
Abstract. Human papillomavirus (HPV) is the causative factor
in the development and progression of cervical cancers in
>97% of the cases, although insufficient. Epidemiological
studies suggest an elevated risk of cervical cancer for cigarette
smokers; therefore, we examined cigarette smoke-induced
DNA damage and repair in HPV16-transformed human
ectocervical cells (ECT1/E6 E7). Cells were treated with
cigarette smoke condensate (CSC) for 72 h to assess the
formation of single- and double-strand DNA breaks, measured
by alkaline and neutral single cell gel electrophoresis assays,
respectively. The mean tail length of cells with single-strand
breaks was increased by 1.8-, 2.7- and 3.7-fold (p<0.001)
after treatment with 4, 8 and 12 μg/ml CSC, respectively.
The tail length with double-strand breaks was also increased
dose-dependently. These results were further supported by
measurement of the mean tail moment: the increase in both
single- and double-strand breaks were much more
pronounced with increasing concentration of CSC, by up to
23.5-fold (p<0.0001 for both assays). To examine the DNA
repair, cells were treated with CSC for 72 h, followed by
CSC withdrawal and re-incubation of the cells with fresh
medium for 24, 48, or 72 h. Both single- and double-strand
DNA breaks were removed during the initial 24 h but no
further removal of the damage was observed. Up to 80% of
residual single- and double-strand DNA breaks (p<0.05)
were found to persist at all CSC concentrations examined.
Ellagic acid, a known antioxidant and free-radical scavenger,
was found to significantly inhibit DNA breaks induced by
CSC. Thus, free radicals may be a plausible source of CSC-
induced DNA damage. These data show that CSC-mediated

DNA strand breaks are highly persistent, and suggest that
persistence of cigarette smoke-associated DNA damage in
the presence of HPV infection may lead to increased mutations
in cervical cells and ultimately higher cancer risk. 

Introduction

Epidemiological and clinical data strongly support a major
role by the human papillomavirus (HPV) in the etiology of
cervical cancer (1-3). However, HPV alone appears to be
insufficient for cervical cancer development as studies have
shown that the majority of HPV infection is cleared by the
immune response within 8-12 months (4). Further, additional
cofactors were found to be required for prolonged expression
of the HPV E6 and E7 oncogenes leading to development
and progression of cervical abnormalities (5). One major risk
factor in HPV-mediated cervical cancer is cigarette smoking,
as it has been consistently linked with the progression of
cervical neoplasia (6). Further, female smokers have two
times higher risk of developing cervical cancer than non-
smokers (7).

Cigarette smoke-induced genotoxicity results in induction
of micronuclei, sister chromatid exchange, chromosomal
aberrations, microsatellite instability, DNA strand breaks
and oxidative DNA damage (8,9), Cigarette smoke is a
heterogeneous mixture of approximately 5,000 chemical
compounds, of which several dozens of them are carcinogens,
co-carcinogens, mutagens and tumor promoters (10), including
polycyclic aromatic hydrocarbons (PAH), N-nitrosamines,
inorganic and organic compounds (11,12).

Cigarette smoke has been shown to cause a variety of
oxidative DNA damage, including the formation of 8-oxo-
7,8-dihydro-2-deoxyguanosine (8-oxoguanine) (13,14). 8-
Oxoguanine is a common mutagenic DNA lesion which is
formed abundantly by intracellular oxidation and exogenous
carcinogens like cigarette smoke (15,16). It has also been
shown that cigarette smoke induces other forms of DNA
damage, including single-strand breaks (SSBs) (17,18) and
possibly double-strand breaks (DSBs) (19,20). In general,
strand breaks result from the attack of a variety of endogenous
and exogenous factors to the sugar residues of DNA (21).
SSBs represent the initial DNA damage and are often used as
a biomarker of exposure (22-24). DSBs are considered to be
more biologically relevant since they can lead to chromosome
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translocation and cancer if repaired improperly in addition to
genetic instability and cell death if left unrepaired (25).
Cellular DNA repair capacity is of particular importance
since it is a primary factor in how well a cell can overcome
DNA insults by a genotoxic agent. An intact DNA repair
system is crucial in order to combat the effects of various
carcinogens which can induce DNA damage. 

HPV-transfected cervical cells were chosen since it has
been proposed that cigarette smoke has a late stage synergistic
effect in the cervical carcinogenesis already initiated by HPV
infection (6,26). In order to study the role and possible
mechanisms of cigarette smoke-induced DNA damage in the
cells we employed single cell gel electrophoresis (SCGE),
also known as the comet assay. It is a sensitive technique
to detect DNA strand breaks as well as assess DNA repair
kinetics at the single cell level (24,27). We have employed
comet assay (28,29) to investigate: i) single- and double-strand
DNA breaks following exposure of the HPV16-transformed
human ectocervical cell line (ECT1/E6 E7) to cigarette smoke
condensate (CSC); ii) the ability of the cells to repair CSC-
induced DNA damage; and iii) the possibility of oxidative
damage as the source of CSC-induced DNA strand breaks by
employing ellagic acid (EA) as a known scavenger of reactive
oxygen species (30,31). 

Materials and methods

Materials. Keratinocyte serum-free medium (K-SFM),
bovine pituitary extract (BPE), epithelial growth factor
(EGF), penicillin/streptomycin, trypsin/EDTA solution and
low-melting agarose were from Invitrogen (Carlsbad, CA,
USA); sodium N-lauroyl sarcosine, DMSO, Tris and spermine
were from Sigma Aldrich (St. Louis, MO, USA); proteinase K
was from Roche (Switzerland); EDTA was from Mallinckrodt
Chemicals (Hazelwood, MO, USA); and ellagic acid was
from LKT Laboratories (St. Paul, MN, USA). 

Preparation of CSC. University of Kentucky research cigarettes
(2R4F) were smoked in a Borgwardt 30-port smoking machine
under standard FTC protocol (32). The particulates were
collected on Cambridge filters and were dissolved in DMSO
to obtain a 4% solution. The stock cigarette smoke condensate
solutions were stored in small aliquots at -80˚C. A fresh vial
was used for each experiment.

DNA damage formation. HPV-16 transformed human ecto-
cervical cells, ECT1/E6 E7, were a generous donation by
Dr Raina Fichorova, Brigham and Women's Hospital, Harvard
Medical School. The cells were routinely cultured as mono-
layer in K-SFM supplemented with 0.3% BPE, 0.1 ng/ml
EGF, 0.4 mM CaCl2, 1% penicillin and streptomycin at 37˚C
and 5% CO2. Cells were seeded at a density of approximately
6,000 cells/cm2 in 25 cm2 cell culture flasks. After cells reached
60-70% confluence, they were treated with either 0.2% v/v
DMSO or with 4, 8 and 12 μg/ml CSC in DMSO for up to
96 h in order to induce the maximum DNA strand breaks and
then harvested by trypsin/EDTA solution. The cells were
kept on ice at all times to minimize the DNA repair. All cell
culture studies were performed independently three or four
times.

DNA repair. ECT1/E6 E7 cells were treated with 4, 8 or
12 μg/ml CSC for 72 h, followed by CSC withdrawal.
Residual CSC was removed by washing the cells three times
with 5 ml medium, followed by incubation of the cells with
the fresh medium for an additional 24, 48, or 72 h at 37˚C to
allow repair of DNA strand breaks to occur.

Ellagic acid treatment. ECT1/E6 E7 cells were pre-treated
with EA (5 or 15 μM, 0.2% DMSO) for 20 h. Following this,
medium was removed and fresh media containing CSC (4,
8 or 12 μg/ml, 0.2% DMSO) and EA (5 or 15 μM, 0.2%
DMSO) were added for 72 h. Vehicle (0.2% DMSO)-treated
controls were analyzed in parallel. 

Comet assay. DNA single- and double-strand breaks were
detected by alkaline and neutral comet assays, respectively,
as described (27,29). Briefly, 100,000 cells per slide were
embedded in 1% low-melting agarose on frosted microscopic
glass slides. The cells were subsequently lysed (1.25 M
NaCl, 0.1% sodium N-lauroyl sarcosine, 50 mM Na-EDTA,
100 mM Tris-HCl, pH 10), digested with proteinase K (1.25 M
NaCl, 5 mM EDTA, 5 mM Tris-HCl, 0.5 mg/ml proteinase K,
pH 10) and DNA precipitated (50% ethanol, 1 mg/ml spermine,
20 mM Tris-HCl, pH 7.4). 

For single-strand breaks, the DNA was unwound by first
soaking the slides in strong alkaline buffer (0.6 mM Na-
EDTA, 0.18 M NaOH, pH 13) and then electrophoresed in the
same buffer (26 V; 400 mA, at 4˚C). For double-strand
breaks, the DNA was unwound using a neutralizing buffer
(500 mM Na-EDTA, 0.2% DMSO, 500 mM NaCl, 100 mM
Tris-HCl, pH 9.0) and then electrophoresed in the same
buffer (26 V; 250 mA at 4˚C). 

After staining the cells with ethidium bromide, comets
were visualized using a light microscope attached to a digital
camera with 510 excitation and 590 emission filters. The
images were analyzed using the software Comet Assay IV
(Perspective Instruments, Haverhill, UK). A total of 50 cells
per slide and 2 slides per sample were scored for ‘tail length’
and ‘tail moment’. Tail length is defined as the distance
between the center of the comet head and the end of the tail.
Tail moment is often considered a more significant indicator
of DNA damage since they refer both to the distance of DNA
migration and the amount of DNA in the tail (33). The higher
the values of tail length and tail moment, as computed by the
software, the higher the level of DNA damage.

Statistical analysis. The differences between comet assay
mean values were analyzed for statistical significance
(p<0.05) using Student's t-test. Statistical analysis of dose
response was calculated using One-way Analysis of Variance
(ANOVA). 

Results

Effect of CSC on DNA strand breaks with time. Fig. 1 depicts
the typical comet-like appearance of DNA strand breaks.
ECT1/E6 E7 cells were treated with 8 μg/ml CSC for 24, 48,
72, and 96 h. The cell viability, as measured by trypan-blue
dye exclusion, following a dose of 8 μg/ml CSC (up to 72 h)
was ≥80% contributing to lower background damage and
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therefore considered ideal to study time response (data not
shown). Since the rate of induction of single- and double-
strand breaks was almost the same (as described below) only
single-strand breaks were measured. There was a time-
dependent increase (Fig. 2) in cells with single-strand breaks
for both tail length, (2.9-fold; p<0.0001), and tail moment
(14.4-fold; p=0.0109), at 72 h, compared to 0 h. Beyond 72 h,
the tail length and tail moment plateaued. Taking this into
account, the 72 h time-point was chosen to conduct the DNA
damage and repair studies, since the maximum DNA strand
breaks occurred at this treatment time. 

Single- and double-strand breaks induced by different doses
of CSC. Cells treated with CSC showed a clear dose-response
with respect to the tail length and tail moment from 4-12 μg/ml
of CSC for both single- and double-strand breaks (p<0.0001)
(Fig. 3). The rate of single- and double-strand break occur-
rence was essentially the same at all doses tested at 72 h of
CSC treatment for tail length. The tail moment for double-
strand breaks was slightly lower as compared to single-strand
breaks, although not statistically significant. 

Doses of CSC higher than 12 μg/ml had a lethal effect on
the cells (not shown). Treatment of the cells with 12 μg/ml
CSC for 72 h generated the longest comet tail indicating
the largest number of strand breaks, which represents an
increased number of DNA fragments. Fig. 3c and d represent
the number of cells with single- and double-strand breaks,
respectively distributed at certain tail lengths following
treatment with 0, 4, 8, and 12 μg/ml concentrations of CSC;
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Figure 1. Representative comet assay images showing single-strand breaks in DNA of ECT1/E6 E7 cells treated with vehicle, 0.2% DMSO (a), and 4 (b), 8 (c)
and 12 (d) μg/ml CSC for 72 h.

Figure 2. Time response of CSC on DNA single-strand formation as detected
by (a) mean tail length (b) mean tail moment in alkaline comet assay
following treatment of cells with 8 μg/ml CSC. Data represent mean ± SD
of 4 independent experiments.
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increase in concentration of CSC indicates a greater number
of strand breaks.

DNA repair studies. A significant amount of both single- and
double-strand breaks were repaired in the first 24 h following

treatment with 4, 8 and 12 μg/ml CSC for 72 h (Fig. 4): At
the highest concentration of CSC, tail length and tail moment of
single strand breaks were repaired by 27 and 32%, respectively
after 24 h; tail length and tail moment of double-strand
breaks were repaired by 21% and 44%, respectively at the
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Figure 3. Dose response of CSC on single- and double-strand breaks: (a) mean tail length, (b) mean tail moment, and (c and d) distribution pattern of cells
with single- and double strand breaks, respectively as measured by tail length after 72 h, respectively. Data represent mean ± SD of 4 independent
experiments. 

Figure 4. Repair of single- (a and b) and double-strand (c and d) DNA breaks. (a and c) tail length, (c and d) tail moment. Cells were treated for 72 h with
0 (circle), 4 (rhombus), 8 (square) and 12 (triangle) μg/ml CSC, freed from residual CSC, and then incubated for up to 72 h for DNA repair to occur. Data
represent mean ± SD of 4 independent experiments. *p<0.05.
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same concentration. No further removal of either single- or
double-strand breaks was observed. DNA repair at the two
lower concentrations of CSC followed essentially the same
kinetics (Fig. 4).

Ellagic acid and oxidative damage. Cells treated with 5 μM
EA showed a reduction in the level of single-strand breaks
measured both as tail length (9%) and tail moment (15%)
although not statistically significant (Fig. 5). At a higher dose
(15 μM) of EA, however, single-strand breaks were diminished
significantly - 28% (p=0.0019) reduction in tail length and 50%
(p=0.0115) reduction in tail moment (Fig. 5). The tail length of
double-strand breaks were also significantly reduced by nearly
8% (p=0.0076) and 14% (p=0.0042) with 5 and 15 μM EA
treatment, respectively. The tail moment, however, was
unaltered. 

Discussion

It has been reported that cigarette smoke has a late stage
synergistic effect in cervical carcinogenesis initiated by HPV
infection (6,26). Nonetheless, the mechanism of smoking
on the neoplastic progression of cervical cells remains
inconclusive. The aim of this study was to investigate CSC-
induced DNA damage and subsequent repair in HPV-
immortalized cervical cells. In order to further understand
the interplay of smoking and cervical carcinogenesis, we
employed the comet assay to measure single- and double-
strand DNA damage and subsequent repair. 

The principle of the comet assay is based on alterations
found in DNA such as strand breaks resulting in the extension
of DNA loops from lysed and salt-extracted nuclei, which, in
turn, form a comet-like tail after either alkaline electrophoresis,
indicating SSBs, or neutral electrophoresis, indicating DSBs
(27,34). In previous studies in which the effects of cigarette
smoke condensate/cigarette smoke on DNA strand breaks were
investigated by the comet assay, only DNA single-strand
breaks were detected (18,35,36). The interaction of CSC on
DNA strand breaks in HPV-transformed cervical cells has
not been reported previously.

In the present study, we showed that CSC in HPV-infected
cervical cells is able to induce similar levels of DNA single-
and double-strand breaks in a dose- and time-dependent
manner. Based on experimental and epidemiological studies,
cigarette smoke accounts for a significant risk factor in
developing cancer of various organs (37), including those
of the cervix (38-40). Numerous genotoxic effects of CSC,
including DNA strand breaks, have also been demonstrated
in other human culture cells (17,18,41-43). However, this
finding has not been demonstrated previously in HPV-
infected cervical cells. We speculated that DNA integrity is
compromised when cigarette smoke acts in conjunction
with HPV in the cells. Nonetheless, the effects of CSC as a
heterogeneous component on the extent of DNA damage in
the cells are complex. Moreover, since CSC consists of many
tumor promoters such as catechol and hydroquinone (44)
as well as inhibitors such as unsaturated aldehydes (45), it is
difficult to pinpoint the specific carcinogens, present in CSC,
which are responsible for DNA strand breaks. Our finding
supports epidemiological data suggesting that cigarette smoke
acts in synergy with HPV in cervical carcinogenesis. 

In the current study, single- and double-strand breaks were
two types of DNA damage investigated. SSBs are considered
an indicator of early damage (24). Also, SSBs are intermediate
processing products of DNA damage, which, if left unrepaired,
may develop into mutagenic and lethal double-strand breaks
(46). Conversely, DSBs are considered more biologically
relevant lesions (24). DSBs are a more disruptive form of
strand break since they can either lead to cell death or loss of
genetic information, if left unrepaired, or they may cause
neoplastic progression if the repair process is compromised
(25,47).

Since the DNA repair capability is an important factor
believed to influence the outcome of DNA damage, we
examined the repair efficiency of HPV-transformed cervical
cells in combating CSC-induced strand breaks. From our
results, it appears that cells attain DNA single- and double-
strand breaks at all concentrations of CSC tested and that
maximum repair of DNA single- and double-strand breaks
occurred during the first 24 h and plateaued afterwards. The
present study also suggests that the repair of CSC-induced
DNA damage occurred only during the first 24 h and no
further repair was observed. This trend was observed for
both single- and double-strand breaks. This observation is in
agreement with radiation-induced SSBs in leukocytes (48)
and SSBs and DSBs in mouse embryo fibroblasts (24). In the
latter study, in contrast to the current findings, SSBs were
completely repaired after 24 h post radiation, whereas DSBs
were not (24). Additionally, based on our repair studies,
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Figure 5. Effect of ellagic acid on cigarette smoke condensate-induced
single- and double-strand DNA breaks as measured by tail length (a) and tail
moment (b). The cells were pretreated with 5 or 15 μM ellagic acid for 20 h,
followed by co-treatment with 8 μg/ml cigarette smoke condensate for 72 h.
Data represent mean ± SD of 3 independent experiments. *p<0.05, black bar,
single-strand breaks; diagonally lined bar, double-strand breaks.

1297-1304.qxd  9/10/2009  10:48 Ì  Page 1301



the ability of the cells to repair CSC-induced DNA strand
breaks reached a plateau after first 24 h regardless of CSC
concentration. Therefore, it can be concluded that the cellular
repair response depends on the cell type, the nature of strand
breaks, the type of carcinogen as well as the DNA repair
capacity of the cells. It is possible that at CSC concentrations
lower than the ones tested in this study, ECT1/E6 E7 cells
endure less strand breaks, which could be repaired efficiently.
However, if DNA repair capacity of the cells is compromised
due to the HPV infection, the CSC-induced breaks may be
poorly repaired which may lead to the accumulation of
mutations. 

It has been reported that HPV infection compromises the
DNA repair system such as alteration in gene amplification,
expression of DNA repair enzymes (49) and microsatellite
instability (50). It is conceivable that expression and function
of genes responsible for the repair of strand breaks might be
responsible for the differences in the rate of the repair of
CSC-induced damage. The repair of HPV16-immortalized
ectocervical epithelial cells to PAHs, such as benzo[a]pyrene
(BP), present in cigarette smoke, was found to be impaired
due to reduced p53 in those cells (51). Moreover, BP has
been shown to manipulate multiple HPV life cycle functions,
which, in turn, may influence cervical cancer progression
(52). 

Cigarette smoke may also contribute to the deficiency of
DNA repair in rejoining of the strand breaks. In this study,
both single- and double-strand DNA breaks were highly
persistent. We found that CSC-induced DNA damage was
much more persistent than ionizing radiation-induced damage
which was completely repaired within 2 h (18). This finding
might be due to genotoxic compounds present in CSC which
have been shown to slow DNA repair kinetics. It has been
reported that acrolein, also a constituent of cigarette smoke,
was found to inhibit the repair of DNA damage. Therefore, it
is reasonable to conclude that impaired DNA repair by CSC
may have a role in fixation of DNA damage in cervical cells,
leading to accumulation of mutations and cancer development.
In theory, SSBs should be repaired by using the undamaged
strand as a template, whereas DSBs can be repaired by two
repair pathways, namely homologous recombination or non-
homologous end-joining (24,53). Indeed, further investigation
is required to identify the repair pathway that may have been
affected in the CSC-treated cervical cells. To the best of our
knowledge, this is the first demonstration of the kinetics of
CSC-induced DNA strand breaks and of global repair of the
damage in human cervical cells.

In order to investigate if free radicals are the source of
oxidative DNA damage, we examined the effect of an anti-
oxidant, EA, in mitigating CSC-induced DNA damage. In
our investigation, EA showed significant, dose-dependent
reduction in CSC-induced single- and double-strand breaks.
Cigarette smoke contains a broad range of carcinogens,
including redox-active catechols, which may lead to the
induction of oxidative stress and eventually contribute to
increased genomic instability and cancer development (54,55),
including cervical cancer (56). It has been reported that the
highly reactive hydroxyl radicals generated from cigarette
smoke contribute in the formation of DNA single-strand
breaks in vitro (14,17). EA is a phenolic lactone that exerts its

anticarcinogenic and antimutagenic activities through several
mechanisms, including scavenging reactive oxygen species
(30,57,58). This observation is in agreement with previous
studies investigating the antioxidant activities of EA on DNA
strand breaks (59,60). Our data suggest that CSC-induced
DNA strand breaks may, in part, originate from free radicals.

Interestingly, we found that EA did not significantly
reduce basal levels of both single- and double-strand breaks.
Based upon our findings, we speculate that there may be two
possible explanations for the lack of attenuation of basal
levels of DNA strand breaks. First, cigarette smoke contains
more than 5,000 chemicals with diverse interactions (60),
which may influence the effectiveness of EA to act as an
antioxidant. Second, in our laboratory, it has been reported
that EA was a potent inhibitor of dibenzo[a,l]pyrene-DNA
adducts in a microsome-mediated test system by ≥75% (61).
However, using a cellular system, EA inhibited the same
adducts by only 16% (62). Thus, it seems reasonable to
speculate that, in the present study, limited EA uptake by the
cells may be a possibility for lower inhibition of CSC-induced
oxidative stress in the presence of the antioxidant. Despite
the fact that EA has antioxidant activity and is a direct radical
scavenger (30), the mechanisms by which EA can further
reduce DNA strand breaks induced by CSC in the cervical
cells await further study. There are ongoing experiments in
this laboratory to further investigate whether reactive oxygen
species are a source of CSC-induced DNA damage in the
HPV-infected cervical cells. 

In conclusion, our study highlights the inability of HPV-
transfected cells to completely repair CSC-induced DNA
damage. Furthermore, we demonstrated that the oxidative
stress may be the source of DNA damage caused by CSC.
The significance of our study stems from the fact that DNA
lesions and/or persistent DNA strand breaks, caused by the
inability of the cells to remove the damage, may result in
accumulation of mutations leading to cancer (63). These
findings support the previously found epidemiological
association between HPV infection, cigarette smoke exposure
and cervical cancer development (64,65). Our result suggests
that cigarette smokers infected with HPV may be at a higher
risk for cervical cancer. 
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