
Abstract. TNFα activated NF-κB and associated regulatory
factors including IKK are strongly implicated in a variety of
hematological and solid tumor malignancies. We show that
tautomycetin (TC) specifically inhibits activation of NF-κB
among the three TNFα effectors (NF-κB, JNK and caspase).
TC inhibited T-loop phosphorylation of IKKα and IKKß,
thereby preventing degradation of the NF-κB inhibitor, IκBα.
Co-immunoprecipitation experiments revealed that the
catalytic subunit of PP1 (PP1C) was involved in the IKK
complex. Pull-down analysis using recombinant GST-TNFα,
showed that PP1C was recruited to TNFR1 together with IKK
complex, RIP and TAK1 upon stimulus. These results suggest
that the PP1 positively regulates the TNFα-induced NF-κB
pathway at the level of IKK activation. Thus, TC might be used
therapeutically to suppress the TNFα/NF-κB pathway.

Introduction

TNFα induces trimerization of TNFR1 and triggers three
signaling pathways leading respectively to activation of the

transcription factor NF-κB, c-Jun N-terminal kinase (JNK),
and caspases (1-3). Two sequential signaling complexes
function in TNFα-induced cascades (3-6). The first (complex I)
consists of TNFR1, TRADD, RIP and TRAF2, which trigger
IKK and JNK activation. Activated IKK phosphorylates the
NF-κB inhibitor IκBs (IκBα, IκBß and IκBε) and targets them
for degradation by the ubiquitin-proteasome pathway, enabling
NF-κB to enter the nucleus and activate a subset of TNFα

target genes. Subsequently, complex I dissociates and TRADD
and RIP associate with FADD and caspase-8, forming
complex II. FADD via its death effector domain mediates
recruitment and activation of caspase-8, leading to release of
its active form, which then activates caspase-3 and caspase-7,
which execute the apoptotic process.

In these cascades, NF-κB is known to promote cell survival
(3-5,7). When NF-κB is activated during complex I formation,
it blocks complex II-mediated caspase-8 activation through
induction of caspase-8 inhibitory proteins [c-FLIP (also
called CASH), Casper, CLARP, FLAME, I-FLICE, MRIT
and Usurpin] and an adaptor protein with a pseudocaspase
domain that specifically inhibits caspase-8. NF-κB activation
promotes cell survival, whereas prolonged JNK activation
enhances TNFα-induced death (3,4), indicating that the
balance between NF-κB and JNK activities determines the
outcome of TNFα signaling. Constitutively actived NF-κB
contributes to tumorigenesis by up-regulating gene expression,
which promotes growth and survival of cancer cells (8-11).
The mechanism of its activation is not fully understood,
however, significance of TNFα/IKK/NF-κB pathway has been
revealed. Anti-TNFα antibody inhibits constitutive activation
of NF-κB in head and neck squamous cell carcinoma and can
suppress proliferation of this tumor (9). The MUC1 onco-
protein is aberrantly overexpressed in most human carcinomas
and MUC1 is associated with constitutive activation of NF-κB
through enhancement of TNFα-induced IKK activation (10).
Surprisingly, tumor suppressor TSC1 is phosphorylated and
inactivated by the activated IKK following stimulus with
TNFα. The IKK-mediated TSC1 suppression activates TOR
pathway, enhances angiogenesis and results in tumor
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development. Thus, NF-κB and IKK have been proposed to
be therapeutic targets in cancer (11).

The IKK complex is composed of two highly homologous
catalytic subunits α and ß (IKKα and ß) and regulatory subunits
(IKKγ/NEMO) (1-5). Despite the fact that IKKα and IKKß
have similar structures, their roles in NF-κB activation differ
(12-16). For example, deletion of the subunits separately in
mouse embryonic fibroblast (MEF) shows that IKKß and
IKKγ are required for TNFα and IL-1-induced phosphorylation
of IκBα, while IKKα is dispensable (12-14). Moreover, in
baculoviral recombinant systems, the IKKß homodimer has
an ~30-fold higher activity towards IκBα than the IKKα
homodimer (15,16). Thus, IKKß rather than IKKα is
essential for NF-κB induction by most proinflammatory
stimuli. Many potential phosphorylation sites in proteins of
the IKK complex may affect IKK activity. In particular,
Ser-177 and -181 in the T-loop of IKKß (Ser-176 and -180 in
IKKα) are sites where phosphorylation mediates confor-
mational changes resulting in kinase activation (15). It has
been proposed that complex I activates IKK and JNK through
activation of the mitogen-activated protein kinase kinase
kinase (MAP3K) families including TAK1 (1,5-7). These
MAP3Ks are responsible for T-loop phosphorylation. IKKα
activity is also regulated by PKB/Akt, mediated phosphory-
lation at Thr-23 (17). However, mechanisms of TNFα-induced
activation of IKK and JNK cascades are not well understood.

The Ser/Thr protein phosphatase type 1 (PP1) is composed
of a catalytic subunit (PP1C) and several targeting/regulatory
subunits. Thus far, four PP1C isoforms, α, γ1, γ2 and δ have
been shown to be widely expressed in mammalian tissues
(18-21). Biochemical analysis of bacterially expressed PP1C
isoforms of all four types indicates that they have similar
properties (22). PP1C is regulated by interaction with diverse
subunits that target it to specific subcellular locations, regulate
its activity, or define substrate specificity (23,24).

We previously showed that tautomycetin (TC) is a PP1-
specific inhibitor and that treatment with 5 μM TC completely
inhibits PP1 activity without affecting PP2A activity (25,26).
Therefore, it was deemed a significant advantage for in vivo
analysis of PP1 and PP2A activity that treatment with 5 μM
TC and 100 nM OA could differentiate between PP1 and
PP2A function in cells. In this study, we used TC to analyze
PP1 function in regulating TNFα-induced pathways. We show
that TC specifically inhibits activation of NF-κB among three
effector pathways (NF-κB, JNK and caspase) following TNFα
treatment. TC treatment suppressed activation of IKK
activity, resulting in inactivation of the TNFα-induced NF-κB
pathway. We show that PP1C physically interacts with the
IKK complex and is recruited to TNFR1 together with IKK
complex upon TNFα stimulus. This is the first implication of
PP1 in its positive regulatory roles in TNFα-activation of
NF-κB and TC might be a potential therapeutic reagent to
suppress the TNFα/NF-κB pathway.

Materials and methods

Reagents and antibodies. Human TNFα was provided by
Peprotech EC Ltd (London, UK). Tautomycetin (TC) was
prepared from Streptomyces griseochromogenes as described
(27,28). Okadaic acid (OA) and cycloheximide (CHX) were

obtained from Wako (Osaka, Japan). OA and TC were
dissolved in dimethyl sulfoxide (DMSO) and stored at -80˚C.
TNFα and CHX were dissolved in water and stored at -80˚C.
Specific antibodies to phospho-IKKα/ß (T23) [sc-21660],
IKKα [sc-7606], IκBα [sc-371], IKKß [sc-7607], IKKγ [sc-
8256 and sc-8330], PP1C [sc-7482], TAK1 [sc-7967] and
TRAF2 [sc-876] were obtained from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). Anti-actin AC-40
[A4700] and anti-Flag M2 [F3165] monoclonal antibodies
were from Sigma Chemical Co (St. Louis, MO, USA). Anti-
phospho-IκBα (S32) antibody [#9241] and anti-phospho-
IKKα/ß (S180/S180) antibody [#2681] were from Cell
Signaling Technology, Inc. (Danvers, MA, USA). Anti-RIP
antibody was purchased from BD Biosciences (San Jose,
USA). Anti-GST monoclonal antibody was prepared as
described (26). Specific antibodies to active-JNK, JNK and
the Myc-tag were previously described (22). Horseradish
peroxidase-conjugated anti-mouse IgG secondary antibody
[cat# 18-8877-33] and anti-rabbit IgG secondary antibody
[cat# 18-8816-33] were from eBioscience (San Diego, CA,
USA).

Mammalian expression vectors. The pNF-κB-Luc reporter
plasmid was purchased from Stratagene (Garden Grove, CA,
USA). The expression vectors, pCMV-ß-galactosidase,
pcDNA3-myc-PP1Cα, pRK7-N-Flag-IKKα and pRK5-C-
Flag-IKKß were previously described (29-31).

Recombinant protein. A plasmid encoding a glutathione S-
transferase (GST) fusion protein of human mutant IκBα
amino acids (1-53) was constructed by PCR. Primers designed
based on the human IκBα were: sense, 5'-GGGAATTCCAT
GTTCCAGGCGGCCGAGCG-3' and anti-sense, 5'-CCCGC
GGCCGCTCAGTGGCGGATCTCCTGCAGC-3'. cDNA
was amplified by PCR using wild-type human IκBα cDNA as
template. The PCR product was digested with EcoRI and
NotI and ligated into EcoRI and NotI-digested pGEX-6P-3.
The expression vector, pGEX-4T3-hTNFα encoding a
glutathione S-transferase (GST) fusion protein of human
TNFα (amino acids 77-233) was kindly provided by
Zhijian J. Chen (University of Texas Southwestern Medical
Center, USA) (1). Induction and purification of the GST fusion
protein in E. coli were performed according to the
manufacturer's protocol (Amersham Pharmacia Biotech,
Piscataway, NJ, USA).

Cell culture, transfection and treatment with phosphatase
inhibitors. HeLa and COS-7 cells were maintained in
Dulbecco's modified Eagle medium containing 10% fetal
bovine serum, 1.9 g/l sodium bicarbonate, 100 μg/ml
streptomycin and 20 U/ml penicillin G at 37˚C under 5% CO2.
293-T cells were cultured as described (26). For transient
transfections cells were transfected using Fugene-6 (Roche
Diagnostics Inc., Mannheim, Germany) according to the
manufacturer's recommendation. Cells were treated with
100 nM OA and 5 μM TC for 5 h, respectively as described
(26).

Luciferase assay. 293-T cells in 35-mm dishes were co-
transfected with 1 μg pNF-κB-Luc and pCMV-ß-galactosidase.
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Four hours later, cells were harvested into new dishes and
cultured for 16-34 h, treated with or without phosphatase
inhibitors for 5 h and then stimulated with 5-10 ng/ml TNFα.
Luciferase activity was measured with Picagene (Toyo Ink,
Tokyo, Japan) and the Luciferase Assay System (Promega,
Madison, WI, USA). ß-Galactosidase activity was measured
with the Beta-Glo™ Assay System (Promega). Chemilumin-
escence was determined by liquid scintillation counting
(Beckman Coulter, Fullerton, CA, USA) and with a microplate
luminometer, Veritas™ (Promega). ß-Galactosidase activities
and protein concentration were used to normalize transfection
efficiency and cell number. Protein concentration was
measured by the modified method of Bradford using bovine
serum albumin (BSA) as a standard (26).

Caspase activity assay. HeLa cells in 12-well plate were
treated with or without phosphatase inhibitors for 4 h, treated
with 20 μg/ml CHX for 1 h for suppression of caspase
inhibitory proteins and then stimulated with 10 ng/ml TNFα.
Cells were washed with phosphate-buffered saline (PBS) on
ice and lysed by sonication in Casp-lysis buffer (PBS
containing 0.5% Triton X-100 and 0.1% SDS). Lysates were
centrifugated at 20,000 x g for 10 min and the supernatants
were used for caspase activity assay. Total activities of
caspase-3 and caspase-7 were measured using the Caspase-
Glo™3/7 Assay (Promega) according to the manufacturer's
insructions. Caspase-8 activity was measured with the
Glo™8 assay (Promega). Chemiluminescence was determined
by the microplate luminometer, Veritas™.

Immunoblot analysis. Cells were sonicated in lysis buffer A
[20 mM Tris-HCl (pH 7.5), 1% Triton X-100, 0.5%
deoxycholate, 10% glycerol, 137 mM NaCl, 5 mM EDTA,
50 mM ß-glycerophosphate, 2 mM orthovanadate, 20 mM
NaF, 1 mM DTT, 0.5 mM benzamidine, 10 μg/ml leupeptin
and 10 μg/ml aprotinin] and extracts were prepared by
centrifugation at 20,000 x g for 10 min. Immunoblot analysis
was performed as described (26). Signals were detected either
with the Enhanced Chemiluminescence reagent (NEL105,
Perkin Elmer) using X-ray film or a luminescence image
analyzer, LAS-1000plus (Fujifilm, Tokyo, Japan).

Activity and phosphorylation of IKK. Cells were sonicated in
lysis buffer A, then the IKK complex in cell extracts was
immunoprecipitated with an anti-IKKγ. IKK activity was
determined by incubating GST-IκBα (1-53) with immuno-
precipitates in 40 μl of kinase reaction mixture [20 mM
Tris-HCl, pH 7.5, 10 mM MgCl2, 20 mM ß-glycerophosphate,
0.4 mM benzamidine, 5% glycerol and 100 μM (γ-32P) ATP)]
for 20 min at 31-35˚C. Proteins in the reaction mixture
were subjected to SDS-PAGE and immunoblotting. The
phosphorylation level of GST-IκBα (1-53) was quantified by
autoradiography with a Fluoro image analyzer, FLA-3000G
(Fujifilm). Total IKKß levels were monitored by immunoblot
and quantified with anti-IKKß antibody using the LAS-1000
plus. IKK kinase activity was calculated as intensity of
phospho-GST-IκBα (1-53) divided by amount of IKKß.

Phosphorylation status of T-loop of IKKα/ß and Thr-23
of IKKα were assessed by immunoprecipitation with anti-IKKγ
antibody followed by immunoblot with anti-phospho-IKKα/ß

(S180/S181) and anti-phospho-IKKα/ß (T23) antibodies,
respectively.

Co-immunoprecipitation. Transfected 293-T cells were lysed
in 425 μl/60 mm plate co-IP buffer (50 mM Tris-HCl, pH 7.5,
4 mM EDTA, 5% glycerol, 0.1% Triton X-100, 1 mM
benzamidine, 50 mM ß-glycerophosphate, 2 mM orthovana-
date and 0.1% ß-mercaptoethanol) containing 10 μg/ml
leupeptin, 10 μg/ml soybean trypsin inhibitor and 10 μg/ml
aprotinin. Cell lysates were centrifuged at 20,000 x g for
10 min. Three hundred and eighty μl of supernatant was first
incubated with anti-Flag M2 monoclonal antibody (20 μg) or
anti-Myc-tag monoclonal antibody (10 μg) for 30 min at 4˚C
and then with 10 μl of Protein G-Sepharose 4 Fast Flow
(Amersham Pharmacia Biotech). After incubation for 1.5 h,
beads were washed twice with 1 ml of the co-IP buffer.
Immunoprecipitates were resuspended in 45 μl of 1.25 x
Laemmli SDS sample buffer, boiled for 5 min, separated on
SDS-PAGE and transferred to a nitrocellulose membrane
(Amersham Pharmacia Biotech). Flag- and myc-tagged
proteins were detected by immunoblot with the respective
antibodies. The procedure used to co-immunoprecipitate the
endogenous IKK complex and PP1C was slightly modified.
Briefly, 4 μg specific antibody against IKKα was used for
immunoprecipitation and normal mouse IgG antibody (4 μg)
(sc-2025, Santa Cruz Biotechnology) was used as negative
control and the incubation time with G-Sepharose was 3 h.

GST-TNFα pull-down assay. The pull-down assay was
performed as described (1). 293-T cells in the 10-cm dishes
were treated with 1 μg/ml GST-TNFα for different lengths of
time (for t = 0, GST-TNFα was added after the cells were
lysed). The cells were suspended in lysis buffer B [20 mM
Tris-HCl, pH 7.5, 1% Triton X-100, 150 mM NaCl, 10%
glycerol, 25 mM ß-glycerolphosphate, 0.5 mM dithiothreitol
(DTT), 1 mM Na3VO4, 0.5 mM benzamidine, 10 μg/ml
leupeptin] and then centrifugated at 16,000 x g for 20 min at
4˚C. Five mg proteins of cell lysates were incubated with
100 μl of glutathione sepharose at 4˚C for 1 h. The resins
were washed twice with the co-IP buffer (50 mM Tris-HCl,
pH 7.5, 4 mM EDTA, 5% glycerol, 0.1% Triton X-100, 1 mM
benzamidine, 50 mM ß-glycerophosphate, 2 mM Na3VO4,
and 0.1% ß-ME) at 6,000 rpm for 2 min at 4˚C. GST pulled-
down protein complexes were prepared by the treatment of
the resins with SDS sample buffer, boiled for 5 min, separated
on SDS-PAGE and transferred to a nitrocellulose membrane.
The proteins were detected by immunoblot with the respective
antibodies.

Results

TC suppresses TNFα-induced NF-κB activation. To determine
whether PP1 functions in TNFα-induced NF-κB activation,
the effect of pretreatment of 293-T cells with TC on activation
of reporter plasmid containing 5 tandem repeat NF-κB
responsive elements was analyzed. As reported, 100 nM OA,
a PP2A inhibitor, enhanced basal and TNFα-induced NF-κB-
dependent luciferase activity (Fig. 1A). In contrast, 5 μM TC
dramatically decreased TNFα-induced NF-κB-dependent
luciferase activity (Fig. 1A). As shown in Fig. 1B, TC

INTERNATIONAL JOURNAL OF ONCOLOGY  33:  1027-1035,  2008 1029

1027-1035  10/10/08  11:26  Page 1029



decreased NF-κB activation induced by TNFα in a dose-
dependent manner. In a separate experiment we confirmed
that treatment of 293-T cells for 5 h with 5 μM TC and 100 nM
OA resulted in complete and specific inhibition of PP1 and
PP2A, respectively (data not shown). These results showed
that inhibition of PP1 by TC blocks NF-κB activation
following TNFα stimulation. Binding of TNFα to TNFR1
results in rapid activation of NF-κB, followed by complex II-
dependent caspase-8, and -3/7 activation. To determine
whether caspase activation is also affected by TC and OA,
HeLa cells were incubated with either OA or TC, treated with
CHX to block induction of caspase inhibitor proteins (3,4,32)
and then assayed for caspase activities. As shown in Fig. 2A,
neither TC nor OA had any effect on caspase-3/7 activation.
Furthermore, TC or OA treatment also had no effect on the
upstream enzyme caspase-8 (Fig. 2B). Treatment of HeLa
cells for 4 h with either 5 μM TC or 100 nM OA resulted
in complete and specific inhibition of PP1 or PP2A,
respectively (data not shown). These data suggest that the
PP1 and PP2A targets in the TNFα signaling pathway are not

downstream of complex II but rather are downstream of
complex I.

TC suppresses TNFα-induced IκBα phosphorylation but not
JNK activation. Since pathways downstream of complex I
bifurcate into respective NF-κB and JNK pathways, we
compared the effects of OA and TC on phosphorylation/
degradation of IκBα and activation of JNK in 293-T cells
(Fig. 3). As reported, 100 nM OA induced degradation of IκBα
and hyper-phosphorylation of JNK in 293-T cells, confirming
that PP2A is a negative regulator of NF-κB and JNK activation
(33,34). Under the same conditions, 5 μM TC dramatically
reduced IκBα degradation but had no apparent effect on JNK
activation (Fig. 3). These results suggest that target(s) of PP1
that suppress NF-κB activation are present downstream of the
bifurcation point and upstream of IκBα.

TC blocks IKK activation. Since IκBα is phosphorylated by
IKK, we analyzed the effect of TC and OA on IKK activation
following TNFα stimulation. As shown in Fig. 4A, IKK
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Figure 1. Effect of OA and TC on TNFα-induced NF-κB activation. (A) Transfected 293-T cells were treated with vehicle (control), 100 nM OA or 5 μM TC and
then incubated for 5 h with (closed bars) or without (open bars) 5 ng/ml TNFα. (B) Transfected 293-T cells were incubated with the indicated dose of TC and then
stimulated for 4 h with 10 ng/ml TNFα. Shown is luciferase activity relative to that seen in cells without TNFα or TC treatment. Data are means from four
independent experiments.

Figure 2. Effect of OA and TC on TNFα-induced caspase activation. HeLa cells were treated with vehicle (open circles), 100 nM OA (open triangles) or 5 μM TC
(closed circles) for 4 h and then incubated in the presence of 20 μg/ml CHX for 1 h. Treated cells were stimulated for the indicated periods with 10 ng/ml TNFα.
(A) Combined caspase-3 and caspase-7 activity. (B) Caspase-8 activity. Data represent three independent experiments.
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activity was increased with a peak at 10-15 min after TNFα
stimulation. Under the same conditions, treatment of cells
with 5 μM TC inhibited IKK activation by 77% at 10 min.
Interestingly, inhibition of PP2A by 100 nM OA resulted in
significant reduction (by 87% at 10 min) of IKK activation,
indicating that PP2A positively regulates IKK activation but
negatively regulates NF-κB activation. We then analyzed TC
dose-dependent inhibition of IKK activation after TNFα
stimulation (Fig. 4B). The IC50 of IKK inhibition by TC was
determined to be 0.8 μM. Of note is that TC-inhibition of IKK
(Fig. 4B) and NF-κB (Fig. 1B) activation was almost the
same in terms of dose and rate. These data indicate that NF-κB
inhibition by TC is likely mediated by suppression of IKK
activity.

TC attenuates T-loop phosphorylation of IKK. We next asked
whether TC inhibits phosphorylation of T-loops at Ser-176/
Ser-180 of IKKα and Ser-177/Ser-181 of IKKß. As shown in
Fig. 5A, phosphorylation at sites in T-loops of IKKα and
IKKß appeared 10 min after TNFα stimulation in 293-T cells,

but 5 μM TC blocked phosphorylation to almost basal levels.
By contrast, phosphorylation levels at Thr-23 of IKKα which
is not in the IKKα T-loop, were not affected by TNFα or TC
treatment (Fig. 5B). Phosphorylation of Thr-23 in IKKß was
not detected under the same conditions used. Suppression of
T-loop phosphorylation induced by TC was also observed in
HeLa and COS-7 cells (Fig. 5C). These data suggest that TC
negatively regulates IKK activity by inhibiting phosphorylation
of IKKα and IKKß T-loops.

Interaction of PP1C with the IKK complex in the presence
or absence of TC. To determine how PP1 positively
regulates IKK activity, we asked whether PP1 physically
associates with IKKs. We co-transfected 293-T cells with
Flag-IKKα or Flag-IKKß and Myc-PP1Cα and undertook
immunoprecipitation using an anti-Flag (Fig. 6A) or an anti-
Myc (Fig. 6B) antibody. As shown in Fig. 6A, Myc-PP1C
was detected in the Flag-IKKα and the Flag-IKKß
immunoprecipitates. Conversely, Fig. 6B indicates that Flag-
IKKα and Flag-IKKß were detected in the Myc-PP1C
immunocomplex. These data show that overexpressed Myc-
PP1C in cells interacts with Flag-IKKα and Flag-IKKß.

We then asked whether endogenous PP1C interacts with
the endogenous IKK complex. We found that complexes
immunoprecipitated with IKKα contained not only IKKß and
IKKγ but also PP1C (Fig. 7A). Levels of PP1C associated with
the IKK complex were not affected by TNFα stimulation
(Fig. 7A). Inhibition of PP1 activity by TC treatment also did
not affect complex formation between PP1C and IKKs
(Fig. 7B). These results suggest that PP1C physically
interacts with the IKK complex in cells.

Interaction of PP1C with TNFR1. The binding of trimeric
TNFα to its receptor leads to the rapid recruitment of several
signaling proteins such as RIP, TAK1 and IKK complexes to
the receptor complex (1). To determine whether PP1C is also
recruited to the receptor complex, we stimulated the 293-T
cells with GST-TNFα and then isolated the TNFR1 complex
by using glutathione sepharose. As shown in Fig. 8, GST-
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Figure 3. Effect of OA and TC on TNFα-induced IκBα degradation and JNK
activation. 293-T cells were treated with vehicle, 5 μM TC, or 100 nM OA for
5.5 h and then stimulated for the indicated periods with 10 ng/ml TNFα.
Immunoblots of cell lysates were then analyzed using anti-phospho-IκBα

(P-IκBα S32), anti-IκBα, anti-activated-JNK (P-JNK) and anti-JNK
antibodies.

Figure 4. Effects of OA and TC on IKK activation in 293-T cells. (A) 293-T cells were treated with vehicle (open circles), 100 nM OA (open triangles) or 5 μM
TC (closed circles) for 5 h and then stimulated for the indicated periods with 40 ng/ml TNFα. IKK kinase activity was quantitated by dividing levels of
radiolabeled-phospho-GST-IκBα (1-53) by levels of IKKß, determined by autoradiography using a Fluoro image analyzer and immunoblotting with an anti-IKKß
antibody, respectively. IKK activity is expressed as fold activation relative to vehicle-treated sample at Time 0. (B) 293-T cells were treated with vehicle
(Dose 0) or TC at the indicated dose for 5 h, stimulated for 10 min with 10 ng/ml TNFα and analyzed for IKK activity. IKK activity is calculated in a manner
identical to that described in A. IKK activity is expressed as a percentage of that seen in the vehicle-treated control. Data are representative of three independent
experiments.
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TNFα treatment led to the recruitment of TAK1, RIP, IKKα
and IKKß to TNFR1. PP1C was also detected together with
these signaling molecules. Interestingly, the recruited amount
of the signaling molecules including PP1C increased to a top
at 10 min and then decreased to the lowest level at 60 min after
stimulation of TNFα. Here, the change of the amount of PP1C
recruited to TNFR1 corresponded with that of IKK activity
(Fig. 4A). These results suggested that PP1C was recruited to
TNFR1 via binding to IKK complex and plays a role as a
positive regulator in the TNFα/NF-κB signaling pathway.

Discussion

Engagement of TNFR1 by TNFα activates three important
signaling pathways: NF-κB, JNK and caspases. The extent to
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Figure 5. Effects of TC on IKKα and IKKß phosphorylation. 293-T cells
(A and B) or HeLa and COS-7 cells (C) were treated with vehicle (control)
or 5 μM TC for 5 h and then stimulated for the indicated periods with 10 ng/ml
TNFα. Lysates were immunoprecipitated and blotted using the anti-IKKγ

antibody. (A) Immunoblots with anti-phospho-IKKα/ß (S180/S181), anti-
IKKß, anti-IKKα, anti-IκBα and anti-actin antibodies. Degradation of IκBα

in lysates was seen following TNFα treatment. Actin served as an internal
standard. (B) Immunoprecipitates were immunoblotted with anti-phospho-
IKKα/ß (T23) and anti-IKKα antibodies. (C) Immunoprecipitates were
immunoblotted with anti-phospho-IKKα/ß (S180/S181), anti-IKKß and
anti-IKKα antibodies.

Figure 6. PP1Cα interacts with IKKα and IKKß in 293-T cells. 293-T cells
were transfected with either pRK7-N-Flag-IKKα, pRK5-C-Flag-IKKß or
empty vector and either pcDNA3-Myc-PP1Cα or empty vector. Expression
levels of Flag-IKKs and Myc-PP1Cα in lysates were analyzed by
immunoblotting with anti-Flag M2 or anti-Myc 9E10 monoclonal
antibodies. (A) Samples were immunoprecipitated (IP) with anti-Flag M2
antibody and subjected to immunoblotting using anti-Flag (upper) or anti-Myc
(lower) antibody. (A) Asterisks indicate non-specific bands. (B) Samples
were immunoprecipitated (IP) with anti-Myc antibody and subjected to
immunoblotting using anti-Flag (upper) or anti-Myc (lower) antibody.
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which each pathway is activated determines the overall effect
of TNFα on cell function (2-4). Numerous studies strongly
indicate that the transcription factor NF-κB is involved in
carcinogenesis. In addition, compelling experiment indicates
an important role of NF-κB in modulating cancer therapy
efficacy. Therefore, it is important to dissect how molecular
mechanism is regulated. Here, using specific inhibitors of
PP1 and PP2A, TC and OA, respectively, we dissected
differential roles of these phosphatases in TNFα-induced
signal pathways.

We found that 5 μM TC, which causes complete inhibition
of PP1 activity without affecting PP2A activity (25,26),
inhibits TNFα-induced NF-κB activation in 293-T cells

(Fig. 1). We also found that TC inhibited TNFα-induced
IκBα phosphorylation/degradation in 293-T (Fig. 3), HeLa,
COS-7, HepG2 and Jurkat cells (data not shown), suggesting
that a target of TC is present upstream of IκB. TC did not
affect TNFα-induced caspase (Fig. 2) or JNK activation
(Fig. 3), indicating that a TC target resides downstream of
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Figure 7. PP1C associates with the IKK complex in 293-T cells. (A) 293-T
cells were stimulated for the indicated periods with 10 ng/ml TNFα.
Immunoblots of cell lysates and immunoprecipitates with either normal IgG
or anti-IKKα were analyzed using anti-IKKα, anti-IKKß, anti-IKKγ, anti-
PP1C, anti-IκBα and anti-actin antibodies. (B) 293-T cells were treated with
vehicle or 5 μM TC for 5.5 h and then stimulated for the indicated periods
with 10 ng/ml TNFα. Following immunoprecipitation with either normal
IgG or anti-IKKα immunoblots were analyzed using anti-IKKα, anti-IKKß,
anti-PP1C, anti-IκBα and anti-actin antibodies. In a separate experiment, we
confirmed that the upper band of IκBα is a phosphorylated form using
phospho antibody (data not shown).

Figure 8. PP1C is recruited to TNFR1 with TNFα stimulus in 293-T cells.
293-T cells were stimulated with 1 μg/ml GST-TNFα for the indicated time
and then the GST-TNFα and its binding proteins were pulled-down using
glutathione sepharose. The bound proteins and whole cell lysate were
immunoblotted with the indicated primary antibodies.

Figure 9. Tautomycetin suppresses IKK activation downstream of TNFα

without affecting JNK or caspase activation. PP1 is involved in the IKK
complex functions as a positive regulator of IKK activation following TNFα

stimulation. This conceptual scheme is based on data shown in ref. 3. Red
arrows indicate results obtained in this study.
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the complex I bifurcation pathway towards NF-κB activation.
We focused on the IKK complex, because it is an upstream
kinase of IκBα and an effector of TAK1, at a point where the
TNFα signal bifurcates towards NF-κB and JNK signaling.
We found that treatment of cells with TC resulted in
inhibition of T-loops phosphorylation of IKKs (Fig. 5) and
that PP1C physically associates with the IKK complex (Figs. 6
and 7) and was recruited to TNFR1 with TNFα stimulus
(Fig. 8). These data showed that TC, possibly by inhibiting
PP1, blocks the TNFα/NF-κB pathway via prevention of IKK
activation (Fig. 9).

We have shown that PP1 is present in a complex with
IKK, that it positively regulates IKK activity. Recently, a
novel inhibitory phosphorylation site, the NEMO/γ binding
domain (NBD/γBD), in IKKß was identified (15). In this
study, IKKß-γBDAA, a nonphosphorylatable mutant, had
significantly higher basal level IKK activity compared to the
wild-type protein. By contrast, IKKß-γBDEE, a phosphory-
lation mimicking mutant, had basal level activity similar to
the wild-type, but its activity was not activated by IL-1ß.
These results suggest that phosphorylation of Ser-740 and -750
in NBD/γBD negatively regulates IKK activity. If PP1
recognizes the C-terminal serine-rich region as a substrate,
TC might induce an upward mobility shift of IKKß, but this
was not the case (Fig. 5A). Thus it is possible that the NBD/
γBD in IKKß is a PP1 substrate. However, several studies
show that there are multiple phosphorylation sites in IKKγ
(35) and that the IKK complex contains other associated
proteins, such as cdc37 and Hsp90 (36). Further analysis of
these proteins in relation to PP1 activity is required.

NF-κB and IKK are strongly implicated in a variety of
tumor malignancies (8-11). Activated NF-κB regulates the
expression of genes involved in the cancer such as c-myc,
cyclin D1, matrix metalloproteinases, Bcl-xL, c-FLIP and
VEGF. Inhibition of NF-κB alone or in combination with
cancer therapies leads to tumor cell death or growth inhibition
(8). For example, thalidomide and immunomodulatory
thalidomide analogues have shown activity against relapsed
or refractory multiple myeloma. Importantly, thalidomide
blocks NF-κB activation via suppression of IKK activity and
was shown to inhibit NF-κB in multiple myeloma. A small
molecule inhibitor of IKK (PS-1145) was found to be
selectively toxic for subtypes of diffuse large B-cell lymphoma
cells that are associated with NF-κB activation. Present data
suggest that TC might be another member of IKK inhibitor
and a potential candidate for prevention or treatment of certain
types of cancer.
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