INTERNATIONAL JOURNAL OF ONCOLOGY 33: 1017-1025, 2008

Molecular classification of brain tumor biopsies using
solid-state magic angle spinning proton magnetic
resonance spectroscopy and robust classifiers

OVIDIU C. ANDRONESI'Z*, KONSTANTINOS D. BLEKAS**, DIONYSSIOS MINTZOPOULOS! 2,
LOUKAS ASTRAKAS!#, PETER M. BLACK?® and A.ARIA TZIKA!?

INMR Surgical Laboratory, Department of Surgery, Harvard Medical School and Massachusetts General Hospital;

2Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston,

MA 02114, USA; Departments of 3Computer Science, *Medical Physics, University of Ioannina, loannina 45110, Greece;
5Department of Neurosurgery Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA

Received June 26, 2008; Accepted August 1,2008

DOI: 10.3892/ijo_00000090

Abstract. Brain tumors are one of the leading causes of death
in adults with cancer; however, molecular classification of
these tumors with in vivo magnetic resonance spectroscopy
(MRYS) is limited because of the small number of metabolites
detected. In vitro MRS provides highly informative biomarker
profiles at higher fields, but also consumes the sample so that
it is unavailable for subsequent analysis. In contrast, ex vivo
high-resolution magic angle spinning (HRMAS) MRS
conserves the sample but requires large samples and can pose
technical challenges for producing accurate data, depending
on the sample testing temperature. We developed a novel
approach that combines a two-dimensional (2D), solid-state,
HRMAS proton ('"H) NMR method, TOBSY (total through-
bond spectroscopy), which maximizes the advantages of
HRMAS and a robust classification strategy. We used ~2 mg
of tissue at -8°C from each of 55 brain biopsies, and reliably
detected 16 different biologically relevant molecular species.
We compared two classification strategies, the support vector
machine (SVM) classifier and a feed-forward neural network
using the Levenberg-Marquardt back-propagation algorithm.
We used the minimum redundancy/maximum relevance
(MRMR) method as a powerful feature-selection scheme along
with the SVM classifier. We suggest that molecular charac-
terization of brain tumors based on highly informative 2D MRS
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should enable us to type and prognose even inoperable patients
with high accuracy in vivo.

Introduction

Brain tumors are the leading cause of cancer death in children,
the second most common cause of cancer in young adults,
and account for a high proportion of deaths in older adults
(1). According to the US Central Brain Tumor Registry,
between 2000 and 2004 35,347 males and 28,477 females
died from primary malignant brain and other central nervous
system (CNS) tumors (www .cbtrus.org). With current advances
in imaging, surgery, radiotherapy, and chemotherapy, and in
combination with new approaches in anti-angiogenesis, the
outcome of individuals with CNS tumors has been improving
(2-4). Even some high-grade tumors, such as ependymomas
or medulloblastomas, can now be cured in children with the
appropriate therapy (5,6).

The most widely used histological system of brain
tumor typing is the classification scheme of the World Health
Organization (WHO), in which tumors are classified according
to histological features characteristic of the assumed cell of
origin (7). However, diagnoses are frequently controversial,
since tumors often do not follow classic histology, and patho-
logical diagnosis can therefore be subjective (8). Thus, a non-
subjective diagnostic approach that relies on highly informative
biomarkers is needed to improve tumor typing accuracy and
the appropriateness of the treatment course chosen. Such an
approach would markedly improve the long-term prognosis,
quality of life, and survival of patients with brain tumors.

Magnetic resonance spectroscopy (MRS) can provide
statistically differentiable molecular biomarkers for tumor
grade differentiation, treatment and patient survival prediction
(9). Ex vivo high-resolution magic angle spinning (HRMAS)
proton ("H) MRS of unprocessed tissue samples (10) can
help to interpret in vivo 'H MRS results. This technique can
not only improve micro-heterogeneity analysis of high-grade
tumors (11), but can also elucidate the relationships between
clinically-relevant cell processes and specific metabolites,
such as choline-containing compounds involved in phospho-
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lipid metabolism and lipids involved in apoptosis leading
to necrosis (12). Two-dimensional (2D) HRMAS 'H MRS
enables more detailed and unequivocal assignments of bio-
logically important metabolites in intact tissue samples (13-16).
Furthermore, 2D MRS sequences have been implemented
in vivo with relative success (17-20).

The use of MRS classification and statistical analyses for
both in vivo and in vitro data has been widely reported (21-33).
One of the principal difficulties in such analyses is the large
number of metabolites that may contribute to the spectra, each
with relative intensities that can vary greatly even in samples
of the same type (22). Nonetheless, even early studies have
reported that the spectra of body fluids obtained with MRS
are systematically different between tumor patients and
healthy individuals. In many cases, successful differentiation
using both linear and nonlinear methods can be made, based
on single resonance peaks or ratios of resonance ranges (23).
Recent work on brain tumors has shown that classification
according to histological type and grade is possible using
similar approaches, such as linear discriminant analysis after
feature extraction with independent components analysis in a
Bayesian framework (27), correlation analysis and stepwise
linear discriminant analysis (28), or belief networks (32).
Support vector machines (SVMs) and probabilistic neural
networks have also been employed in image-analysis systems
to assist in brain tumor diagnosis (34-36).

Here, we present a brain tumor biopsy study that should
enable the development of new clinical tools to better assess
operable cancers via tissue molecular characterization and
fingerprinting. This work should also facilitate the distinction
of tumor types that cannot be readily distinguished histo-
pathologically (37) or with routine neuroimaging (38). Such
progress will enable neurooncologists, neuropathologists,
neurosurgeons, and neurologists to make informed decisions
related to tumor type, grade, and treatment options. This work
will also facilitate the clinical application of lower resolution
in vivo MRS to inoperable cancers using metabolic biomarkers
to monitor anticancer therapies, in order to improve patient
survival and quality of life.

Materials and methods

Tissue biopsies. Fifty-five samples of control biopsies from
epileptic surgeries (n=9) and tumor biopsies (n=46) were
analyzed. The tumor biopsies belonged to three categories:
high-grade [20 cases: 12 glioblastoma multiforme (GBM);
8 anaplastic astrocytoma (AA)], low-grade (17 cases: 7 menin-
gioma; 7 schwanoma; 3 pylocitic astrocytoma), and brain
metastases (9 cases: 5 from adenocarcinoma; 4 from breast
cancer). Subjects ranged in age from 17 to 54 years.

HRMAS '"H MRS using adiabatic TOBSY. We previously
designed a 2D ex vivo HRMAS 'H MRS procedure for brain
tumors, based on novel concepts rooted in solid-state NMR
spectroscopy (39). The rationale for our approach is that as
tumor biopsies are more solid than liquid in nature, conven-
tional liquid-state NMR pulse sequences that rely on scalar-
coupling-mediated magnetization transfer (i.e., total correlated
spectroscopy or TOCSY) may not be the best choice for these
purposes. Although magic angle spinning (MAS) averages
anisotropic interactions such as chemical shielding anisotropy
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(CSA) or dipolar couplings (D), these can be reintroduced
unintentionally by pulse sequences not designed to eliminate
them; hence, the scalar-coupling transfer is compromised,
and the efficiency of these pulse sequences can be dramatically
altered under MAS conditions.

Briefly, we designed a pulse sequence, using symmetry
principles (40) to maximize scalar-coupling transfer under
MAS conditions, for samples that are predominantly solid in
character. This was done by removing, based on the 1st order
Average Hamiltonian Theory, the anisotropic interactions
(CSA and D) and the offset frequency. We modified an existing
pulse sequence, C9, which is based on a concept known as
TOBSY in solid-state NMR (41). The C9 pulse sequence has
been used successfully for *C NMR spectroscopy to study the
structure and dynamics of membrane proteins in proteolipo-
some samples that closely mimic tissue properties (42). For
the purposes of our project, several modifications were made
to: select the C9!,5 symmetry and b) construct C elements from
adiabatic pulses [WURST (43)] that enhance signal-to-noise
ratios and robustness with respect to radio-frequency field
calibration (39).

All HRMAS 'H MRS using TOBSY experiments were
performed on a Bruker Bio-Spin Avance NMR spectrometer
(600.13 MHz) using a 4-mm triple resonance ('H, *C, ?H)
HRMAS probe (Bruker). Specimens were pre-weighed (~2 mg)
and transferred to a ZrO, rotor tube (4 mm diameter, 50 ul),
containing an external standard [trimethylsilyl propionic-
2,2.3,3-d, acid (TSP), M, =172, d=0.00 ppm] that functioned
as a reference for both chemical shift and quantification. The
HRMAS 'H MRS was performed at -8°C with 3 kHz MAS
speed to minimize tissue degradation. Typical acquisition para-
meters were: 2 k points direct dimension (13 ppm spectral
width), 200 points indirect dimension (7.5 ppm spectral width),
8 scans with 2 dummy scans, 1 sec water pre-saturation, 2 sec
total repetition time, 45 msec mixing time and total acquisition
time 45 min.

Analysis of 2D TOBSY MR spectra. The spectra of intact
specimens were analyzed using the XWINNMR 3.5 software
package (Bruker Biospin Corporation, Billerica, MA). Before
Fourier transformation and phasing, the 2D free induction
decays were subjected to QSINE = 3 window apodization.
Baseline correction was then performed using a low order
spline function. After Lorentzian and/or Gaussian fitting, the
area under the curves or the volumes of the 15 most intense
spectra resonances were calculated. Relative quantification
using the TSP standard was performed as described below.
These resonances were identified and assigned to the cor-
responding metabolites.

Quantification of brain metabolites from the 2D TOBSY MR
spectra. To quantify the brain metabolites, we used the ratio of
the cross peak volumes of the metabolites [CPV(M)] to the
TSP diagonal peak volume [DPV(TSP)]. This ratio was further
divided by the biopsy weight (w) to yield the normalized
metabolite intensity: I, (M) = 1/w x CPV (M)/DPV (TSP).

Brain tumor biopsy classification strategy. We applied two
classifiers: a linear support vector machine (SVM) (44) and a
feed-forward neural network using the Levenberg-Marquardt
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back-propagation algorithm (45) for training (NN-MLP). The
SVM methods classify data by first mapping the data in a
hyper-dimensional space and subsequently separating the data
into distinct clusters by defining a hyper-plane that ‘cuts’ the
hyper-dimensional space into disjointed regions. The data
located in one such region belong to a single cluster. The
dimensionality of the hyper-dimensional space must be higher
than that of the data space. The choice of how to map the
data into the hyper-dimensional space may be informed by
the problem, or the data may be embedded using some choice
of basis functions (such as polynomial or Gaussian). Linear
SVM methods search for the optimal hyper-plane to cut the
hyper-dimensional space by solving a quadratic programming
problem (44). Least-squares SVM (SVM-LS) search for the
optimal separating hyper-plane by minimizing a least-squares
cost function (46). The reason for trying both versions is that
the computational cost of linear SVM methods is a rapidly
increasing function of the SVM training set, whereas SVM-LS
methods are far more tractable computationally.

Artificial neural networks (ANNSs) have been established
as useful tools for classification and function approximation
problems (47). These networks are comprised of layers of
nodes (‘neurons’). Each node receives N inputs from N other
sources (the environment or other nodes), weighs each input by
a weight (N weights total), and produces a nonlinear response -
for example, a binary response (1 when a threshold is exceeded,
otherwise 0) or a sigmoidal function for continuous output.
An ANN can be built as a hierarchy of neuronal layers. The
ANN computations use both forward propagation (‘feed-
forward’), from the input-layer to the output-layer nodes, and
reverse propagation (‘back-propagation’), from the output-
layer to the input-layer nodes, in order to satisfy criteria of
numerical convergence to a solution. Typically, weights are
initially chosen randomly, and the output is compared to the
correct (known) output for the training set. A computational
search is then performed to solve for the optimal set of N
weights that minimizes the distortion of the computed output
relative to the true one. An important characteristic of ANNs
is that it is not necessary to have a complete knowledge of
the relationship among the variables in the problem.

Both methods, SVM and ANN, face practical limitations
from their unavoidable use of training sets. For example,
the SVM hyper-plane separating disjointed regions may be
erroneously drawn so that a new datum is placed in the wrong
region (cluster); this is particularly likely when data points
belonging to different clusters are close to each other in hyper-
dimensional space. Similarly, for ANNSs, the optimal weights
for the training set may not accurately reflect the optimal
weights for the problem. Therefore, for both methods it is
important to have databases where new data are added and
the algorithms are re-trained on the increasing total number
of cases.

Fig. 1 represents the general architecture of the classifi-
cation system we used. This classification system consists of
a preprocessing step, where a subset of features is selected,
and a main step, where the subset is used as input to the main
body of the classifier. The primary reason for selecting the
feature subset (or ‘reduced feature space’) was to speed up
the numerical computation process. Two MRS feature spaces
were selected: the full feature space comprised of all 16 MRS
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Figure 1. Building blocks of the classification system. Support vector machine
(SVM) and neural network Levenberg-Marquardt back-propagation (NN-
MLP) classifiers were used. First, the feature space is selected. All three
selected feature spaces (full feature space with all 16 MRS features, reduced
feature space using the MRMR feature selection, 4 MRS features) were input
into the linear and least-squares SVM classifiers; and two feature spaces (all
16 MRS features, 4 MRS features) were input into the NN-MLP classifier.
The SVM classifiers separate the data into clusters by drawing an optimal
hyperplane through the hyper-dimensional space in which the original feature
space is embedded such that it separates said hyper-dimensional space into
respective disjointed regions. In the schematic, the nearest data points from
the two regions (two clusters) are equidistant to the optimal hyperplane at a
distance A. The NN-MLP classifiers use an iterative technique that combines
the input/output of artificial neurons to achieve a similar result.

features, and a reduced feature space comprised of 4 specific
features [choline (Cho), lactate (Lac), lipids (Lip), and n-acetyl
aspartate (NAA)]. In the case of the SVM classifier, a feature
selection scheme was also used, thus producing a third
MRS feature space. Specifically, we selected the minimum
redundancy/maximum relevance (MRMR) method (48), a
powerful framework for feature selection that captures class
characteristics in a broader spectrum by reducing mutual
redundancy within the feature set.

The classifiers were tested by comparing their discrimi-
nation behavior to a binary classification problem; namely,
each individual class was compared against all other classes.
We must note here that during all experiments with both
classifiers we adopted the standard leave-one-out training/
testing scheme; all but one element of the data was used as a
training set, and the left-out case was used for testing the
predictive performance of the resulting classifier. The per-
formance of each classifier was evaluated using the classifi-
cations of ‘accuracy’ (the percentage of correctly classified
cases), ‘sensitivity’ (the ratio of true positives to the sum of
true positives and false negatives), and ‘specificity’ (the ratio of
true negatives to the sum of false positives and true negatives).

During all SVM classification experiments we used the
LIBSVM environment (www.csie.ntu.edu.tw/"cjlin/libsvm),
where the SVM soft-margin constant C was set to 100. For
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Table I. The accuracy, sensitivity and specificity of the three classifiers, estimated using reduced- and full-feature spaces.

SVM linear SVM-LS with NN-MLP
Binary classification problem RBF kernel
using using Feature selection first using using
Metric Class examined 4 features 16 features 4 features 16 features
Cho, Lac, Selected features Cho, Lac,
Lip, NAA Lip, NAA

Accuracy Normal 98.2 98.2 3 features: 100.0 96.4 96.4 98.2
Sensitivity 9 samples 100.0 100.0 'NAA','Asp', 'PC' 100.0 77.8 100.0 100.0
Specificity 97.8 97.8 100.0 100.0 95.7 97.8
Accuracy High-grade 522 804 7 features: 804 76.1 69.6 783
Sensitivity ~ group 50 85.0 'Etn', 'PC', ' NAA'",'GIn', 85.0 70.0 60.0 70.0
Specificity 20 samples 88.5 76.9 'PUFA" 'GABA','Ala’ 769 80.8 76.9 84.6
Accuracy Low-grade 69.6 76.1 7 features: 78.3 73.9 69.6 804
Sensitivity ~ group 88.2 64.7 Lip', 'Etn' NAA''GIu"  70.6 353 529 824
Specificity 17 samples 58.6 82.8 "Asp", "GIn", '"Tau' 82.8 96.6 79.3 793
Accuracy Metastasis 78.3 78.3 4 features 91.3 84.8 78.3 84.8
Sensitivity ~ group 11.1 444 'Asp' 'PUFA 'Etn’ 55.6 222 333 55.6
Specificity 9 samples 94.6 86.5 'Glu' 100.0 100.0 89.2 91.9
Accuracy Glioblastoma 82.6 84.8 11 features: 87.0 804 87.0 76.1
Sensitivity ~ multiforme 58.3 83.3 'Etn' 'PC' 'NAA' 'Cho' 83.3 25.0 83.3 75.0
Specificity  (subgroup) 912 853 'GABA' 'PUFA' 'GIn' 88.2 100.0 88.2 76.5

12 samples 'Ala' 'Asp' 'GPC' 'Lac'
Accuracy Anaplastic 82.6 89.1 11 features: 89.1 82.6 674 89.1
Sensitivity  astrocytoma 12.5 62.5 NAA, Et, Lip, Gln, 75.0 0.0 12.5 62.5
Specificity ~ (subgroup) 974 94.7 Tau, Ala, GABA, 92.1 100.0 78.9 94.7

8 samples GPC, PUFA, PC, Glu
Accuracy Menignioma 84.8 89.1 4 features: 93.5 87.0 73.9 82.6
Sensitivity  (subgroup) 0.0 571 Etn, Li, Tau, Gln 571 14.3 0.0 571
Specificity 7 samples 100.0 94.9 100.0 100.0 87.2 87.2
Accuracy Schwannoma 87.0 89.1 4 features: 91.3 84.8 80.4 89.1
Sensitivity  (subgroup) 714 714 Gln, Cho, Etn, Lip 429 0.0 429 57.1
Specificity 7 samples 89.7 92.3 100.0 100.0 87.2 94.9
Accuracy Piloytic 93.5 89.1 1 feature: 93.5 93.5 89.1 93.5
Sensitivity  astrocytoma 0.0 333 Gln 0.0 0.0 333 66.7
Specificity  (subgroup) 100.0 93.0 100.0 100.0 93.0 953

3 samples
Accuracy Metastasis from 87.0 89.1 6 features: 913 89.1 87.0 89.1
Sensitivity  adenocarcinoma 0.0 80.0 Gln, PUFA, GABA, 40.0 0.0 20.0 60.0
Specificity ~ (subgroup) 97.6 90.2 Etn, Cho, Glu 97.6 100.0 95.1 92.7

5 samples
Accuracy Metastasis from 913 82.6 1 feature: 95.7 93.5 804 84.8
Sensitivity  breast cancer 0.0 25.0 Asp 50.0 25.0 25.0 0.0
Specificity  (subgroup) 100.0 88.1 100.0 100.0 85.7 929

4 samples

Boldface denotes the maximum value for the respective metric across all classification methods for a particular group (control, tumor type,
tumor subtype). Abbreviations: SVM, Support Vector Machinf; SVM-LS, Least-Squares SVM; NN-MLP, Neural Network using the Levenberg-
Marquardt back-propagation algorithm; RBF kernel, Radial Basis Function kernel.
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Figure 2. Performance of the linear SVM classifier. The performance of the linear SVM classifier was evaluated by three metrics (sensitivity, specificity, and
accuracy), for each of the three feature selection schemes (4 features, feature selection, all features), and for tumor type (normal, high-grade, low-grade) and subtype
[GBM, AA, Meningioma, Schwanoma, Pylocytic, Metastasis (Aden.) and Metastasis (Breast Cancer)]. With the combined SVM+MRMR approach (black bars)
sensitivity was primarily increased in high-grade biopsies, specificity was increased in low-grade biopsies, and both sensitivity and specificity were affected in

metastases, resulting in higher accuracy.

the feed-forward neural network, we used the Matlab trainlm
routine, where the number of nodes in the hidden layer was
set to 10 in all examined problems, and all nodes had the
typical sigmoid function.

Results

Table I summarizes the results obtained for the three clas-
sification methods: the linear SVM classifier, the SVM-LS
classifier, and the NN-MLP classifier. The results were
quantified by three metrics, namely, sensitivity, specificity,
and accuracy. Additionally, results for the linear SVM are
presented for each of the three choices for reduced feature
space, using 4 features, all 16 features, and MRMR feature
selection (Fig. 2). While we might expect the full 16-feature
space classifier to outperform the two reduced-feature spaces
(4 feature and MRMR), it is possible that the other two
methods could slightly outperform the full-feature space in
subtyping (Table I and Fig. 2). For instance, the typing of
controls was achieved with similar accuracy, sensitivity, and
specificity whether the SVM used only 4 or all 16 features.
On the other hand, in typing high-grade biopsies, although the
specificity was higher based on the subset of 4 features, the
accuracy and sensitivity were much higher when all 16
features were used by the SVM classifier. In typing low-grade
biopsies, all metrics except sensitivity were higher when all 16
features were used. For biopsies of metastatic tumors, although
the sensitivity was higher with 16 features, the specificity was
very high with only 4 features. Furthermore, for metastatic
tumors, the most important metric, accuracy, was the same
regardless of whether 4 or 16 features were used, and higher
with feature selection (Fig. 2).

In sub-typing the biopsies, the SVM showed a higher
specificity for GBMs with feature selection, a higher sensitivity
with all 16 features, and a slightly increased accuracy when
all 16 features were used. Similar results were observed for
AAs and meningiomas (higher accuracy with SVM-LS). In
schwanomas, the metrics did not differ whether 4 or 16
features were used, and in pilocytics, only the specificity
seemed to increase when more features were used. Similarly,
for sub-typing metastases, more features increased the
sensitivity but did not significantly improve the other
metrics.

When feature selection was applied first using the MRMR
method, most metrics increased, with some more than others
(Table I). In particular, certain metrics reached 100%. For
instance, the accuracy, specificity, and sensitivity in typing
controls, and the specificity in typing metastases and in sub-
typing meningiomas, schwanomas, pilocytics, and breast
cancer metastases reached 100%.

When an SVM-LS with a radial basis function kernel (RBF
Kernel) was used, the SVM-LS slightly over-performed the
linear SVM in some cases, but not consistently (Table I). For
example, the accuracy in the high-grade group was higher
using the SVM-LS than using the linear SVM with 4 features,
but was less accurate than the linear SVM with 16 features or
with MRMR feature selection. The sensitivity, as a rule, was
considerably worse (reduced by 50% or more).

When we used NN-MLP instead of the SVM (Table I),
we received better results in a few cases. For instance, the
accuracy in typing low-grade brain tumor biopsies was
increased, as were the sensitivity and specificity of sub-
typing pilocytic astriocytomas (although approximately the
same accuracy was obtained).
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All 16 metabolites were assigned by comparison to
literature data (49-51) and Tugnoli et al (14) using 2D TOBSY
spectra. Representative TOBSY MR spectra are shown in
Fig. 3. Both saturated Lip and polyunsaturated fatty acids
(PUFAs), proposed to be due to apoptosis, are prominent in
high-grade tumors (i.e, GBM) and metastases. Also note that
Asp is detected in metastases from breast cancer, while GPC
has not been detected in metastases. Finally, PC levels seem
to be highest in metastases. The rest of the metabolites are
detected at various levels in all tumors.

Discussion

Herein, we demonstrated for the first time that the novel 2D
HRMAS 'H MRS method, which employs the adiabatic,
solid-state NMR technique TOBSY, can be used in small
intact samples to reliably detect at least 16 metabolites or
biologically-relevant molecular species. We further showed
that this can be achieved on a relatively short time scale of
45 min, which is shorter than has previously been estimated by
others (52). This method was performed in combination with a
robust artificial intelligence system (Fig. 1) to characterize
brain tumor biopsies with high sensitivity, specificity, and
accuracy. One principal finding of our study is that of the
two classifiers used, a linear SVM and a feed-forward neural
network, the linear SVM performs better. Also, feature
selection using the MRMR method results in more robust
selection of the reduced feature space, and provides a data-
driven criterion for generalizing the feature selection as the
training set changes (e.g., increases in size as more data are
added). This leads to markedly improved classification per-
formance, which is comparable to that obtained when using
the full-feature space (Fig. 2).

Because we used a 2D MRS method, we were able to
produce excellent quality data with little overlap (Fig. 3). This
might be one reason why our accuracy is better than that
reported by Poullet ef al who used a 1D HRMAS technique
and found that SVM-LS performed better than linear SVM
(33). This implies that the use of SVM-LS may further
improve our accuracy, although we did find that the SVM-LS
with the RBF Kernel performed worse than our linear SVM
(Table I). Central nervous system tumor biopsies are often
highly size restricted, which can make their analysis technically
challenging, in particular for producing accurate MRS data.
Our more sensitive TOBSY NMR approach is optimal for
identifying biomarkers that can facilitate the typing of tumor
biopsies of only 2 mg in size (39). While we focused on brain
tumors, the MRS of small biospecimens is equally relevant to
other medically important tissues that are size limited, such
as other clinical biopsies or stem cell populations.

The findings here enhance our knowledge from prior
studies (9,11,12,24,26-33,53), since they suggest that the
inclusion of more metabolites increases the performance of a
given classification system, especially its sensitivity in high-
grade and metastasis, and specificity in low-grade tumors,
resulting in increased accuracy. The use of in vivo MRS at
higher field strengths, with 2D methods that allow the detection
at least the same 16 metabolites that we reliably quantified
here, should enable clinicians to characterize and diagnose even
inoperable brain tumors with high accuracy. This should allow
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appropriate therapy selection and the non-invasive monitoring
of such therapies in vivo, thereby avoiding serial biopsies.
Indeed, using molecular information to guide brain tumor
therapy has been previously suggested (54).

This study also demonstrates the feasibility of a novel and
sensitive method for the molecular or metabolic assessment
of brain tumor biopsies. Since this assessment is performed
at a low temperature (-8°C), the tissue integrity is maintained,
allowing clinicians to run the subsequent histopathological,
genomic, and/or proteomic analyses needed to construct
molecular cancer signatures (55-62). The biomarkers revealed
by this method can be combined with those found by the
aforementioned technologies and by clinical and demographic
data (i.e., tumor location, MRI degree of contrast enhancement,
MR perfusion and diffusion, age of the patient, treatment
response, and survival), enabling the unique fingerprinting of
brain tumors (54). Indeed, the impact of tumor location on
the brain tumor classification by MRS has been recently
reported (32).

In addition to demonstrating the capability of HRMAS 'H
MRS to classify brain tumors, we also demonstrate here that
certain molecules, or metabolites, may be putative biomarkers
of importance in certain tumors. For instance, upon visual
inspection of the TOBSY spectra, polyunsaturated fatty acids,
PUFAs, a biomarker of apoptosis (63), Lip, proposed to predict
clinical grade of brain tumors (53), accumulate in malignant
tumors (i.e., GBMs and metastases) (Fig. 3). Despite being
found in schwannomas, Lip were not detected in pilocytic
astrocytomas, both of which are low-grade tumors (Table I
and Fig. 3). Gln and Asp were the most significant features
of pilocytic astrocytomas (an often difficult to diagnose tumor)
and metastases, respectively. Also, the significant features for
GBM and anaplastic astrocytomas were different - a distinction
that is often difficult to make clinically (Table I). Others have
claimed that glycine (not shown here) may be an important
biomarker for glioma characterization (64,65), and taurine has
been suggested as a putative biomarker for medulloblastomas
and PNET (12,14,66-68). Although we cannot address this
here, we did note that taurine was present in both high-grade
and low-grade tumors, such as meningiomas; this is a finding
that is in agreement with Tugnoli et al who analyzed in detail
different types of meningiomas (15). As anticipated, the PC/
GPC ratio, which corresponds to oncogenic transformation,
was found to be highest in metastasis (9). In order to evaluate
the biological significance of metabolites, we must first
correlate metabolites with gene expression in the tumors (16).
Once done, certain genes may be implicated and particular
networks identified that will further assist the clinical guiding
of brain tumor therapy and will further reveal molecular
targets for novel therapies (54,69).

Finally, the current study has certain limitations. Specifi-
cally, the number of metabolites can be increased by further
analysis of the 2D TOBSY spectra and we can train our
classifiers with a greater number of samples. This will enhance
the sensitivity and specificity, thereby allowing more accurate
classification. On the other hand, we must again stress that
our classification scheme was almost acceptable, even with
only 4 metabolites being used. Based on this, we propose that
the value of current clinical in vivo MRS, although revealing
information of only a few metabolites, may have additional
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Figure 3. TOtal through-Bond SpectroscopY (TOBSY) using ex vivo HRMAS MRS on control and tumor tissue biopsies. HRMAS 'H MR spectra using TOBSY,
with 45 msec mixing time, 3 kHz MAS speed, and -8°C at 600 MHz. A, Control; B, Glioblastoma multiforme (GBM); C, Schwannoma (Sch); D, Pilocytic
astrocytoma (PA); E, Metastasis from adenocarcinoma (Met Aden); F, Metastasis from breast cancer (Met BCa). (Ala, alanine; Cho, choline; GABA, y-amino-
butyric acid; Gln, glutamine; Glu, glutamate; GPC, glycerophosphocholine; Lip, lipids; Myo, myoinositol; PC, phosphocholine; PE, phosphoethanolamine;
PUFA, polyunsaturated fatty acids; Tau, taurine). Note that Cho, PC, GPC, PE, Etn, are clearly separable here due to the use of the 2D TOBSY method. PUFA
and Lip are bio-markers of malignancy.
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value when combined with conventional, perfusion, and
diffusion MRIs, clinical and demographic data, and a powerful
classification strategy. Although we are not aware of such
on-going studies, certain prior reports also recommend this
approach (32,70-73).

We conclude that the use of a sensitive multidimensional
MRS technique, at higher magnetic fields and with a robust
classification approach, should improve the characterization,
typing, and prognostication of brain tumors in vivo. This
approach should assist in stratifying patients for appropriate
therapeutic protocols and in the monitoring of new therapies.
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