs. Ile/Ile 0.72 (0.44-1.20)d Val/Val vs. Ile/Ile 2.35 (0.86-6.42)d - 18

CYP1A1 codon 462 OC 142 142 Ile/Val vs. Ile/Ile 1.58 (0.96-2.62) Val/Val vs. Ile/Ile 4.19 (1.59-11.1) - 19

CYP1A1 codon 462 OC, P, L 172 193 Ile/Val vs. Ile/Ile 1.5 (0.6-3.6) Val/Val vs. Ile/Ile - Age, sex, ethnicity 20

CYP1A1 codon 462 OC, P, L, 139 121 Ile/Val vs. Ile/Ile 0.45 (0.19-1.06)d Val/Val vs. Ile/Ile - - 21

O

CYP1A1 codon 462 OC 98 60 Ile/Val+Val/Val 5.28 (1.03-26.28) - 22

vs. Ile/Ile

CYP1A1 codon 462 OC 94 92 Ile/Val vs. Ile/Ile 0.64 (0.17-2.34)d Val/Val vs. Ile/Ile - - 23

CYP1A1 codon 462 L 88 178 Ile/Val vs. Ile/Ile 2.28 (1.14-4.58)d Val/Val vs. Ile/Ile 0.76 (0.08-7.44)d - 24

CYP1A1 codon 462 OC, P, L 282 208 Ile/Val vs. Ile/Ile 0.81 (0.45-1.45)d Val/Val vs. Ile/Ile 0.72 (0.14-3.61)d - 25

CYP1A1 codon 462 OC 132 143 Ile/Val vs. Ile/Ile 0.94 (0.56-1.58) Val/Val vs. Ile/Ile 0.52 (0.15-1.78) - 26

CYP1A1 codon 462 OC 231 212 Ile/Val vs. Ile/Ile 1.09 (0.66-1.80)d Val/Val vs. Ile/Ile 2.85 (0.50-29.16)d - 27

CYP1A1 codon 462 OC 122 241 Ile/Val vs. Ile/Ile 0.61 (0.37-1.01) Val/Val vs. Ile/Ile 0.97 (0.38-2.46) Age, sex, smoking, 28

alcohol

CYP1A1 MspI OC, P, L 381 205 m1/m2 vs. m1/m1 1.82 (1.05-3.14)d m2/m2 vs. m1/m1 0.29 (0.03-3.19)d - 15

CYP1A1 MspI OC, P, L, 185 207 m1/m2+m2/m2 1.14 (0.67-1.94)d - 16

O vs. m1/m1

CYP1A1 MspI OC 100 100 m1/m2 vs. m1/m1 3.42 (1.84-6.35)d m2/m2 vs. m1/m1 3.63 (1.39-9.47)d - 29

CYP1A1 MspI OC 142 142 m1/m2 vs. m1/m1 0.9 (0.6-1.7) m2/m2 vs. m1/m1 2.3 (1.1-4.7) - 30

CYP1A1 MspI NS 312 300 m1/m2 vs. m1/m1 1.17 (0.78-1.77)d m2/m2 vs. m1/m1 0.49 (0.09-2.71)d - 31

CYP1A1 MspI OC 106 146 m1/m2 vs. m1/m1 0.87 (0.51-1.50) m2/m2 vs. m1/m1 1.32 (0.6-3.1) - 32

CYP1A1 MspI P 172 218 m1/m2 vs. m1/m1 1.2 (0.7-1.8) m2/m2 vs. m1/m1 1.4 (0.8-2.6) Age, sex, smoking, 33

ethnicity, education

level

CYP1A1 MspI OC, P, L, 187 139 m1/m2 vs. m1/m1 1.49 (0.86-2.60)d m2/m2 vs. m1/m1 - - 34

O

CYP1A1 MspI L 88 178 m1/m2 vs. m1/m1 0.90 (0.49-1.67)d m1/m2 vs. m1/m1 - - 24

CYP1A1 MspI OC, P, L 103 102 m2/m2+m1/m2 0.9 (0.53-1.66) Age, sex 35

vs. m1/m1

CYP1A1 MspI OC 72 163 m1/m2 vs. m1/m1 0.8 (0.4-1.4) m2/m2 vs. m1/m1 3.3 (1.4-10) - 36

CYP1A1 MspI OC, P, L, 210 245 m1/m2 +m2/m2 0.80 (0.51-1.27) Age, sex 37

O vs. m1/m1

CYP1B1 NS 312 300 Val/Leu vs. 1.56 (1.08-2.25)d Leu/Leu vs. 1.90 (1.21-3.00)d - 31

Val/Val Val/Val

CYP1B1 OC, P, L 724 1,226 Val/Leu vs. 0.86 (0.70-1.07) Leu/Leu vs. 0.89 (0.68-1.16) Age, sex, smoking, 38

Val/Val Val/Val alcohol

CYP2E1 RsaI/PstI P 48 50 c1/c2 vs. c1/c1 0.76 (0.30-1.9) c2/c2 vs. c1/c1 7.7 (0.87-68) - 39

CYP2E1 RsaI/PstI OC 41e 122e c1/c2 vs. c1/c1 1.8 (0.9-3.8) c2/c2 vs. c1/c1 1.8 (0.3-10.7) - 40

CYP2E1 RsaI/PstI P 364 320 c1/c2 vs. c1/c1 0.79 (0.44-1.4) c2/c2 vs. c1/c1 3.2 (0.69-15) Age, sex, smoking, 41

alcohol

CYP2E1 RsaI/PstI OC, P, L 75 200 c1/c2 vs. c1/c1 0.75 (0.29-1.94)d c2/c2 vs. c1/c1 - - 42

CYP2E1 RsaI/PstI OC, P, L 379 175 c1/c2 vs. c1/c1 1.07 (0.50-2.30)d c2/c2 vs. c1/c1 - - 15
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Table I. Continued.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene and poly- Tumor Cases Controls Result-1b OR and 95% CIc Result-2b OR and 95% CIc Covariates Ref.
morphic site sitea

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
CYP2E1 RsaI/PstI OC 92 147 c1/c2 vs. c1/c1 1.52 (0.82-2.79) c2/c2 vs. c1/c1 0.94 (0.17-5.10) Age, sex, smoking 17
CYP2E1 RsaI/PstI OC, P, L 145 164 c1/c2 vs. c1/c1 1.02 (0.63-1.66)d c2/c2 vs. c1/c1 1.32 (0.46-3.78))d - 18

CYP2E1 RsaI/PstI OC, P 121 172 c1/c2 vs. c1/c1 2.07 (0.81-5.31)d c2/c2 vs. c1/c1 - - 43

CYP2E1 RsaI/PstI L 129 172 c1/c2 vs. c1/c1 1.54 (0.58-4.10)d c2/c2 vs. c1/c1 - - 43

CYP2E1 RsaI/PstI P 217 297 c1/c2 vs. c1/c1 0.94 (0.64-1.39) c2/c2 vs. c1/c1 2.19 (0.62-8.68) - 44

CYP2E1 RsaI/PstI OC 160 365 other than c1/c1 0.51 (0.22-1.20) Age, sex, smoking, 45

vs. c1/c1 alcohol, ethnicity, 

site of subject

recruitment

CYP2E1 RsaI/PstI NS 312 297 c1/c2 vs. c1/c1 1.58 (0.56-4.49) c2/c2 vs. c1/c1 - Age, sex 46

CYP2E1 RsaI/PstI L 288 323 c1/c2 vs. c1/c1 0.55 (0.24-1.24) c2/c2 vs. c1/c1 - - 47

CYP2E1 RsaI/PstI P 103 553 c1/c2+c2/c2 vs. 1.45 (0.79-2.65) Age, sex, smoking, 48

c1/c1 betel nut consump-

tion, wood and

formaldehyde

exposure, and

Guangdong and

other salted fish

consumption

during childhood

CYP2E1 RsaI/PstI OC 231 212 c1/c2 vs. c1/c1 1.16 (0.64-2.11) c2/c2 vs. c1/c1 - - 27

CYP2E1 RsaI/PstI OC 122 241 c1/c2 vs. c1/c1 1.26 (0.76-2.07) c2/c2 vs. c1/c1 3.38 (1.22-9.36) Age, sex, smoking, 28

alcohol

CYP2E1 RsaI/PstI OC, P, L 103 102 c1/c2 vs. c1/c1 2.3 (0.84-6.34) c2/c2 vs. c1/c1 - Age, sex 35

CYP2E1 RsaI/PstI OC, P, L, 210 245 c1/c2+c2/c2 vs. 0.72 (0.33-1.63) Age, sex 37

O c1/c1

CYP2E1 DraI P 48 50 DC vs. DD 1.1 (0.45-2.7) CC vs. DD 5.0 (0.95-16) - 39

CYP2E1 DraI P 364 320 DC vs. DD 1.1 (0.61-1.9) CC vs. DD 0.81 (0.20-3.3) Age, sex, smoking, 41

alcohol

CYP2E1 DraI OC, P, L 347 121 DC vs. DD 1.04 (0.57-1.88)d CC vs. DD 0.17 (0.02-1.93)d - 15

CYP2E1 DraI OC, P 121 172 DC vs. DD 1.81 (0.94-3.47)d CC vs. DD 3.15 (0.28-35.17)d - 43

CYP2E1 DraI L 129 172 DC vs. DD 1.83 (0.97-3.47)d CC vs. DD 1.47 (0.09-23.70)d - 43

CYP2E1 DraI OC 122 241 DC vs. DD 0.97 (0.59-1.58) CC vs. DD 2.28 (1.06-4.91) Age, sex, smoking, 28

alcohol

CYP2E1 DraI OC, P, L, 210 245 DC+CC vs. DD 0.87 (0.43-1.76) Age, sex 37

O

CYP2E1 -71 NS 312 299 GT vs. GG 0.49 (0.25-0.98) TT vs. GG - Age, sex 46

CYP2E1 1,532 OC, P, L 724 1,226 GC vs. GG 0.73 (0.49-1.10) CC vs. GG 1.97 (0.39-9.86) Age, sex, smoking, 38

alcohol

CYP2E1 7,632 NS 262 236 TA vs. TT 1.02 (0.56-1.84) AA vs. TT - Age, sex 46

CYP2D6 OC, P, L 75 200 HM vs. EM 0.69 (0.33-1.43)d PM vs. EM 1.07 (0.27-4.29)d - 42

CYP2D6 OC, P, L 385 191 HM vs. EM 0.95 (0.66-1.37)d PM vs. EM 1.07 (0.50-2.26)d - 15

CYP2D6 OC 100 467 HM vs. EM 0.87 (0.53-1.43)d PM vs. EM 3.03 (1.44-6.39)d - 49

CYP2D6 NS 25 36 HM vs. EM 1.96 (0.67-5.77)d PM vs. EM - - 50

CYP2D6 NS 56 144 HM vs. EM 1.46 (0.72-2.95)d PM vs. EM 0.94 (0.09-9.31)d - 51

CYP2D6 OC, P, L, 187 139 HM vs. EM 0.78 (0.49-1.25)d PM vs. EM 1.29 (0.49-3.37)d - 34

O
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Table I. Continued.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene ·and poly- Tumor Cases Controls Result-1b OR and 95% CIc Result-2b OR and 95% CIc Covariates Ref.
morphic site sitea

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
CYP2D6 OC 286f 135 wt/vt+vt/vt vs. 0.84 (0.55-1.27)d - 52

wt/wt

CYP2D6 P 74 137 wt/vt+vt/vt vs. 2.23 (1.19-4.44) Sex 53

wt/wt

CYP17 OC 137 102 CC vs. TC 1.5 (0.85-2.66) TT vs. TC 3.56 (1.56-8.13) - 54

GSTM1 OC, P, L 186 42 Null vs. Positive 2.37 (1.20-4.67) - 55

GSTM1 L 269 216 Null vs. Positive 0.84 (0.59-1.21)d - 56

GSTM1 OC 40 577 Null vs. Positive 1.01 (0.53-1.92)d - 57

GSTM1 P, L 39 37 Null vs. Positive 4.51 (1.60-12.70)d - 58

GSTM1 OC 41e 123e Null vs. Positive 1.0 (0.5-2.0) - 40

GSTM1 OC, P, L, O 158 474 Null vs. Positive 1.29 (0.90-1.86)d - 59

GSTM1 OC 133 133 Null vs. Positive 1.0 (0.6-1.7) Age, sex, ethnicity 14

GSTM1 L 171 180 Null vs. Positive 0.7 (0.5-1.1) - 60

GSTM1 L 129 172 Null vs. Positive 1.6 (1.0-2.8) Age, sex, smoking, 61

alcohol

GSTM1 OC, P, L 75 200 Null vs. Positive 1.34 (0.78-2.29))d - 42

GSTM1 OC, P, L, O 185 207 Null vs. Positive 0.97 (0.65-1.44))d - 16

GSTM1 OC, P 122 178 Null vs. Positive 1.2 (0.8-2.0) Age, sex 15

GSTM1 L 264 178 Null vs. Positive 1.0 (0.7-1.5) Age, sex 15

GSTM1 L 160 158 Null vs. Positive 1.9 (1.18-3.05) - 62

GSTM1 OC, P 121 172 Null vs. Positive 0.9 (0.5-1.5) Age, sex, smoking, 63

alcohol

GSTM1 OC 100 100 Null vs. Positive 1.04 (0.59-1.83))d - 29

GSTM1 NS 162 315 Null vs. Positive 1.50 (1.01-2.23) Age, sex, smoking, 64

alcohol, ethnicity

GSTM1 P 83 142 Null vs. Positive 1.9 (1.0-3.3) Age, sex, smoking 65

GSTM1 OC 142 142 Null vs. Positive 2.2 (1.4-3.6) - 30

GSTM1 OC 92 147 Null vs. Positive 1.81 (1.00-3.28) Age, sex, smoking 17

GSTM1 OC, P, L 145 164 Null vs. Positive 0.94 (0.60-1.46))d - 18

GSTM1 OC, P, L, O 147 129 Null vs. Positive 0.99 (0.62-1.59) - 21

GSTM1 OC, P, L 172 193 Null vs. Positive 1.1 (0.7-1.7) Age, sex, ethnicity 20

GSTM1 OC 114 33 Null vs. Positive 2.5 (1.1-5.4) - 66

GSTM1 OC 101 212 Null vs. Positive 1.4 (0.68-2.8) - 67

GSTM1 OC 63 132 Null vs. Positive 3.1 (1.1-8.5) - 67

GSTM1 L 82e 63e Null vs. Positive 3.53 (1.27-9.83) Age, smoking 68 

GSTM1 OC, P, L 151 264 Null vs. Positive 0.99 (0.64-1.5) Age, smoking 69

GSTM1 OC 98 60 Null vs. Positive 1.34 (0.37-4.82) - 22

GSTM1 NS 312 300 Null vs. Positive 1.03 (0.71-1.49) Age, sex 31

GSTM1 L 20 20 Null vs. Positive 4.00 (0.98-16.27))d - 70

GSTM1 OC 53 53 Null vs. Positive 3.0 (1.4-6.7) - 71

GSTM1 OC 297 450 Null vs. Positive 3.2 (2.4-4.3) Age 72

GSTM1 OC 286f 135 Null vs. Positive 1.43 (0.91-2.25) - 52

GSTM1 L 204 203 Null vs. Positive 0.94 (0.61-1.47) Age, sex, smoking 73

GSTM1 OC 94 92 Null vs. Positive 1.29 (0.72-2.31)d - 23

GSTM1 P 314 337 Null vs. Positive 0.8 (0.6-1.1) Age, sex, smoking, 33

ethnicity, education

level

GSTM1 L 36 35 Null vs. Positive 2.70 (1.02-7.14)d - 74
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Table I. Continued.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene and poly- Tumor Cases Controls Result-1b OR and 95% CIc Result-2b OR and 95% CIc Covariates Ref.
morphic site sitea

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
GSTM1 OC, P, L, 187 139 Null vs. Positive 0.78 (0.50-1.21)d - 34

O

GSTM1 L 245 251 Null vs. Positive 0.94 (0.62-1.42) Smoking, alcohol 75

GSTM1 L 42 47 Null vs. Positive 1.76 (0.74-4.17) - 76

GSTM1 OC 256 259 Null vs. Positive 1.05 (0.7-1.5) Age, sex, smoking 77

GSTM1 OC, P, L 282 208 Null vs. Positive 1.0 (0.7-1.5) - 25

GSTM1 OC, P, L 149 180 Null vs. Positive 0.88 (0.50-1.5) Age, sex, ethnicity 78

GSTM1 OC 70 82 Null vs. Positive 2.01 (1.04-3.88) - 79

GSTM1 OC 132 143 Null vs. Positive 0.6 (0.3-1.0) Age, sex, alcohol, 26

raw vegetable and

fruit intake

GSTM1 OC 310 348 Null vs. Positive 1.00 (0.72-1.38)d - 80

GSTM1 L 292 321 Null vs. Positive 0.88 (0.64-1.21) - 47

GSTM1 P 78 145 Null vs. Positive 1.7 (0.9-3.0) - 81

GSTM1 OC 122 241 Null vs. Positive 0.87 (0.55-1.37) Age, sex, smoking, 28

alcohol

GSTM1 OC, P, L 103 102 Null vs. Positive 2.2 (1.24-3.79) Age, sex 35

GSTM1 P, L, O 185 207 Null vs. Positive 0.96 (0.65-1.43) - 82

GSTM1 OC 40 87 Null vs. Positive 2.2 (0.9-5.1) - 83

GSTM1 OC, P, L 690 749 Null vs. Positive 1.29 (1.03-1.62) Age, sex, smoking, 84

alcohol, ethnicity

GSTM1 L 110e 197e Null vs. Positive 1.78 (1.11-2.87) - 85

GSTM1 OC, P, L 100 100 Null vs. Positive 3.35 (1.69-6.67) Age, sex, smoking, 86

alcohol

GSTM1 OC, P, L, 210 245 Null vs. Positive 1.07 (0.75-1.56) Age, sex 37

O

GSTM1 OC 72 221 Null vs. Positive 0.7 (0.4-1.3) - 36

GSTM3 L 269 216 AB vs. AA 0.79 (0.52-1.20)d BB vs AA 0.20 (0.07-0.63)d - 56

GSTM3 OC, P, L 386 170 AB vs. AA 0.63 (0.42-0.95)d BB vs AA 0.49 (0.18-1.35)d - 15

GSTM3 L 129 172 AB vs. AA 1.79 (1.08-2.97)d BB vs AA 1.28 (0.33-4.92)d - 87

GSTM3 OC, P 121 172 AB vs. AA 0.98 (0.57-1.69) BB vs AA 1.28 (0.33-4.93) Age, sex, smoking, 63

alcohol

GSTM3 OC 99 210 AB vs. AA 1.06 (0..64-1.74)d BB vs AA 1.28 (0.33-4.94)d - 67

GSTM3 OC 63 132 AB vs. AA 0.66 (0.26-1.63)d BB vs AA 1.28 (0.33-4.95)d - 67

GSTM3 OC 297 450 AB vs. AA 1.07 (0.7-1.8) BB vs AA 1.28 (0.33-4.96) Age 72

GSTM3 L 202 202 AB vs. AA 0.80 (0.49-1.31) BB vs AA 1.28 (0.33-4.97) Age, sex, smoking 73

GSTM3 OC 256 259 AB+BB vs. AA 0.7 (0.5-1.1) Age, sex, smoking 77

GSTM3 OC 310 348 AB+BB vs. AA 0.71 (0.48-1.05)d - 80

GSTM3 OC 231 212 AB vs. AA 1.37 (0.90-2.09) BB vs AA 0.88 (0.47-1.66) - 27

GSTP1 codon 105 OC, P 120 180 Ile/Val vs. Ile/Ile 2.04 (1.24-3.37)d Val/Val vs. Ile/Ile 1.34 (0.63-2.87)d - 88

GSTP1 codon 105 L 260 180 Ile/Val vs. Ile/Ile 1.30 (0.87-1.96)d Val/Val vs. Ile/Ile 0.86 (0.46-1.61)d - 88

GSTP1 codon 105 L 129 172 Ile/Val vs. Ile/Ile 1.13 (0.69-1.84))d Val/Val vs. Ile/Ile 0.95 (0.45-1.97)d - 87

GSTP1 codon 105 OC, P 121 172 Ile/Val vs. Ile/Ile 1.45 (0.88-2.40)d Val/Val vs. Ile/Ile 1.33 (0.65-2.74)d - 63

GSTP1 codon 105 OC, P, L 145 164 Ile/Val vs. Ile/Ile 0.67 (0.40-1.13)d Val/Val vs. Ile/Ile 1.33 (0.65-2.75)d - 18

GSTP1 codon 105 OC 157 260 Ile/Val vs. Ile/Ile 0.79 (0.47-1.3) Val/Val vs. Ile/Ile 1.33 (0.65-2.76) Smoking, alcohol, 89

ethnicity
GSTP1 codon 105 OC 83 22 Ile/Val+Val/Val 1.93 (1.05-3.58) Age, sex 90

vs. Ile/Ile
GSTP1 codon 105 OC, P, L, 146 124 Ile/Val vs. Ile/Ile 1.38 (0.83-2.30)d Val/Val vs. Ile/Ile 0.84 (0.37-1.91)d - 21

O
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Table I. Continued.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene and poly- Tumor Cases Controls Result-1b OR and 95% CIc Result-2b OR and 95% CIc Covariates Ref.
morphic site sitea

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
GSTP1 codon 105 OC, P, L 172 193 Ile/Val vs. Ile/Ile 1.4 (0.9-2.2) Val/Val vs. Ile/Ile 0.6 (0.2-1.5) Age, sex, ethnicity 20

GSTP1 codon 105 OC, P, L 151 264 Ile/Val vs. Ile/Ile 0.67 (0.43-1.02)d Val/Val vs. Ile/Ile 1.07 (0.52-2.19)d - 69

GSTP1 codon 105 NS 312 300 Ile/Val vs. Ile/Ile 0.79 (0.58-1.11)d Val/Val vs. Ile/Ile 1.26 (0.76-2.10)d - 31

GSTP1 codon 105 L 204 201 Ile/Val vs. Ile/Ile 1.17 (0.73-1.88) Val/Val vs. Ile/Ile 0.78 (0.37-1.63) Age, sex, smoking 73

GSTP1 codon 105 OC, P, L 87 51 Ile/Val vs. Ile/Ile 1.52 (0.72-3.24)d Val/Val vs. Ile/Ile 1.34 (0.47-3.83)d - 91

GSTP1 codon 105 P 137 99 Ile/Val vs. Ile/Ile 0.97 (0.54-1.75)d Val/Val vs. Ile/Ile 1.03 (0.38-2.74)d - 92

GSTP1 codon 105 P 264 323 Ile/Val vs. Ile/Ile 1.0 (0.6-1.4) Val/Val vs. Ile/Ile 0.7 (0.2-2.3) Age, sex, smoking, 33

ethnicity, education

level

GSTP1 codon 105 OC, P, L 235 285 Ile/Val vs. Ile/Ile 0.80 (0.55-1.16)d Val/Val vs. Ile/Ile 0.80 (0.47-1.38)d - 93

GSTP1 codon 105 OC, P, L 282 208 Ile/Val vs. Ile/Ile 1.22 (0.84-1.79)d Val/Val vs. Ile/Ile 0.89 (0.48-1.63)d - 25

GSTP1 codon 105 OC 256 259 Ile/Val+Val/Val 1.43 (1.01-2.02)d Age, sex, smoking 77

vs. Ile/Ile

GSTP1 codon 105 OC 310 348 Ile/Val+Val/Val 0.80 (0.59-1.09)d - 80

vs. Ile/Ile

GSTP1 codon 105 P, L, O 185 207 Ile/Val+Val/Val 1.01 (0.70-1.45) - 82

vs. Ile/Ile

GSTP1 codon 105 OC, P, L 294 333 Ile/Val vs. Ile/Ile 0.80 (0.57-1.12)d Val/Val vs. Ile/Ile 0.73 (0.27-1.97)d - 94

GSTP1 codon 105 OC, P, L 690 748 Ile/Val+Val/Val 1.04 (0.83-1.31) Age, sex, smoking, 84

vs. Ile/Ile alcohol, ethnicity

GSTP1 codon 114 OC 256 259 Ala/Val+Val/Val 1.2 (0.4-4.0) Age, sex, smoking 77

vs. Ala/Ala

GSTT1 OC, P, L 127 42 Null vs. Positive 1.47 (0.71-3.02) - 55

GSTT1 O 34 509 Null vs. Positive 0.59 (0.20-1.71)d - 57

GSTT1 L 269 216 Null vs. Positive 1.77 (1.08-2.89)d - 56

GSTT1 OC 41e 123e Null vs. Positive 1.2 (0.6-2.5) - 40

GSTT1 L 129 172 Null vs. Positive 1.4 (0.7-2.9) Age, sex, smoking, 61

alcohol

GSTT1 L 171 180 Null vs. Positive 0.8 (0.5-1.3) - 60

GSTT1 OC, P, L, 185 207 Null vs. Positive 0.95 (0.58-1.56)d - 16

O

GSTT1 OC, P 119 203 Null vs. Positive 1.5 (0.9-2.5) Age, sex 15

GSTT1 L 263 203 Null vs. Positive 0.9 (0.5-1.4) Age, sex 15

GSTT1 OC, P 121 172 Null vs. Positive 2.0 (1.0-4.0) Age, sex, smoking, 63

alcohol

GSTT1 NS 162 315 Null vs. Positive 2.27 (1.43-3.60) Age, sex, smoking, 64

alcohol, ethnicity

GSTT1 OC 92 147 Null vs. Positive 0.68 (0.38-1.22) Age, sex, smoking 17

GSTT1 OC, P, L, 142 109 Null vs. Positive 0.91 (0.47-1.74) - 21

O

GSTT1 OC, P, L 172 193 Null vs. Positive 1.2 (0.7-2.3) Age, sex, ethnicity 20

GSTT1 OC, P, L, 46 44 Null vs. Positive 5.00 (1.66-15.1) Smoking, alcohol 95

O

GSTT1 L 82e 63e Null vs. Positive 1.83 (0.70-4.79) Age, smoking 68

GSTT1 OC 98 60 Null vs. Positive 2.48 (0.28-21.71) - 22

GSTT1 NS 312 300 Null vs. Positive 1.00 (0.64-1.60) Age, sex 31

GSTT1 L 20 20 Null vs. Positive 0.71 (0.14-3.66)d - 70

GSTT1 OC, P, L 151 264 Null vs. Positive 0.98 (0.6-1.7) Age, smoking 69
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Table I. Continued.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene and poly- Tumor Cases Controls Result-1b OR and 95% CIc Result-2b OR and 95% CIc Covariates Ref.
morphic site sitea

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
GSTT1 OC 53 53 Null vs. Positive 0.6 (0.3-1.3) - 71

GSTT1 OC 297 450 Null vs. Positive 1.6 (1.04-2.6) Age 72

GSTT1 L 204 203 Null vs. Positive 0.61 (0.35-1.06) Age, sex, smoking 73

GSTT1 OC, P, L, O 187 139 Null vs. Positive 1.07 (0.59-1.97)d - 34

GSTT1 P 316 336 Null vs. Positive 1.0 (0.8-1.4) Age, sex, smoking,

ethnicity, education 33

level

GSTT1 L 245 251 Null vs. Positive 1.34 (0.74-2.42) Smoking, alcohol 75

GSTT1 L 42 47 Null vs. Positive 2.52 (1.0-6.4) - 76

GSTT1 OC 256 259 Null vs. Positive 1.4 (0.9-2.4) Age, sex, smoking 77

GSTT1 OC, P, L 283 208 Null vs. Positive 0.6 (0.4-0.9) - 25

GSTT1 OC, P, L 149 180 Null vs. Positive 1.2 (0.55-2.5) Age, sex, ethnicity 78

GSTT1 OC 132 143 Null vs. Positive 1.0 (0.5-1.9) Age, sex, alcohol, 26

raw vegetable

and fruit intake

GSTT1 OC 310 348 Null vs. Positive 1.15 (0.76-1.74)4 - 80

GSTT1 OC 87 81 Null vs. Positive 7.20 (3.50-14.84) - 96

GSTT1 L 290 316 Null vs. Positive 0.96 (0.64-1.44) - 47

GSTT1 OC 122 241 Null vs. Positive 0.78 (0.49-1.23) Age, sex, smoking, 28

alcohol

GSTT1 OC, P, L 103 102 Null vs. Positive 1.5 (0.76-2.95) Age, sex 35

GSTT1 P, L, O 185 207 Null vs. Positive 0.95 (0.57-1.56) - 82

GSTT1 OC 40 87 Null vs. Positive 4.2 (1.6-10.9) - 83

GSTT1 OC, P, L 690 750 Null vs. Positive 0.78 (0.59-1.04) Age, sex, smoking, 84

alcohol, ethnicity

GSTT1 L 110e 197e Null vs. Positive 2.29 (1.31-4.01) - 85

GSTT1 OC, P, L 100 100 Null vs. Positive 1.20 (0.64-2.26) Age, sex, smoking, 86

alcohol

GSTT1 OC, P, L, O 210 245 Null vs. Positive 0.97 (0.63-1.51) Age, sex 37

NAT1 OC 62 122 Int. vs. wt/wt 3.7 (1.60-8.46) Rapid vs. wt/wt 3.3 (1.31-8.56) - 97

NAT1 OC, P 121 172 Rapid+Int. vs. 0.8 (0.5-1.4) Age, sex, smoking, 98

wt/wt+Slow alcohol

NAT1 L 129 172 Rapid+Int. vs. 1.0 (0.6-1.7) Age, sex, smoking, 98

wt/wt+Slow alcohol

NAT1 OC, P 143 300 Rapid+Int. vs. 0.94 (0.61-1.45)d - 99

wt/wt+Slow

NAT1 L 148 300 Rapid+Int. vs. 1.22 (0.81-1.85)d - 99

wt/wt+Slow

NAT1 L 88 172 Rapid+Int. vs. 1.37 (0.79-2.39) - 100

wt/wt

NAT2 OC 62 122 Int. vs. Rapid 1.3 (0.66-2.4) Slow vs. Rapid 2.3 (0.8-7.2) - 97

NAT2 OC, P, L 75 200 Slow vs. Rapid 2.63 (1.45-4.76)4 - 42

NAT2 OC, P 121 172 Slow vs. 1.7 (1.0-3.0) Age, sex, smoking, 98

Rapid+Int. alcohol

NAT2 L 129 172 Slow vs. 0.9 (0.5-1.6) Age, sex, smoking, 98

Rapid+Int. alcohol

NAT2 OC, P, L 145 164 Int. vs. Rapid 1.69 (1.04-2.75)d Slow vs. Rapid 1.53 (0.73-3.19)4 - 18

NAT2 OC 341 552 Int. vs. Rapid 1.1 (0.6-2.0) Slow vs. Rapid 1.2 (0.7-2.2) Age, ethnicity 101

NAT2 L 88 172 Slow vs. Rapid 1.45 (0.84-2.51) - 100
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Table I. Continued.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene and poly- Tumor Cases Controls Result-1b OR and 95% CIc Result-2b OR and 95% CIc Covariates Ref.
morphic site sitea

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
NAT2 OC 94 92 Int. vs. Rapid 1.78 (0.39-8.09)d Slow vs. Rapid 1.73 (0.39-7.56)d - 23

NAT2 P 279 325 Slow vs. Rapid 1.3 (0.8-2.0) Age, sex, smoking, 33

ethnicity, education

level

NAT2 OC 231 212 4/11 vs. 11/11 0.79 (0.44-1.43) 4/4 vs. 11/11 1.95 (1.05-3.60) - 27

NAT2 OC, P, L, 210 245 Slow vs. Rapid+ .0.98 (0.67-1.45) Age, sex 37

Int

O

NAT2*14 L 45 104 wt/vt vs. wt/wt 0.68 (0.19-2.39) vt/vt vs. wt/wt 13.87 (0.60-318.0) - 102

NAT2*5 L 45 104 wt/vt vs. wt/wt 0.71 (0.17-3.01) vt/vt vs. wt/wt 7.34 (1.51-36.01) - 102

NAT2*6 L 45 104 wt/vt vs. wt/wt 3.85 (1.17-12.69) vt/vt vs. wt/wt 38.31 (8.01-182.3) - 102

NAT2*7 L 45 104 wt/vt vs. wt/wt 0.20 (0.05-0.76) vt/vt vs. wt/wt 4.45 (0.78-25.33) - 102

EPHX1 codon 113 OC, P 121 172 Tyr/His vs. 0.4 (0.2-0.7) His/His vs. 0.8 (0.4-1.8) Age, sex, smoking, 103

Tyr/Tyr Tyr/Tyr alcohol

EPHX1 codon 113 L 129 172 Tyr/His vs. 0.4 (0.2-0.7) His/His vs. 0.5 (0.2-1.1) Age, sex, smoking, 103

Tyr/Tyr Tyr/Tyr alcohol

EPHX1 codon 113 P 137 99 Tyr/His vs. 0.46 (0.24-0.86)d His/His vs. 0.19 (0.09-0.42)d - 92

Tyr/Tyr Tyr/Tyr

EPHX1 codon 113 L 204 203 Tyr/His vs. 0.64 (0.41-1.02) His/His vs. 0.60 (0.24-1.47) Age, sex, smoking 73

Tyr/Tyr Tyr/Tyr

EPHX1 codon 113 OC, P, L 280 289 Tyr/His vs. 0.83 (0.56-1.23) His/His vs. 0.89 (0.45-1.75) Age, sex 104

Tyr/Tyr Tyr/Tyr

EPHX1 codon 113 OC, L 142 213 Tyr/His+Tyr/Tyr 2.1 (1.0-4.0) Age, sex, smoking, 105

vs. His/His alcohol, region of 

subject recruitment

EPHX1 codon 113 OC, L 81 122 Tyr/His+Tyr/Tyr 2.4 (0.5-12.2) Age, sex, smoking, 105

vs. His/His alcohol, region of

subject recruitment

EPHX1 codon 113 OC, P, L, 210 245 Tyr/His vs. 1.06 (0.70-1.60) His/His vs. 1.52  (0.86-2.69) Age, sex 37

O Tyr/Tyr Tyr/Tyr

EPHX1 codon 139 OC, P 121 172 His/Arg vs. 1.17 (0.70-1.95)d Arg/Arg vs. 2.27 (0.37-13.88)d - 103

His/His His/His

EPHX1 codon 139 L 129 172 His/Arg vs. 1.21 (0.73-1.99)d Arg/Arg vs. 2.88 (0.52-16.09)d - 103

His/His His/His

EPHX1 codon 139 P 137 99 His/Arg vs. 0.95 (0.50-1.81)d Arg/Arg vs. 1.47 (0.48-4.50)d - 92

His/His His/His

EPHX1 codon 139 L 204 203 His/Arg vs. 0.95 (0.58-1.55) Arg/Arg vs. 0.27 (0.05-1.43) Age, sex, smoking 73

His/His His/His

EPHX1 codon 139 OC, P, L 280 289 His/Arg vs. 0.75 (0.51-1.12) Arg/Arg vs. 1.38 (0.50-3.80) Age, sex 104

His/His His/His

EPHX1 codon 139 OC, L 142 213 His/Arg+Arg/ 1.3 (0.8-2.2) Age, sex, smoking, 105

Arg vs. His/His alcohol, region of

subject recruitment

EPHX1 codon 139 OC, L 81 122 His/Arg+Arg/ 1.3 (0.6-2.7) Age, sex, smoking, 105

Arg vs. His/His alcohol, region of

subject recruitment

EPHX1 codon 139 OC, P, L, 210 245 His/Arg vs. 0.69 (0.46-1.03) Arg/Arg vs. 1.21 (0.40-3.72) Age, sex 37

O His/His His/His
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111,114-116) of 9 (67%) studies (43,58,111-116), ADH3*1/*1
homozygotes showed increased risk for HNC.

DNA repair genes (Table III). A wide variety of DNA damage
may be induced by normal endogenous metabolic processes
or by environmental carcinogens. If not repaired, such damage
can lead to gene mutations and genomic instability, which in
turn may cause malignant transformation of cells. Normal
function of DNA repair enzymes is essential for removal of
damage. It has been shown that reduced DNA repair capacity
is associated with increased risk of cancer. Genetic poly-
morphisms in DNA repair genes that contribute to variations
in DNA repair capacity may be related to risk of developing
cancers, including esophageal cancer. 

XRCC1. XRCC1, which is encoded by X-ray repair cross
complementary 1 (XRCC1), is involved in the core processes of
single-strand break repair and base excision repair (254,255).
Mutant hamster ovary cell lines that lack XRCC1 are hyper-
sensitive to ionizing radiation, hydrogen peroxide and
alkylating agents, which leads to a 10-fold increase in the
frequency of spontaneous chromosome aberrations and
deletions. Polymorphisms in XRCC1, including Arg194Trp,
Arg280His and Arg399Gln, have been described. Although
the biochemical and biologic characteristics of the variants
have not been determined, it has been reported that individuals
with the XRCC1 399Gln variant show increased sister
chromatid exchange after treatment with a tobacco-specific
carcinogen, NNK (256). 

Four (57%) ORs (133,134,136,137) from 7 studies
(80,133-138) of the Trp/Trp genotype vs. the Arg/Arg geno-
type at codon 194 were >1, whereas the remaining 3 (43%)
(80,135,138) were not. Two (50%) ORs (80,136) from 4
studies (80,136,138,139) of the His/His genotype vs. the
Arg/Arg genotype at codon 280 were >1, whereas the
remaining 2 (50%) (135,139) were not. Six (55%) ORs
(24,80,133,135,136,139) from 11 studies (24,80,131-140) of
the Gln/Gln genotype vs. the Arg/Arg genotype at codon 399
were >1, whereas the remaining 5 (45%) (132,134,137,
138,140) were not. The results for the relations between
XRCC1 polymorphisms and HNC were inconsistent.

XPD. XPD, xeroderma pigmentosum complementary
group D, is an evolutionarily conserved ATP-dependent
helicase involved in the nucleotide excision repair pathway.
XPD has 2 functions: nucleotide excision repair and basal
transcription as part of the transcription factor complex,
TFIIH (257). Polymorphisms, such as 22,541AC and
35,931CA, have been identified. Individuals homozygous for
the variant genotype of XPD have suboptimal DNA repair
capacity (258). 

All 4 studies (137,138,142,145) of the genotype at nucleo-
tide 22,541 of XPD and risk for HNC showed a decreased
risk in AA homozygotes compared with CC homozygotes.
Five (136,138,140,142,145) of 6 (83%) studies (136-138,140,
142,145) of the genotype at nucleotide 35,931 and HNC risk
showed an increased risk in CC homozygotes ccompared
with AA homozygotes.
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Table I. Continued.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene ·and poly- Tumor Cases Controls Result-1b OR and 95% CIc Result-2b OR and 95% CIc Covariates Ref.
morphic site sitea

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
NQO1 465 OC, P, L, O 350 364 CT vs. CC 1.10 (0.60-2.05) TT vs. CC - Age, sex 106

NQO1 465 OC, P, L 294 333 CT vs. CC 0.64 (0.29-1.43)d TT vs. CC - - 94

NQO1 609 OC, P, L 724 1.226 CT vs. CC 0.89 (0.73-1.09) TT vs. CC 1.56 (0.94-2.59) Age, sex, smoking, 38

alcohol

NQO1 609 OC, P, L, 350 366 CT vs. CC 0.89 (0.64-1.23) TT vs. CC 1.01 (0.43-2.36) Age, sex 106

O

UGT1A10 OC, L 113 115 Glu/Lys vs. 0.20 (0.05-0.87) Age, sex, smoking, 108

codon 139 Glu/Glu alcohol

UGT1A10 OC, L 115 111 Leu/Ile vs. 0.94 (0.26-3.4) Age, sex, smoking, 108

codon 244 Leu/Leu alcohol

UGT1A7 OC, L 194 388 Int. vs. High 1.5 (0.78-2.7) Low vs. High 3.7 (1.7-8.7) Age, sex, smoking, 109

alcohol, ethnicity,

region of subject 

recruitment

SULT1A1 OC, P, L, O 123 247 Arg/His vs. 1.26 (0.73-2.19) His/His vs. 3.60 (1.01-12.88) Smoking, alcohol, 110

Arg/Arg Arg/Arg fruits, vegetables,

physical activity
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aOC, oral cavity; P, pharynx; L, larynx; O, other; NS, not specified. bInt,, intermediate; wt, wild-type; vt, variant-type. cOR, odds ratio; 95% CI, 95% confidence interval. dOR and

95% CI were calculated from the genotype distribution. eMale. fIncluding premalignancies.

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
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Cell-cycle control genes (Table IV)
p53. The p53 tumor suppressor gene is frequently mutated in
various human cancers including HNC (259-262). A G-to-C
polymorphism in codon 72 of exon 4 results in an Arg-to-Pro
substitution. Although both variants are morphologically
wild-type, the Pro/Pro genotype is less effective in suppressing
cellular transformation (263). Individuals with the Pro/Pro
genotype showed a higher risk for HNC than individuals with
the Arg/Arg genotype in 15 (153,154,156-159,161-167,1
69,170) of 20 (75%) studies (21,153-171). Two (10%) studies
(169,170) showed a significantly higher risk for HNC in
Pro/Pro homozygotes than in Arg/Arg homozygotes. These
results suggest that the p53 codon 72 polymorphism may
play a role in susceptibility to HNC. 

Cyclin D1. Cyclin D1 plays an important role in the multi-stage
development of HNC (264). Cyclin D1 mRNA is alternatively
spliced to produce 2 transcripts, and the splicing pattern may
be modulated by a common G870A polymorphism within the
splice donor site in exon 4. This polymorphism increases
the frequency of alternative splicing, leading to an altered
protein. Six (67%) ORs (173-177, 179) from 9 studies
(172-180) of the GA genotype vs. the GG genotype at nucleo-
tide position 870 were <1, and 7 (78%) ORs (173-179) for
the AA genotype vs. GG were <1. These results suggest that
the A allele may be associated with decreased risk for HNC.

Others (Table V-IX). Relations between polymorphisms in
other genes, such as folate metabolic and extracellular degra-
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Table II. Studies on polymorphisms of alcohol metabolic enzymes and risk of head and neck cancer.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene and poly- Tumor Cases Controls Result-1 OR and 95% CIb Result-2 OR and 95% CIb Covariates Ref.
morphic site sitea

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
ADH3 P, L 39d,e 37d,e *2/*1 vs. *2/*2 0.26 (0.06-1.20)c *1/*1 vs. *2/*2 1.36 (0.26-6.96)c - 58

ADH3 OC 137 146 *2/*1 vs. *2/*2 0.91 (0.43-1.90)c *1/*1 vs. *2/*2 1.39 (0.66-2.90)c - 111

ADH3 OC, P 119 167 *2/*1 vs. *2/*2 0.7 (0.4-1.4) *1/*1 vs. *2/*2 1.1 (0.6-2.2) Age, sex, smoking, 43

alcohol

ADH3 L 125 167 *2/*1 vs. *2/*2 1.0 (0.5-1.8) *1/*1 vs. *2/*2 0.7 (0.4-1.4) Age, sex, smoking, 43

alcohol

ADH3 OC, P, L 173 194 *2/*1 vs. *2/*2 0.8 (0.4-1.7) *1/*1 vs. *2/*2 0.9 (0.4-1.9) Age, sex, ethnicity 112

ADH3 OC, P 229 575 *2/*1 vs. *2/*2 0.80 (0.53-1.21)c *1/*1 vs. *2/*2 0.82 (0.52-1.29c - 113

ADH3 OC 333 541 *2/*1 vs. *2/*2 1.3 (0.9-1.9) *1/*1 vs. *2/*2 1.1 (0.7-1.6) Age, sex, ethnicity 114

ADH3 OC 93 99 *1/*1 vs. *2/*2 1.1 (0.4-3.3) Sex, smoking, alcohol, 115

referring hospital

ADH3 OC, P, L 141 94 *2/*1 vs. *2/*2 1.11 (0.42-2.93)c *1/*1 vs. *2/*2 1.25 (0.48-3.26)c - 116

ALDH2 OC, P, L 34d,e 487d,e *1/*2 vs. *1/*1 11.14 (5.09-24.36) *2/*2 vs. *1/*1 - Smoking, alcohol, age 117

at admission

ALDH2 OC 92 147 *1/*2 vs. *1/*1 1.18 (0.65-2.13) *2/*2 vs. *1/*1 1.35 (0.57-2.17) Age, sex, alcohol 17

ALDH2 OC 114 33 *1/*2 vs. *1/*1 2.9 (1.1-7.8) *2/*2 vs. *1/*1 - - 66

ALDH2 OC, P, L 33d,e 526d,e *1/*2 vs. *1/*1 18.52 (7.72-44.44) *2/*2 vs. *1/*1 - - 118

ALDH2 OC, P, L, O 192 192 *1/*2 vs. *1/*1 1.18 (0.78-1.79)c *2/*2 vs. *1/*1 0.58 (0.19-1.79)c - 119

ALDH2 OC, P 192 642 *1/*2 vs. *1/*1 1.55 (1.11-2.14)c *2/*2 vs. *1/*1 - - 120

ADH1C L 245 251 *1/*2+*2/*2 0.94 (0.62-1.43) Smoking, alcohol 75

vs. *1/*1

ADH1C OC, P, L 87f 1036 *1/*2 vs. *1/*1 0.52 (0.27-1.04)c *2/*2 vs. *1/*1 0.27 (0.10-0.71)c - 121

ADH1C OC, P, L, O 521 599 *1/*2 vs. *1/*1 1.1 (0.9-1.4) *2/*2 vs. *1/*1 1.2 (0.9-1.8) Age, sex, ethnicity 122

ADH1C OC, P, L 84 525 *1/*2 vs. *1/*1 0.52 (0.31-0.88)c *2/*2 vs. *1/*1 0.32 (0.15-0.66)c - 123

ADH1C OC, P 192 642 *1/*2 vs. *1/*1 2.09 (1.31-3.34)c *2/*2 vs. *1/*1 - - 120

ADH1B L 245 251 *1/*2 vs. *1/*1 0.86 (0.41-1.82) *2*/2 vs. *1/*1 - Smoking, alcohol 75

ADH1B OC, P 192 642 *1/*2 vs. *1/*1 0.20 (0.12-0.36)c *2*/2 vs. *1/*1 0.21 (0.12-0.35)c - 120

ADH2 OC, P, L 33d,e 526d,e *1/*1 vs. *1/*2 6.67 (2.78-16.7) - 118

+*2/*2 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aOC, oral cavity; P, pharynx; L, larynx; O, other, bOR, odds ratio; 95% CI, 95% confidence interval. cOR and 95% CI were calculated from the genotype distribution. dMale.
eAlcoholic. fHeavy drinker.

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

945-973  5/4/08  13:46  Page 956



INTERNATIONAL JOURNAL OF ONCOLOGY  32:  945-973,  2008 957

Table III. Studies on polymorphisms of DNA repair genes and risk of head and neck cancer.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene and poly- Tumor Cases Controls Result-1 OR and 95% CIb Result-2 OR and 95% CIb Covariates Ref.
morphic site sitea

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
XRCC1 codon 194 OC, P, L 98 161 Arg/Trp vs. Arg/ 1.3 (0.6-2.9) Trp/Trp vs. Arg/ - Age, sex 132

Arg Arg

XRCC1 codon 194 L 88 178 Arg/Trp vs. Arg/ 0.89 (0.37-2.13)c Trp/Trp vs. Arg/ - - 24

Arg Arg

XRCC1 codon 194 OC, P, L 120 145 Arg/Trp vs. Arg/ 2.46 (1.41-4.29) Trp/Trp vs. Arg/ 2.21 (1.34-3.49) Age, smoking, 133

Arg Arg alcohol

XRCC1 codon 194 NS 95 98 Arg/Trp vs. Arg/ 1.97 (0.79-4.96) Trp/Trp vs. Arg/ 1.69 (0.28-10.39) - 134

Arg Arg

XRCC1 codon 194 OC 310 348 Arg/Trp vs. Arg/ 1.16 (0.78-1.74)c Trp/Trp vs. Arg/ 0.57 (0.14-2.31)c - 80

Arg Arg

XRCC1 codon 194 P 417 495 Arg/Trp vs. Arg/ 0.79 (0.60-1.05) Trp/Trp vs. Arg/ 0.48 (0.27-0.86) Age, sex, smoking 135

Arg Arg

XRCC1 codon 194 OC 110 110 Arg/Trp vs. Arg/ 2.65 (1.40-5.04) Trp/Trp vs. Arg/ 9.5 (1.14-79.47) Age, sex, smoking, 136

Arg Arg alcohol, betel quid 

chewing

XRCC1 codon 194 OC 106 164 Arg/Trp vs. Arg/ 2.26 (1.20-4.28) Trp/Trp vs. Arg/ 1.97 (0.86-4.51) betel quid chewing 137

Arg Arg

XRCC1 codon 194 OC 309 387 Arg/Trp vs. Arg/ 0.9 (0.9-1.0) Trp/Trp vs. Arg/ 0.9 (0.9-1.0) Age, sex, smoking 138

Arg Arg

XRCC1 codon 280 P 332 283 Arg/His vs. Arg/ 0.64 (0.43-0.97) His/His vs. Arg/ 0.66 (0.09-4.7) Age, sex, ethnicity 139

Arg Arg

XRCC1 codon 280 OC, P, L 135 168 Arg/His vs. Arg/ 0.95 (0.50-1.83) His/His vs. Arg/ - Age, smoking, 133

Arg Arg alcohol

XRCC1 codon 280 OC 310 348 Arg/His vs. Arg/ 1.13 (0.79-1.61)c His/His vs. Arg/ 1.16 (0.23-5.79)c - 80

Arg Arg

XRCC1 codon 280 OC 110 110 Arg/His vs. Arg/ 1.29 (0.70-2.36) His/His vs. Arg/ 2.16 (0.92-24.4) Age, sex, smoking, 136

Arg Arg alcohol, betel quid 

chewing

XRCC1 codon 280 OC 307 387 Arg/His vs. Arg/ 1.0 (0.9-1.0) His/His vs. Arg/ 1.0 (0.9-1.0) Age, sex, smoking 138

Arg Arg

XRCC1 codon 399 OC, P, L 98 161 Arg/Gln vs. Arg/ 0.8 (0.4-1.1) Gln/Gln vs. Arg/ 0.1 (0.04-0.6) Age, sex 132

Arg Arg

XRCC1 codon 399 P 334 282 Arg/Gln vs. Arg/ 1.0 (0.74-1.5) Gln/Gln vs. Arg/ 1.3 (0.72-2.4) Age, sex, ethnicity 139

Arg Arg

XRCC1 codon 399 L 88 178 Arg/Gln vs. Arg/ 1.08 (0.63-1.86)c Gln/Gln vs. Arg/ 1.32 (0.57-3.08)c - 24

Arg Arg

XRCC1 codon 399 OC, P, L 129 157 Arg/Gln vs. Arg/ 0.84 (0.50-1.41) Gln/Gln vs. Arg/ 1.22 (0.71-2.10) Age, smoking, 133

Arg Arg alcohol

XRCC1 codon 399 OC, P, L 525 757 Arg/Gln vs. Arg/ 0.91 (0.66-1.25) Gln/Gln vs. Arg/ 0.40 (0.11-1.51) Age, sex, smoking, 140

Arg Arg alcohol, ethnicity,

center

XRCC1 codon 399 OC 310 348 Arg/Gln vs. Arg/ 1.03 (0.74-1.42)c Gln/Gln vs. Arg/ 1.39 (0.79-2.43)c - 80

Arg Arg

XRCC1 codon 399 NS 95 98 Arg/Gln vs. Arg/ 0.83 (0.45-1.52) Gln/Gln vs. Arg/ 0.86 (0.35-2.10) - 134

Arg Arg

XRCC1 codon 399 P 425 501 Arg/Gln vs. Arg/ 0.82 (0.62-1.08) Gln/Gln vs. Arg/ 1.20 (0.69-2.06) Age, sex, smoking 135

Arg Arg

XRCC1 codon 399 OC 110 110 Arg/Gln vs. Arg/ 2.31 (1.29-4.12) Gln/Gln vs. Arg/ 6.35 (1.99-20.19) Age, sex, smoking, 136

Arg Arg alcohol, betel

quid chewing
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Table III. Continued.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene and poly- Tumor Cases Controls Result-1 OR and 95% CIb Result-2 OR and 95% CIb Covariates Ref.
morphic site sitea

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
XRCC1 codon 399 OC 106 164 Arg/Gln vs. Arg/ 0.64 (0.35-1.16) Gln/Gln vs. Arg/ 0.30 (0.10-0.88) Betel quid chewing 137

Arg Arg

XRCC1 codon 399 OC 309 385 Arg/Gln vs. Arg/ 0.9 (0.9-1.0) Gln/Gln vs. Arg/ 0.9 (0.9-1.0) Age, sex, smoking 138

Arg Arg

XRCC1 26,304 OC, P, L 203 424 CT vs. CC 0.73 (0.43-1.22)c TT vs. CC - - 141

XRCC1 28,152 OC, P, L 203 424 GA vs. GG 0.75 (0.52-1.08)c AA vs. GG 1.34 (0.80-2.24)c - 141

XRCC1 28,152 L 293 319 GA vs. GG 1.23 (0.87-1.74) AA vs. GG 0.79 (0.47-1.32) - 142

XRCC2 codon 188 OC, P 119 165 His/His+His/Arg 1.8 (1.0-3.5) Age, sex, smoking, 143

vs. Arg/Arg alcohol

XRCC2 codon 188 L 127 165 His/His+His/Arg 1.0 (0.5-2.0) Age, sex, smoking, 143

vs. Arg/Arg alcohol

XRCC3 codon 241 OC, P, L 367 354 Thr/Met vs. 0.90 (0.66-1.24) Met/Met vs. 1.29 (0.81-2.03) Age, sex, smoking, 144

Thr/Thr Thr/Thr alcohol

XRCC3 codon 241 OC, P 119 166 Thr/Met vs. Thr/ 0.6 (0.4-1.1) Met/Met vs. Thr/ 0.7 (0.3-1.4) Age, sex, smoking, 143

Thr Thr alcohol

XRCC3 codon 241 L 127 166 Thr/Met vs. Thr/ 0.7 (0.4-1.2) Met/Met vs. Thr/ 0.7 (0.3-1.4) Age, sex, smoking, 143

Thr Thr alcohol

XRCC3 codon 241 OC, P, L 516 760 Thr/Met vs. Thr/ 1.01 (0.76-1.33) Met/Met vs. Thr/ 1.04 (0.80-1.35) Age, sex, smoking, 140

Thr Thr alcohol, ethnicity, 

center

XRCC3 codon 241 OC 310 348 Thr/Met vs. Thr/ 0.88 (0.64-1.23)c Met/Met vs. Thr/ 1.64 (0.66-4.10)c - 80

Thr Thr

XRCC3 codon 241 OC 106 164 Thr/Met vs. Thr/ 2.31 (1.09-4.91) Met/Met vs. Thr/ 0.66 (0.04-10.92) Betel quid chewing 137

Thr Thr

XPD 22,541 OC, P, L 189 496 CA vs. CC 1.01 (0.70-1.63) AA vs. CC 0.90 (0.52-1.56) Age, sex, smoking, 145

alcohol

XPD 22,541 L 286 319 CA vs. CC 0.61 (0.43-0.87) AA vs. CC 0.62 (0.36-1.04) - 142

XPD 22,541 OC 106 164 CA vs. CC 1.74 (0.94-3.22) AA vs. CC 0.85 (0.30-2.37) Betel quid chewing 137

XPD 22,541 OC 308 388 CA vs. CC 1.0 (0.9-1.0) AA vs. CC 1.0 (0.9-1.0) Age, sex, smoking 138

XPD 23,047 OC, P, L 180 400 CG+GG vs. CC 0.31 (0.04-2.57)c - 146

XPD 23,591 OC, P, L 313 313 GA+AA vs. GG 1.28 (0.93-1.76) Age, sex, smoking, 147

alcohol

XPD 23,591 OC 305 387 GA vs. GG 1.0 (0.9-1.0) AA vs. GG 1.0 (0.9-1.0) Age, sex, smoking 138

XPD 35,931 OC, P, L 189 496 AC vs. AA 1.12 (0.77-1.62) CC vs. AA 1.65 (0.98-2.77) Age, sex, smoking, 145

alcohol

XPD 35,931 L 293 320 AC vs. AA 0.61 (0.43-0.87) CC vs. AA 1.53 (0.95-2.46) - 142

XPD 35,931 OC, P, L 544 775 AC vs. AA 1.04 (0.80-1.37) CC vs. AA 1.03 (0.69-1.52) Age, sex, smoking, 140

alcohol, ethnicity,

center

XPD 35,931 OC 110 110 AC vs. AA 2.16 (1.20-3.86) CC vs. AA 2.72 (1.07-6.91) Age, sex, smoking, 136

alcohol, betel

quid chewing

XPD 35,931 OC 105 164 AC vs. AA 0.69 (0.35-1.39) CC vs. AA 2.04 (0.19-21.66) Betel quid chewing 137

XPD 35,931 OC 309 388 AC vs. AA 1.0 (0.9-1.0) CC vs. AA 1.0 (0.9-1.0) Age, sex, smoking 138

XPG OC 200 921 His/Asp+His/His 2.08 (1.04-4.17) Age, sex, smoking, 148

vs. Asp/Asp alcohol, ethnicity, 

educational level
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Table III. Continued.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene and poly- Tumor Cases Controls Result-1 OR and 95% CIb Result-2 OR and 95% CIb Covariates Ref.
morphic site sitea

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
XPG P 56 921 His/Asp+His/His 2.27 (0.71-7.14) Age, sex, smoking, 148

vs. Asp/Asp alcohol, ethnicity, 

educational level

XPG L 73 921 His/Asp+His/His 2.17 (0.77-6.25) Age, sex, smoking, 148

vs. Asp/Asp alcohol, ethnicity,

educational level

XPG OC 122 241 His/Asp vs. Asp/ 1.01 (0.61-1.69) HisHis vs. Asp/ 0.81 (0.42-1.58) Age, sex, smoking, 28

Asp Asp alcohol

XPC PAT OC, P, L 287 311 Null/Positive vs. 1.44 (1.01-2.05) Positive/Positive 1.85 (1.12-3.05) Age, sex, smoking, 149

Null/Null vs. Null/Null alcohol

XPC PAT OC, P, L 73 82 Null/Positive vs. 0.95 (0.48-1.88)c Positive/Positive 0.89 (0.33-2.40)c - 150

Null/Null vs. Null/Null

XPC PAT OC 106 164 Null/Positive vs. 0.83 (0.46-1.48) Positive/Positive  1.60 (0.55-4.66) Betel quid chewing 137

Null/Null vs. Null/Null

XPC exon 15 OC 106 164 CA vs. CC 0.87 (0.48-1.55) AA vs. CC 1.35 (0.50-3.92) Betel quid chewing 137

XPC intron 9 OC 122 241 Null/Positive vs. 0.86 (0.52-1.42) Positive/Positive 0.75 (0.36-1.55) Age, sex, smoking, 28

Null/Null vs. Null/Null alcohol

XPA 5'-UTR OC 122 241 AG vs. AA 2.15 (1.19-3.90) GG vs. AA 1.88 (0.97-3.62) Age, sex, smoking, 28

alcohol

XPF 5'-UTR OC 122 241 TA vs. TT 0.86 (0.53-1.38) AA vs. TT 0.69 (0.28-1.69) Age, sex, smoking, 28

alcohol

MGMT codon 65 OC 106 164 Trp/Cys vs. Trp/ - Cys/Cys vs. Trp/ - Betel quid chewing 137

Trp Trp

MGMT codon 84 OC, P, L 514 754 Leu/Phe vs. Leu/ 0.75 (0.56-1.02) Phe/Phe vs. Leu/ 0.64 (0.26-1.60) Age, sex, smoking, 140

Leu Leu alcohol, ethnicity,

center

MGMT codon 84 OC 106 164 Leu/Phe vs. Leu/ 1.11 (0.54-2.26) Phe/Phe vs. Leu/ 0.37 (0.01-15.73) Betel quid chewing 137

Leu Leu

MGMT codon 143 OC, P, L 536 751 Ile/Val vs. Ile/Ile 0.72 (0.52-0.99) Val/Val vs. Ile/Ile 0.66 (0.20-1.91) Age, sex, smoking, 140

alcohol, ethnicity, 

center

hOGG1 codon 326 OC, L 169 338 Ser/Cys vs. Ser/ 1.6 (1.04-2.6) Cys/Cys vs. Ser/ 4.1 (1.3-13) Age, sex, smoking, 151

Ser Ser alcohol

hOGG1 codon 326 P 333 283 Ser/Cys vs. Ser/ 1.8 (1.1-2.9) Cys/Cys vs. Ser/ 1.4 (0.86-2.4) Age, sex, ethnicity 139

Ser Ser

hOGG1 codon 326 NS 706 1,196 Ser/Cys vs. Ser/ 0.93 (0.76-1.14) Cys/Cys vs. Ser/ 0.98 (0.65-1.48) Age, sex, smoking, 152

Ser Ser alcohol

ERCC1 8,092 OC, P, L 313 313 CA vs. CC 0.86 (0.62-1.19)c AA vs. CC 0.94 (0.44-2.03)c - 147

ERCC1 8,092 OC 122 241 CA vs. CC 0.56 (0.33-0.93) AA vs. CC 1.56 (0.72-3.36) Age, sex, smoking, 28

alcohol

RAD51 135 OC, P, L 716 719 GC vs. GG 0.95 (0.69-1.30) CC vs. GG 0.99 (0.06-16.70) Age, sex, smoking, 153

alcohol

RAD51 172 OC, P, L 716 719 GT vs. GG 0.96 (0.75-1.21) TT vs. GG 0.64 (0.47-0.88) Age, sex, smoking, 153

alcohol
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aOC, oral cavity; P, pharynx; L, larynx; NC, not specified, bOR, odds ratio; 95% CI, 95% confidence interval; cOR and 95% CI were calculated from the genotype distribution.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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Table IV. Studies on polymorphisms of cell-cycle control genes and risk of head and neck cancer.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene and poly- Tumor Cases Controls Result-1b OR and 95% CIc Result-2b OR and 95% CIc Covariates Ref.
morphic site sitea

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
p53 codon 72 P 73 105 Arg/Pro vs. Arg/ 1.23 (0.58-2.60)d Pro/Pro vs. Arg/ 2.02 (0.89-4.56)d - 154

Arg Arg

p53 codon 72 P 20 31 Arg/Pro vs. Arg/ 1.41 (0.39-5.13)d Pro/Pro vs. Arg/ 0.63 (0.12-3.32)d - 155

Arg Arg

p53 codon 72 P 64 99 Arg/Pro vs. Arg/ 1.13 (0.52-2.48) Pro/Pro vs. Arg/ 2.00 (0.86-4.67) - 156

Arg Arg

p53 codon 72 OC, P, L, 140 120 Arg/Pro vs. Arg/ 0.96 (0.57-1.61)d Pro/Pro vs. Arg/ 0.49 (0.19-1.26)d - 21

O Arg Arg

p53 codon 72 OC, P, L, 163 163 Arg/Pro vs. Arg/ 1.20 (0.77-1.89)d Pro/Pro vs. Arg/ 1.08 (0.36-3.20)d - 157

O Arg Arg

p53 codon 72 OC 190 308 Arg/Pro vs. Arg/ 1.03 (0.70-1.52)d Pro/Pro vs. Arg/ 1.06 (0.56-2.01)d - 158

Arg Arg

p53 codon 72 OC 72 153 Arg/Pro vs. Arg/ 1.91 (0.73-4.99)d Pro/Pro vs. Arg/ 1.66 (0.55-4.98)d - 159

Arg Arg

p53 codon 72 L 20 40 Arg/Pro vs. Arg/ 0.28 (0.08-0.96)d Pro/Pro vs. Arg/ 0.18 (0.02-1.82)d - 160

Arg Arg

p53 codon 72 OC, P, L 304 333 Arg/Pro vs. Arg/ 1.04 (0.75-1.44) Pro/Pro vs. Arg/ 1.01 (0.54-1.91) Age, sex, smoking, 161

Arg Arg alcohol

p53 codon 72 OC 82 164 Arg/Pro vs. Arg/ 1.06 (0.56-2.02)d Pro/Pro vs. Arg/ 1.60 (0.41-6.20)d - 162

Arg Arg

p53 codon 72 OC 110 26 Arg/Pro vs. Arg/ 2.21 (0.89-5.51)d Pro/Pro vs. Arg/ 4.40 (0.90-21.56)d - 163

Arg Arg

p53 codon 72 P 102 148 Arg/Pro vs. Arg/ 1.55 (0.85-2.83)d Pro/Pro vs. Arg/ 1.93 (0.94-3.98)d - 164

Arg Arg

p53 codon 72 OC 97 97 Arg/Pro vs. Arg/ 0.71 (0.37-1.36)d Pro/Pro vs. Arg/ 1.22 (0.58-2.56)d - 165

Arg Arg

p53 codon 72 OC 44 20 Arg/Pro vs. Arg/ 1.00 (0.28-3.58)d Pro/Pro vs. Arg/ 1.67 (0.31-8.93)d - 166

Arg Arg

p53 codon 72 OC, P, L, 50 142 Arg/Pro vs. Arg/ 0.51 (0.22-1.18) Pro/Pro vs. Arg/ 3.27 (0.90-11.87) - 167

O Arg Arg

p53 codon 72 OC, P, L, 122 193 Arg/Pro vs. Arg/ 1.44 (0.90-2.30)d Pro/Pro vs. Arg/ 0.13 (0.02-1.04)d - 168

O Arg Arg

p53 codon 72 P 53 53 Arg/Pro vs. Arg/ 1.78 (0.62-5.14) Pro/Pro vs. Arg/ 3.67 (1.16-11.56) - 169

Arg Arg

p53 codon 72 P 107 285 Arg/Pro vs. Arg/ 0.97 (0.58-1.64) Pro/Pro vs. Arg/ 2.62 (1.10-6.30) - 170

Arg Arg

p53 codon 72 P 77 141 Arg/Pro vs. Arg/ 0.23 (0.09-0.53) Pro/Pro vs. Arg/ 0.80 (0.23-2.59) - 171

Arg Arg

p53 codon 72 OC, P, L 716 719 Arg/Pro vs. Arg/ 0.92 (0.73-1.14) Pro/Pro vs. Arg/ 1.10 (0.69-1.73) Age, sex, smoking, 153

Arg Arg alcohol

p53 duplication P 73 105 dup(-)/dup(+) vs.  4.97 (1.53-16.09)d dup(+)/dup(+) vs. - - 154

(intron 3) dup(-)/dup(-) dup(-)/dup(-) 

p53 intron 6 P 73 105 A1/A2 vs. A1/A1 2.86 (0.92-8.91)d A2/A2 vs. A1/A1 - - 154

cyclin D1 870 OC, P, L 233 248 GA vs. GG 1.15 (0.75-1.76) AA vs. GG 1.77 (1.04-3.02) Age, sex, smoking, 172

alcohol

cyclin D1 870 P 84 91 GA vs. GG 0.84 (0.38-1.88)d AA vs. GG 0.36 (0.15-0.88)d - 173

cyclin D1 870 OC 70 93 GA vs. GG 0.83 (0.37-1.88)d AA vs. GG 0.80 (0.32-1.98)d - 174
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Table IV. Continued.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene and poly- Tumor Cases Controls Result-1b OR and 95% CIc Result-2b OR and 95% CIc Covariates Ref.
morphic site sitea

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

cyclin D1 870 OC, P, L 147 135 GA vs. GG 0.74 (0.44-1.26)d AA vs. GG 0.75 (0.38-1.49)d - 175

cyclin D1 870 L 66 110 GA vs. GG 0.37 (0.17-0.83)d AA vs. GG 0.17 (0.07-0.42)d - 176

cyclin D1 870 OC 174 155 GA vs. GG 0.65 (0.40-1.07)d AA vs. GG 0.30 (0.14-0.64)d - 177

cyclin D1 870 L 63 102 GA vs. GG 3.02 (1.39-6.56) AA vs. GG 0.66 (0.24-1.79) - 178

cyclin D1 870 P 94 187 GA vs. GG 0.43 (0.23-0.82)d AA vs. GG 0.52 (0.25-1.05)d - 179

cyclin D1 870 OC 176 142 GA vs. GG 1.29 (0.73-2.28) AA vs. GG 1.20 (0.63-2.27) Age, sex 180

cyclin D1 1,722 OC 176 142 GC vs. GG 1.20 (0.70-2.07) CC vs. GG 0.91 (0.48-1.73) Age, sex 180

p21 codon 31 P 76 66 Ser/Arg vs. Ser/ 1.13 (0.15-8.25)d Arg/Arg vs. Ser/ 1.38 (0.16-11.94)d - 184

Ser Ser

p21 codon 31 NS 48 110 Ser/Arg+Arg/ 2.31 (0.87-6.11)d - 185

Arg vs. Ser/Ser

p21 codon 31 P 47 119 CA vs. CC 1.25 (0.47-3.31)d AA vs. CC 1.24 (0.44-3.51)d - 186

p21 -2,298 NS 52 104 GA vs. GG 1.24 (0.54-2.86)d AA vs. GG - - 181

p21 68 NS 52 104 CA vs. CC 1.65 (0.75-3.63)d AA vs. CC - - 181

p21 70 OC, P, L 712 1,222 CT vs. CC 1.47 (1.12-1.93) TT vs. CC 2.01 (0.64-6.31) Age, sex, smoking, 182

alcohol

p21 98 OC, P, L 712 1,222 CA vs. CC 1.32 (1.00-1.73) AA vs. CC 2.50 (0.92-6.81) Age, sex, smoking, 182

alcohol

p21 codon 149 OC 30 50 Asp/Gly+Gly/ 3.56 (1.06-12.23) - 183

Gly vs. Asp/Asp

PLUNC -1,888 P 232 282 TC vs. TT 1.2 (0.8-1.7) CC vs. TT 3.3 (1.8-6.1) Age, sex 187

PLUNC -2,128 P 239 281 TC vs. TT 0.9 (0.6-1.4) CC vs. TT 2.8 (1.7-4.9) Age, sex 187

PLUNC -3,348 P 233 279 AC vs. AA 1.3 (0.6-3.1) CC vs. AA 1.5 (0.6-3.6) Age, sex 187

p16 540 NS 208 224 CG vs. CC 1.01 (0.64-1.61) GG vs. CC 0.74 (0.12-4.57) Age, sex, smoking, 188

alcohol

p16 580 NS 208 224 CT vs. CC 0.97 (0.58-1.64) TT vs. CC 0.49 (0.04-5.49) Age, sex, smoking, 188

alcohol

p27 codon 109 OC, P, L 713 1,224 VG vs. VV 0.92 (0.75-1.12) GG vs. VV 1.20 (0.81-1.77) Age, sex, smoking, 189

alcohol

p73 G4C14/A4T14 OC, P, L 708 1,229 GC/AT vs. 1.36 (1.12-1.66) AT/AT vs. 1.11 (0.73-1.69) Age, sex, smoking, 190

GC/GC GC/GC alcohol

MDM -309 OC, P, L 157 185 wt/vt vs. wt/wt 0.74 (0.46-1.19)d vt/vt vs. wt/wt 0.75 (0.39-1.43)d - 191

FUS2 P 114 55 TA vs. TT 0.50 (0.25-1.01)d AA vs. TT 0.49 (0.17-1.48)d - 192

hCHK2 OC, P, L 215 229 AG vs. AA 0.40 (0.17-0.93) GG vs. AA - Age, sex, smoking, 193

alcohol

H-ras 81 OC 176 142 TC vs. TT 1.59 (0.98-2.56) CC vs. GG 1.78 (0.67-4.74) Age, sex 180

IFN-alpha P 64 99 1-2 vs. 1-1 1.21 (0.51-2.83) 2-2 vs. 1-1 2.76 (1.13-6.73) - 156

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aOC, oral cavity; P, pharynx; L, larynx; O, other; NC, not specified. bdup, duplication; wt, wild-type; vt, variant-type. cOR, odds ratio; 95% CI, 95% confidence interval. dOR and
95% CI were calculated from the genotype distribution.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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dation enzymes, apoptosis signaling and immune response
factors, have been investigated. However, the number of studies
was limited, and we found it difficult to draw conclusions. 

3. Discussion

Molecular epidemiologic studies have provided evidence that
individual susceptibility to cancer is mediated by both genetic
and environmental factors. Interest in the role of genetic
polymorphisms in HNC has increased recently, possibly due
to advances in DNA analysis technologies or our knowledge
of the human genome. The most intensively studied genes
are those encoding enzymes that metabolize carcinogens and
include GSTM1, GSTT1 and GSTP1. This is likely because
these variants are well characterized, and increased cancer
risk associated with these variations is plausible. 

A considerable amount of work has been done on these
genes in relation to risk for HNC. One of the major problems

of these studies is that many have a small sample size
(<100 cases or <100 controls). Case-control studies with
small sample size are reported to inflate ORs (232). To
clarify the effect of genes on the risk of HNC, meta-analysis
is useful because it is a statistical method to integrate and
analyze previous research results. Therefore, the results of
meta-analyses carry greater significance than the results of
individual studies. At present, 23 studies describing meta-
analyses of relations between genetic polymorphisms and
risk of HNC have been published (232-234). The genetic
polymorphisms examined were those in the GSTM1, GSTT1,
GSTP1, XRCC1 codons 194 and 399, and CYP1A1 codon 462.
Among these polymorphisms, a significant relation was
observed between the GSTM1-null genotype and increased risk
for HNC (Table II). When the studies on GSTM1 were stratified
as to Asians and Caucasians, the risk of HNC was more
pronounced in Asian than in Caucasian populations (233).
Polymorphisms in other genes, including GSTT1, GSTP1,
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Table V. Studies on polymorphisms of folate metabolic enzymes and risk of head and neck cancer.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene and poly- Tumor Cases Controls Result-1b OR and 95% CIc Result-2b OR and 95% CIc Covariates Ref.
morphic site sitea

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

MTHFR 677 OC 135 146 CT vs. CC 0.6 (0.3-1.2) TT vs. CC 0.5 (0.2-1.4) Age, sex, smoking, 124

alcohol, place of 

residence

MTHFR 677 NS 50 54 CT vs. CC 1.00 (0.44-2.26)d TT vs. CC - - 231

MTHFR 677 OC, P, L 537 545 CT vs. CC 1.21 (0.9-1.6) TT vs. CC 0.72 (0.5-1.2) Age, sex, smoking, 125

alcohol

MTHFR 677 P 65 100 CT vs. CC 1.43 (0.70-2.95)d TT vs. CC 1.56 (0.63-3.82)d - 126

MTHFR 677 OC 110 120 CT vs. CC 1.88 (1.06-3.34)d TT vs. CC 0.96 (0.32-2.95)d - 127

MTHFR 1,298 OC, P, L 537 545 AC vs. AA 0.69 (0.5-0.9) CC vs. AA 0.28 (0.1-0.6) Age, sex, smoking, 125

alcohol

MTHFR 1,298 P 65 100 AC vs. AA 0.78 (0.41-1.49)d CC vs. AA 1.42 (0.42-4.81)d - 126

MTHFR 1,793 OC, P, L 537 545 GA vs. GG 1.35 (0.9-2.1) AA vs. GG - Age, sex, smoking, 125

alcohol

SHMT1 34,761 OC, P, L 721 1,234 CT vs. CC 0.99 (0.81-1.20) TT vs. CC 1.22 (0.91-1.64) Age, sex, smoking, 128

alcohol

SHMT1 34,840 OC, P, L 721 1,234 CG vs. CC 1.03 (0.84-1.25) GG vs. CC 1.05 (0.77-1.43) Age, sex, smoking, 128

alcohol

SHMT1 34,859 OC, P, L 721 1,234 CT vs. CC 1.11 (0.91-1.35) TT vs. CC 1.10 (0.81-1.49) Age, sex, smoking, 128

alcohol

MTR 2,756 OC, P, L 721 1,442 AG vs. AA 1.31 (1.07-1.60) GG vs. AA 1.00 (0.55-1.84) Age, sex, smoking, 129

alcohol

MTRR 66 OC, P, L 721 1,442 GA vs. GG 1.02 (0.82-1.26) AA vs. GG 0.68 (0.52-0.90) Age, sex, smoking, 129

alcohol

TSER OC, P, L 704 1,085 2R3R vs. 3R3R 1.23 (0.98-1.55) 2R2R vs. 3R3R 1.01 (0.77-1.33) Age, sex, smoking, 130

alcohol

Factror V OC 102 120 wt/vt vs. wt/wt 0.98 (0.29-3.31)d vt/vt vs. wt/wt - - 131

Prothrombin 20,210 OC 102 120 wt/vt vs. wt/wt 0.94 (0.25-3.59)d vt/vt vs. wt/wt - - 131
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aOC, oral cavity; P, pharynx; L, larynx; NC, not specified, bwt, wild-type; vt, variant-type. cOR, odds ratio; 95% CI, 95% confidence interval. dOR and 95% CI were calculated from
the genotype distribution.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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XRCC1 (codon 399), and CYP1A1 (codon 462), tend to be
associated with an increased risk for HNC. One possible
explanation for the lack of significant interaction is that
gene-environment interactions are heterogeneous by
ethnicity, in which case, pooling data from different ethnicities
would dilute the interaction. Another possible explanation is

that these gene-environment interactions are heterogeneous
by tumor site. For instance, oral cancers may have different
genetic backgrounds from those of laryngeal cancers. In
addition, the genotype frequencies in controls vary among
populations. In the Indian population, the prevalence of the
GSTM1- and GSTT1-null genotypes is particularly low. It
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Table VI. Studies on polymorphisms of extracellular matrix degradation enzymes and risk of head and neck cancer.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene and poly- Tumor Cases Controls Result-1 OR and 95% CIb Result-2 OR and 95% CIb Covariates Ref.
morphic site sitea

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

MMP-1 OC, P 125d 249d 1G/2G vs. 1G/1G 0.7 (0.4-1.2) 2G/2G vs. 1G/1G 0.3 (0.1-0.6) Age, smoking 194

MMP-1 OC, P, L, 140 345 1G/2G vs. 1G/1G 0.53 (0.27-1.05)c 2G/2G vs. 1G/1G 0.91 (0.47-1.75)c - 195

O

MMP-1 OC 121 147 1G/2G vs. 1G/1G 2.16 (0.95-4.93)c 2G/2G vs. 1G/1G 2.17 (0.96-4.93)c - 196

MMP-1 OC 96 120 1G/2G vs. 1G/1G 1.91 (0.77-4.73)c 2G/2G vs. 1G/1G 4.19 (1.72-10.24)c - 197

MMP-1 OC, P, L 300 300 1G/2G vs. 1G/1G 0.73(0.47-1.14)c 2G/2G vs. 1G/1G 1.89 (1.21-2.97)c - 198

MMP-1 OC 156 141 1G/2G vs. 1G/1G 0.81 (0.42-1.56) 2G/2G vs. 1G/1G 0.56 (0.29-1.09) Age 199

MMP-2 OC 121 147 CT vs. CC 0.62 (0.34-1.15)c TT vs. CC - - 200

MMP-2 OC, P, L 239 250 CT vs. CC 0.54 (0.34-0.87)c TT vs. CC - - 201

MMP-3 OC, P 125d 249d 5A/6A vs. 5A/5A 0.9 (0.5-1.6) 6A/6A vs. 5A/5A 0.5 (0.2-1.1) Age, smoking 194

TIMP-2 -418 OC, P, L 239 250 CC+GC vs. GG 1.43 (0.98-2.08) Age, sex, smoking, 201

alcohol

TIMP-2 -418 OC 158 168 GC vs. GG 21.31 (9.82-46.21) CC vs. GG 40.88 (2.24-744.4) - 202

GPIa 807 OC 110 114 CT vs. CC 1.25 (0.56-2.77)c TT vs. CC 3.50 (1.29-9.47)c - 203

Urokinase 3'-UTR OC 130 106 CT vs. CC 2.83 (1.35-5.96) - 204

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aOC, oral cavity; P, pharynx; L, larynx; O, other. bOR, odds ratio; 95% CI, 95% confidence interval. cOR and 95% CI were calculated from the genotype distribution. dMale.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Table VII. Studies on polymorphisms of apoptosis signaling factors and risk of head and neck cancer.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene and poly- Tumor Cases Controls Result-1 OR and 95% CIb Result-2 OR and 95% CIb Covariates Ref.
morphic site sitea

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
FAS -1,377 OC, P, L 721 1,234 GA vs. GG 0.91 (0.73-1.15) AA vs. GG 2.23 (1.07-4.64) Age, sex, smoking, 205

alcohol

FAS -670 OC, P, L 721 1,234 AG vs. AA 1.21 (0.98-1.51) GG vs. AA 1.29 (0.99-1.68) Age, sex, smoking, 205

alcohol

FAS -670 P 170 224 AG vs. AA 2.00 (1.19-3.33) GG vs. AA 3.19 (1.76-5.77) Age, sex 206

FASLG -844 OC, P, L 721 1.234 CT vs. CC 0.93 (0.76-1.13) TT vs. CC 0.82 (0.61-1.11) Age, sex, smoking, 205

alcohol

FASLG IVS2nt -124 OC, P, L 721 1.234 AG vs. AA 0.97 (0.78-1.20) GG vs. AA 0.83 (0.46-1.50) Age, sex, smoking, 205

alcohol

TRAIL-R1 422 NS 19 45 GA vs. GG 1.04 (0.23-4.71)c AA vs. GG 6.00 (1.17-30.72)c - 207

TRAIL-R1 422 NS 37 48 GA+AA vs. GG 4.52 (1.37-14.94)c - 208

TRAIL-R2 626 NS 19 45 CG vs. CC 1.75 (0.39-7.91)c GG vs. CC 4.50 (0.97-20.83)c - 207

TRAIL-R2 626 NS 41 48 CG+GG vs. CC 4.72 (1.57-14.17)c - 208

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aOC, oral cavity; P, pharynx; L, larynx. bOR, odds ratio; 95% CI, 95% confidence interval; cOR and 95% CI were calculated from the genotype distribution.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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Table VIII. Studies on polymorphisms of immune response factors and risk of head and neck cancer.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene and poly- Tumor Cases Controls Result-1b OR and 95% CIc Result-2b OR and 95% CIc Covariates Ref.
morphic site sitea

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
TNF-alpha -308 P 47 119 AG vs. AA 2.67 (1.03-6.92)d GG vs. AA - - 186

TNF-alpha -308 P 140 274 GA vs. GG 0.77 (0.49-1.21) AA vs. GG 1.38 (0.56-3.39) - 209

TNF-alpha -308 OC 192 146 GA vs. GG 2.16 (1.10-4.24) AA vs. GG - - 210

TNF-alpha -308 OC 137 102 GA vs. GG 0.60 (0.27-1.37) AA vs. GG - - 54

TNF-alpha -308 P 23 50 GA vs. GG 0.8 (0.2-2.6) AA vs. GG - - 211

TNF-alpha -1,031 P 23 50 TC vs. TT 0.9 (0.3-2.7) CC vs. TT - - 211

TNF-alpha -238 OC 192 146 GA vs. GG 0.26 (0.08-0.8) AA vs. GG - - 210

TNF-alpha -806 P 23 50 CT vs. CC 0.3 (0.0-2.9) TT vs. CC - - 211

TNF-alpha -857 P 23 50 CT vs. CC 0.9 (0.3-2.8) TT vs. CC - - 211

TNF-alpha -863 P 23 50 CA vs. CC 1.2 (0.4-3.6) AA vs. CC - - 211

IL-1 beta OC 153 711 TC vs. TT 1.21 (0.81-1.79) CC vs. TT 0.87 (0.45-1.71) Age, sex, smoking, 212

alcohol, center

IL-1 beta P 98 699 TC vs. TT 1.53 (0.94-2.49) CC vs. TT 2.39 (1.19-4.81) Age, sex, smoking, 212

alcohol, center

IL-1 beta L 288 699 TC vs. TT 1.08 (0.78-1.50) CC vs. TT 1.06 (0.63-1.78) Age, sex, smoking, 212

alcohol, center

IL-1 -511 OC 130 105 CT vs. CC 1.32 (0.71-2.46)d TT vs. CC 0.87 (0.41-1.83)d - 213

IL-1 exon 5 OC 130 105 E1E2 vs. E1E1 0.54 (0.09-3.27)d E2E2 vs. E1E1 - - 213

IL-8 OC 153 725 TA vs. TT 0.96 (0.61-1.50) AA vs. TT 1.10 (0.66-1.83) Age, sex, smoking, 212

alcohol, center

IL-8 P 107 725 TA vs. TT 1.02 (0.59-1.76) AA vs. TT 1.38 (0.75-2.54) Age, sex, smoking, 212

alcohol, center

IL-8 L 313 725 TA vs. TT 0.66 (0.46-0.94) AA vs. TT 0.82 (0.54-1.25) Age, sex, smoking, 212

alcohol, center

IL-8 OC 158 156 TA vs. TT 1.76 (1.11-2.79) AA vs. TT - - 214

IL-10 -1,082 P 89 130 AG vs. AA 1.1 (0.7-2.8) GG vs. AA 1.1 (0.8-2.8) Age, sex, ethnicity 215

IL-10 -592 P 89 130 CA vs. CC 1.0 (0.5-3.1) AA vs. CC 1.2 (0.5-3.4) Age, sex, ethnicity 215

IL-10 -819 P 89 130 CT vs. CC 1.0 (0.5-3.1) TT vs. CC 1.2 (0.5-3.4) Age, sex, ethnicity 215

IL-4 -590 OC 130 105 TT vs. TC 1.8 (0.9-3.4) CC vs. TC 6.0 (1.2-30.7) - 213

IL-4 intron 3 OC 130 105 RP1/RP2 vs. 0.63 (0.35-1.13)d RP2/RP2 vs. 0.41 (0.10-1.79)d - 213

RP1/RP1 RP1/RP1

IL-18 -137 P 89 130 GC vs. GG 1.2 (0.5-3.0) CC vs. GG 2.1 (0.4-4.3) Age, sex, ethnicity 215

IL-18 -607 P 89 130 AC vs. AA 1.0 (0.7-2.6) CC vs. AA 1.4 (0.9-3.3) Age, sex, ethnicity 215

IL-6 -174 OC 162 156 GC vs. GG 3.74 (2.29-6.11) CC vs. GG 7.39 (2.61-20.92) Age, sex, ethnicity 216

TLR10 720 P 477 567 AC vs. AA 0.93 (0.70-1.24) CC vs. AA 0.95 (0.67-1.34) - 217

TLR10 891 P 477 570 GA vs. GG 0.87 (0.63-1.19) AA vs. GG 0.23 (0.03-1.99) - 217

TLR10 908 P 476 568 AG vs. AA 1.17 (0.88-1.56) GG vs. AA 1.56 (0.61-4.00) - 217

TLR10 976 P 479 569 TC vs. TT 0.92 (0.67-1.28) CC vs. TT 0.39 (0.08-1.93) - 217

TLR10 1.031 P 471 540 GT vs. GG 0.88 (0.68-1.14) TT vs. GG 0.72 (0.48-1.09) - 217

TLR10 1.104 P 475 547 AC vs. AA 0.85 (0.63-1.14) CC vs. AA 0.99 (0.70-1.41) - 217

TLR10 1.141 P 470 550 GA vs. GG 0.84 (0.65-1.09) AA vs. GG 1.48 (0.89-2.46) - 217

PTGS2 OC 153 711 TC vs. TT 1.07 (0.73-1.58) CC vs. TT 0.65 (0.32-1.36) Age, sex, smoking, 212

alcohol, center

PTGS2 P 99 711 TC vs. TT 1.34 (0.82-2.17) CC vs. TT 1.37 (0.62-3.06) Age, sex, smoking, 212

alcohol, center

PTGS2 L 281 711 TC vs. TT 0.88 (0.63-1.22) CC vs. TT 0.60 (0.34-1.05) Age, sex, smoking, 212

alcohol, center

PIGR IVS3-156 P 175 317 Positive/Null vs. 1.49 (0.98-2.26)d Null/Null vs. 1.31 (0.73-2.33)d - 218

Positive/Positive Positive/Positive
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Table VIII. Continued.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene and poly- Tumor Cases Controls Result-1b OR and 95% CIc Result-2b OR and 95% CIc Covariates Ref.
morphic site sitea

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
PIGR 1,093 P 175 317 GA vs. GG 1.08 (0.73-1.59)d AA vs. GG 0.66 (0.34-1.30)d - 218

PIGR 1,739 P 175 317 CT vs. CC 0.37 (0.24-0.56)d TT vs. CC 0.45 (0.17-1.18)d - 218

HLA-E 77 P 100 100 CT vs. CC 1.35 (0.74-2.44)d TT vs. CC 2.24 (0.83-6.07)d - 107

HLA-E 107 P 100 100 AG vs. AA 1.84 (0.72-4.66)d GG vs. AA 3.55 (1.38-9.08)d - 107

MPO -463 L 245 270 GA vs. GG 0.62 (0.42-0.91) AA vs. GG 0.86 (0.24-3.02) - 219

MPO -463 P 255 270 GA vs. GG 0.78 (0.54-1.13) AA vs. GG 1.39 (0.49-4.00) - 219

NFKbeta1 OC 212 201 del/ins vs. del/del 1.18 (0.73-1.88) ins/ins vs. del/del 1.60 (0.93-2.77) - 220

CCR5 L 34 267 wt/vt vs. wt/wt 0.59 (0.08-4.67) vt/vt vs. wt/wt - - 221

CTLA-4 OC 118 147 AG vs. AA 1.89 (0.87-4.10)d GG vs. AA 1.72 (0.78-3.79)d - 222

HSP70-2 P 140 274 P1/P2 vs. P1/P1 1.24 (0.78-1.99) P2/P2 vs. P1/P1 2.31 (1.26-4.22) - 209

CR2 IVS-848 P 175 317 Positive/Null vs. 0.76 (0.10-5.61)d Null/Null vs. 0.50 (0.07-3.56)d - 218

Positive/Positive Positive/Positive

Tx SNP3 P 82 80 GC vs. GG 2.76 (1.39-5.45)d CC vs. GG 2.81 (1.03-7.68)d - 223

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aOC, oral cavity; P, pharynx; L, larynx. bdel, deletion; ins, insertion; wt, wild-type; vt, variant-type. cOR, odds ratio; 95% CI, 95% confidence interval. dOR and 95% CI were
calculated from the genotype distribution. 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Table IX. Studies on polymorphisms of growth factors, vitamin and sex hormone, and risk of head and neck cancer.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene and poly- Tumor Cases Controls Result-1 OR and 95% CIb Result-2 OR and 95% CIb Covariates Ref.
morphic site sitea

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Growth factor

EGFR CA repeat OC 124 138 one allele≤16 vs. 1.8 (0.9-3.5) both alleles≤16 vs. 2.1 (0.9-5.2) Age, sex, smoking, 224

both alleles>16 both alleles>16 alcohol, fruit and 

vegetables con-

sumption

IGF-2 Msp1 OC 60 45 AG vs. AA 9.11 (3.62-22.96)c AA vs. GG 18.67 (2.07-168.1)c - 225

IGFR2R OC 93 94 167 bp/other vs. 2.7 (1.16-6.48) 167 bp/167 bp vs. 1.0 (0.18-5.69) Age, sex, smoking, 226

other/other other/other alcohol, hospital

INS 1127 Pst1 OC 60 45 TC vs. TT 0.72 (0.29-1.80)c CC vs. TT 0.44 (0.07-2.82)c - 225

TGFalpha OC 131 132 c1/c2 vs. c1/c1 0.6 (0.2-1.3) c2/c2 vs. c1/c1 - Age, sex, smoking, 224

alcohol, fruit and 

vegetables con-

sumption

TGFbeta1 -509 P 108 120 CT vs. CC 1.31 (0.64-2.66) TT vs. CC 2.48 (1.17-5.26) - 227

TGFbeta1 869 P 108 120 TC vs. TT 1.51 (0.74-3.08) CC vs. TT 2.78 (1.29-5.99) - 227

VEGF -460 OC 137 230 TC vs. TT 0.02 (0.01-0.05)c CC vs. TT - - 228

Vitamin

VDR FokI OC, P, L 719 821 Ff vs. FF 0.85 (0.68-1.06) ff vs. FF 0.64 (0.47-0.87) Age, sex, smoking, 229

alcohol

VDR TaqI OC, P, L 719 821 Tt vs. TT 0.97 (0.77-1.22) tt vs. TT 0.72 (0.53-0.98) Age, sex, smoking, 229
alcohol

Sex hormone

AR OC, P, L 103d 100d CAG repeat>20 2.54 (1.3-4.8) - 230

vs. ≤20
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aOC, oral cavity; P, pharynx; L, larynx. bOR, odds ratio; 95% CI, 95% confidence interval. cOR and 95% CI were calculated from the genotype distribution. dMale.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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will be of interest to explore further whether these genotypes
are more relevant in specific ethnic groups with respect to the
risk for HNC. Additional data have been published since the
last meta-analysis, and a meta-analysis that includes the most
recent data should be conducted to clarify the role of these
polymorphisms.

Alcohol consumption is a major risk factor for HNC as
well as esophageal cancer, and dose-response trends have
been reported (6). There are consistent findings that the *1/*2
genotype of ALDH2 is associated with increased risk of
HNC. In contrast, the *2/*2 genotype of the gene might be
associated with decreased risk of HNC. The latter finding
may seem somewhat confusing. A meta-analysis showed that
the *1/*2 genotype of ALDH2 is associated with increased
risk and that the *2/*2 genotype is associated with a decreased
risk of esophageal cancer (265). These findings may be due
to markedly lower alcohol consumption in *2/*2 vs. *1/*1
homozygotes because *2/*2 homozygotes are alcohol
intolerant and can have severe reactions following intake of
small amounts of alcohol (250,265). Reduced consumption
of alcohol may reduce the risk for HNC as well as the risk for
esophageal cancer.

ADH2 influences serum concentrations of acetaldehyde
after ingestion of alcohol. There has been only 1 study of the
relation between ADH2 polymorphisms and HNC risk.
ADH2*1/*1 homozygotes shows significantly increased
risk for HNC (118). ADH2*1/*1 homozygotes also show a
significantly increased risk for esophageal cancer (10).
Because HNC and esophageal cancer have similar etiologies,
ADH2*1*1 homozygotes may have increased risk for both
HNC and esophageal cancer. To confirm this hypothesis,
further studies needed to confirm the relation between ADH2
polymorphisms and risk for HNC.

There have been consistent findings that the Tyr/His and
His/His genotypes of EPHX1 codon 113 are associated with
increased risk of HNC. However, results for the relation
between EPHX1 codon 139 polymorphisms and risk of HNC
are inconsistent. These results may be due to differences in
activity between the EPHX1 His113 variant and EPHX1
Arg139 variant.

In addition to ALDH2 and EPHX1 codon 113, there are
consistent findings that the p53 codon 72 Pro/Pro genotype is

associated with increased HNC risk. Several researchers
reported significant associations between the p53 codon 72
Pro/Pro genotype and lung (266), esophageal (10), gastric
(2667) and skin (268) cancers. To confirm the degree to
which the p53 codon 72 polymorphism contributes to HNC,
meta-analyses should be conducted.

We previously published a review of genetic poly-
morphisms and risk of esophageal cancer (10). HNC and
esophageal cancer have similar etiologies, and the association
between HNC and esophageal cancer is well known (269,270).
For instance, in a median 29-month follow-up period, eso-
phageal cancer was diagnosed in 7.4% of patients with HNC
(269). Similar patterns of genetic polymorphisms between
HNC and esophageal cancer risks are observed. The Val allele
of CYP1A1 codon 462, Pro/Pro genotype of p53 codon 72 and
the *1/*2 genotype of ALDH2 may increase both risks for
HNC and esophageal cancer. However, the GSTM1-null
genotype significantly increases the risk of HNC compared
with GSTM1-postive genotype, but it does not increase the
risk of esophageal cancer (OR, 1.07; 95% CI, 0.76-1.51)
according to the results of meta-analyses (232,233,265).
Similarly, the GSTT1-null genotype may increase the risk of
HNC (OR, 1.17; 95% CI, 0.98-1.40) compared with GSTT1-
positive genotype, but it does not increase the risk of eso-
phageal cancer (OR, 0.99; 95% CI, 0.80-1.22) (232,265). In
contrast to HNC, the occurrence of esophageal cancer shows
a remarkable geographic bias. Most patients with esophageal
cancer live in the ‘esophageal cancer belt’, which stretches
from North-Central China westward through Central Asia
to Northern Iran. Environmental risk factor(s) other than
tobacco smoking, alcohol consumption and betel quid chewing
may affect the geographic bias, and differences in genetic
polymorphisms may also affect the bias. 

Most genetic association studies use a case-control design.
One important factor is the number of cases available to study.
There are some advantages to increasing the number of control
subjects (that is, having >1 matched control for each case).
In practice 2:1 matching of control subjects to cases often
provides the most efficient design for relatively common
diseases. The size of the population required to determine
a relative risk of a polymorphism is dependent on the allele
frequency of the polymorphism. For example, with 90% power,

HIYAMA et al:  GENETIC POLYMORPHISMS AND HEAD AND NECK CANCER RISK966

Table X. Summary of previous meta-analyses of genetic polymorphisms and head and neck cancer risk.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene and polymorphic site Year Result Summary OR (95% CI)a No. of included studies Ref.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
GSTM1 2003 Null vs. Positive 1.23 (1.06-1.42) 30 232

GSTT1 2003 Null vs. Positive 1.17 (0.98-1.40) 21 232

GSTP1 2003 Ile/Val+Val/Val vs. Ile/Ile 1.10 (0.92-1.31) 9 232

CYP1A1 codon 462 2003 Ile/Val+Val/Val vs. Ile/Ile 1.32 (0.95-1.82) 12 232

GSTM1 2006 Null vs. Positive 1.50 (1.21-1.87) 30 233

XRCC1 codon 194 2005 Arg/Trp+Trp/Trp vs. Arg/Arg 0.85 (0.59-1.23) 3 234

XRCC1 codon 399 2005 Gln/Gln vs. Arg/Arg 1.13 (0.81-1.58) 4 234
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aOR, odds ratio; 95% CI, 95% confidence interval.

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
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750 cases and the same number of controls are necessary
to calculate an OR of >1.5 and a minor allele frequency of
0.4. Six hundred cases and the same number of controls
are necessary for the same effect size and a minor allele
frequency of 0.2 (271). Programs for estimating required
sample size are available [http://hydra.usc.edu/gxe/ (272) and
http://Statgen.iop.kcl.ac.uk/gpc (273)].

The best scientific evidence for associations of genetic
factors with risk for HNC will come from large cohort studies
that consider simultaneously the different factors potentially
involved in carcinogenesis of the head and neck, including
genetic polymorphisms and environmental factors, such as
drinking alcohol and smoking tobacco. Identification of genetic
factors that modify the impacts of environmental factors will
depend on direct exploration of interactions between genes
and environment (274). Furthermore, simultaneous analysis
of multiple polymorphic genes should be done to address the
possibility of identifying gene-gene interactions. The results of
such studies will allow us to estimate the relative contribution
of individual genetic variations to overall HNC risk. 
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