
Abstract. The aim of this study was to identify a prognostic
immunohistochemical signature indicative of risk of early
metastasis in node-negative breast carcinomas that would
also be relevant to the development of new tailored therapy.
Quantitative measurements of the immunohistochemical
expression of 64 markers (selected from literature data) using
high-throughput densitometry (as a continuous variable) of
digitised microscopic micro-array images were correlated
with clinical outcome in 667 node-negative breast carci-
nomas (mean follow-up 102 months). Multivariable fractional
polynomials model of logistic regression allowed the
selection of the best combination of markers (in terms of
sensitivity and specificity) to predict patient outcome without
any categorisation using predefined cut-points for individual
marker measurements. A highly predictive ten-marker (out
of 64) signature was identified comprising PI3K, pmTOR,
pMAPKAPK-2, SHARP-2, P21, HIF-1·, Moesin, p4EBP-1,
pAKT and P27 that well classified 91.4% of node-negative
patients (specificity 90.9%, sensitivity 93.7%, area under
ROC curve 0.958) independently of estrogen receptors (ER),
and progesterone receptors (PR) and HER-2 status (91.6%
well classified patients when ER, PR, HER-2 excluded). It is
concluded that quantitative immunoprofiling of node-negative
breast carcinomas is helpful in selecting patients who should
not receive aggressive adjuvant chemotherapy and provides
data for the development of tailored therapy.

Introduction

The incidence of early-stage breast carcinomas, particularly
lymph node-negative cases, has increased with the imple-
mentation of breast cancer screening programs in Western
countries. Patients with node-negative breast cancer have a
fairly good ten-year overall survival with loco-regional treat-
ment alone, only 30-40% developing distant metastases (1).
However, most patients are offered chemotherapy according
to current guidelines, leading to over-treatment of a large
proportion (2,3), since there is no means of clearly identifying
those patients who will not relapse and hence do not need
adjuvant chemotherapy. Therefore, markers to identify patients
not requiring aggressive adjuvant therapy are urgently needed,
so as to avoid unnecessary exposure of women to the potential
toxicity and side-effects of such treatment, and also to reduce
the overall cost of breast cancer management.

The development of high-throughput techniques such as
gene expression profiling has significant potential for the
identification of prognostic classifiers (4-10). Several studies
have reported gene signatures predictive of prognosis in node-
negative breast carcinomas (11-13). However, these assays
i) usually require frozen tissue, and this sampling can be
detrimental to pathological diagnosis in small tumours, and
ii) large amount of data provided by gene expression micro-
arrays may be somewhat liable to misinterpretation or poorly
validated (14-16).

In contrast, immunohistochemical assays require only a
small amount of tissue easily obtained from paraffin blocks
used for diagnosis, and can be standardised by quantification
of immunoprecipitates and automated devices (17-21). Our
objective was to identify an immunohistochemical signature
of poor prognosis (risk of early distant metastasis), in cases of
node-negative breast carcinoma, which would be economically
acceptable. For this purpose, we assessed 64 markers (a large
panel of known prognostic markers of tumour cell growth
and proliferation, invasion and scattering, and angiogenesis,
in addition to markers of signaling pathways) by standardised
quantitative immunohistochemistry (IHC). We used the
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SAMBA/TRIBVN device (22-28) that provides accurate
numerical data for statistical analysis of continuous variables,
with high-throughput assays using TMAs (29-41) in a large
retrospective series (n=667) of node-negative breast carci-
nomas. We have recently reported our experience with this
standardised method for quantifying immunoprecipitates
(42,43), which proved to be of potential clinical relevance
through identification of immunohistochemical signatures of
prognosis. However, methods relying upon dichotomising
continuous predictors  (42,43), using cut-points in logistic
regression are controversial (14-15,44,45). Therefore, in
the present study, we correlated the quantified immuno-
histochemical expression of each marker, then of groups
of markers (referred to as immunohistochemical signatures),
with the patient outcome (mean follow-up 102 months), in
order to identify the combination of markers with the best
sensitivity and specificity to predict prognosis in terms of
occurrence of early distant metastases, using a multivariable
fractional polynomials method (46,47). This approach allowed
us the use continuous values of variables (densitometry of
markers immunoexpression) so that the correlation between a
continuous predictor and the outcome variable could be
evaluated in some form of non-linearity.

Materials and methods

Patients. We studied a consecutive series of 667 patients
with invasive breast carcinomas who were operated from
1996 to 2002 in the same departments at the Conception and
Nord hospitals in Marseille. Surgery was in all cases the first
treatment. For this first step of treatment, patient manage-
ment was handled by the same group of surgeons (PB, LB
and XC), and the diagnosis was assessed by three senior
pathologists (CC, SG and LA). Conservative treatment and
node resection (complete or sentinel) were applied according
to current European recommendations. Likewise, radio-
therapy, chemotherapy and hormone therapy were applied
according to criteria used at that time.

Due to technical difficulties in performing IHC tests on
many serial paraffin sections of a TMA to evaluate the 64
different markers, complete data for all markers were
eventually obtained for only 572 patients out of the initial
series of 667. The 2007 follow-up data in clinical records
(mean follow-up 102 months from 1996 to 2007) showed
that 111 of 572 patients had distant metastases. The age of
patients at diagnosis ranged from 40 to 65 (mean 57) years.
Briefly, tumours were pT1b (32%) and pT1c (68%). All were
invasive ductal carcinomas not otherwise specified and 29%
were grade 1, 59% grade 2 and 12% grade 3 (Ellis and Elston
grading method).

Our study focused mainly on correlation of quantita-
tive immunohistochemical data with the patient outcome,
independently of pT and tumour grade. Therefore, current
histoprognostic data were not retained for statistical
analysis, mainly to limit the burden of data and also to focus
on the statistical analysis on continuous variables homo-
geneously obtained by (numerical) densitometric measure-
ments of immunoprecipitates obtained with the image
analyser.

Tissue. Tissue samples were all taken from surgical specimens
after formalin fixation. Attention was paid to optimal and
consistent tissue-handling procedures, including fast immersion
in buffered formalin in an appropriate container by patho-
logists or by nurses trained in the procedure. Tumour samples
were large and thick enough to allow subsequent TMA
construction. Duration of fixation was 24 h for smaller
resections (<5 cm) and 48 h for larger ones, to improve
formalin penetration, before specimen dissection at room
temperature. After fixation, paraffin pre-embedding and
embedding were performed with currently available automated
devices of the same brand. All paraffin blocks were stored in
the same room, where the temperature was maintained at
20˚C prior to TMA construction.

TMA construction. The procedure for construction of TMAs
was as previously described (22,27,28,42,43). Briefly, cores
were punched from the selected 667 paraffin blocks, and
distributed in three new blocks including two cores of 0.6 mm
diameter for each tumour (about 220 cases per block). All the
TMAs blocks were stored at 4˚C.

Immunohistochemistry. Serial tissue sections were prepared
24 h before immunohistochemical processing and stored at 4˚C,
as previously reported (22-28,42,43). The immunoperoxidase
procedure was performed using an automated Ventana
Benchmark XT device which allowed similar well controlled
antigen retrieval for all tumours, and Ventana kits. Markers
were detected using 64 commercially available and
documented antibodies (except anti-HIF-1· kindly provided
by Dr R. Pouyssegur, Nice, France). Antibodies are listed in
Table I. Dilutions of each antibody were determined by pre-
screening on the full 4 μm thick sections before use on TMA
sections.

Image analysis. Densitometric measurements of immuno-
precipitates in cores were assessed for each marker antibody
in each individually identified core after digitization and
cropping of the slide images, as previously reported (27,28,40)
with a SAMBA 2050 automated device (SAMBA/TRIBVN
Technologies, France).

Statistical analysis. Immunohistochemical expression of each
marker was first correlated with disease-free survival using
NCSS and Statistica statistical software (available on line).
When significant differences in mean quantitative scores of
expression were identified between patients with or without
distant metastasis or death (Mann-Whitney tests), the
prognostic relevance was re-evaluated for each marker using
log-rank test (Kaplan-Meier curves). The distribution and
relationship of prognostic markers were then documented
through supervised hierarchical clusters and dendrograms, as
previously reported (27,28,42,43).

Importantly we used logistic regression (and ROC curves)
to identify the combination of markers (referred to as
‘signature’) with the best sensitivity and specificity for
prediction of prognosis. The method of multivariable fractional
polynomials was used to correlate the outcome variable with
the quantitative IHC expression of markers as continuous
variables without predetermined cut-points (44,46,47).
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Results

Screening of potential markers of prognosis. TMAs containing
tumour samples from patients with (n=111) or without distant
metastasis (n=461) were screened for immunoexpression of
markers (Table I, Fig. 1). Complete data for all 64 markers
were available for 572 tumours (loss of some cores in TMAs
occurred for 95 tumours). The prognostic significance of
markers, individually evaluated by a univariate log-rank test
(Fig. 2) as previously described (22-28,42,43,52,55), served
for hierarchical clustering as shown in Fig. 3.

Logistic regression (ROC curves). The relationship between
groups of predictive markers and the outcome variable was
then evaluated by the multivariable fractional polynomials
method (44,46,47), without any cut-point but keeping marker
quantitative score values as continuous variables. The optimal

combination computered from the image analysis data bank
for the 64 markers in 572 node-negative breast carcinomas
is shown in Table II and Fig. 4. A ten-marker signature
comprising PI3K, pmTOR, pMAPKAPK-2, SHARP-2, P21,
HIF-1·, moesin, p4EBP-1, p AKT and P27 was found to
well classify 91.4% of the patients in the category of either
unfavorable or favorable prognosis with 93.7% sensitivity
(well classified 104/111) and 90.9% specificity (well classified
419/461) (Fig. 4).

When the logistic regression was re-assessed (Table II)
with exclusion of ER, PR and HER-2 (61 markers instead of
64), the same signature correctly classified patients in 91.61%
of the cases, suggesting that the above set of 10 markers
constitutes a significant indicator of prognosis independently
of hormone receptor status and HER-2 amplification. When
the multivariable fractional polynomials method was used on
this series of 572 tumours, the estimated logistic regression
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Figure 1. Individual core immunostaining in TMA of node negative breast carcinomas illustrating the immunoreactions with 6 of the 10 markers included
(PI3K, pmTOR, pMAPKAPK-2, HIF-1·, p4E-BP-1, pAKT) in the prognostic signature.
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Table I. Antibodies used in 667 node-negative breast carcinomas (Ventana Benchmark XT automated device, immunoperoxidase).
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Antibodies Supplier Sourcea Clone
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1 MMP7 Abcam Rpab
2 MMP11 Abcam Rmab EP1259Y
3 Elf4E Cell signaling Rmab C46H6
4 P70 S6 Kinase Cell signaling Rmab 49D7
5 FOXO3a Cell signaling Rpab
6 P 42-MAP-Kinase (ERK-2) Cell signaling Rpab
7 AF6 BD Biosciences Rmab 35
8 YB1 Abcam Mpab
9 Phospho-mTOR (Ser2448) Cell signaling Rmab 49F9

10 PTEN Signet COVANCE Mmab 6H2.1
11 VEGF R&D Systems Mmab 26503
12 Phospho-4E-BP-1(Thr37/46) Cell signaling Rmab 236B4
13 HIF 1· Giftb Mmab 729T3
14 MDR Abcam Mmab JSB1
15 Topoisomerase II· Dako Mmab Ki-S1
16 ß-Catenin Novocastra Mmab 17C2
17 GATA-3 Santa Cruz Mmab HG3-31
18 FGFR-1 Flg (C-15) Santa Cruz Rpab
19 Maspin BD Pharmingen Mmab G167-70
20 MET Chemicon/Abcys Mmab 4AT44
21 P-Cadherin Novocastra Mmab 56C1
22 Ezrin (p81, 80k, cytovillin) Neomarkers Mmab 3C12
23 phospho-AKT (Ser473) Cell Signaling Rmab 587F11
24 CD 44v6 Novocastra Mmab VFF-7
25 CD44 (HCAM) Novocastra Mmab F10-44-2
26 Moesin Biomeda Mmab 38/87
27 Moesin Neomarkers Mmab 38/87
28 Cytokeratins 8 - 18 Zymed Mmab (UCD/PR-10,11)
29 Cytokeratin 17 Dako Mmab E3
30 Cytokeratin 14 Novocastra Mmab LL002
31 phospho-STAT-3(Tyr705) Cell Signaling Rmab D3A7
32 Melan A Dako Rmab A103
33 CD 10 Novocastra Mmab 56C6
34 CD 34 Dako Mmab QBEnd-10
35 Vimentin Immunotech Mmab V9
36 Cytokeratin 19 Dako Mmab BA17
37 phospho-MAPKAPK-2 Cell Signaling Rmab (Thr334)
38 EGFR Ventana Mmab 3C6
39 STAT-1 Cell Signaling Mmab 9H2
40 FAK Cell Signaling Rpab
41 P38 MAP-Kinase Cell Signaling Rpab
42 P27 Kip1 Cell Signaling Rpab
43 P21Waf1-Cip1 Cell Signaling Mmab DCS60
44 SHARP 2 Abcam Rpab
45 FYN Abcam Mmab 1S
46 P63 Dako Mmab 4A4
47 Cytokeratin 903 Dako Mmab 34BE12
48 Carbonic anhydrase IX Abcam Rpab
49 E-Cadherin Zymed Mmab 4A2C7
50 CD 117 / KIT Dako Rpab
51 Cytokeratins 5-6 Dako Mmab D5/16B4
52 PTEN Cell Signaling Mmab 26H9
53 PI3 Kinase Cell Signaling Rpab
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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model for adverse outcome (logit) for the 10-marker signature
(quantitative score/QS of individual 64 markers) was:

Logit: -0.62602 + 3.2469E-02 x (p4E-BP1 QS) +
0.19086 x (HIF-1· QS) + 3.9232E-02 x (Moesin QS) +
2.9267E-02 x (P21 QS) + 7.1781E-02 x (P27 QS) +
8.30815E-02 x (pAKT QS) + 7.7037E-02 x (PI3K QS) +
7.4231E-02 x (pMAPKAPK QS) + 0.31909 x (pmTOR QS)
+ 4.973E-02 x (SHARP-2 QS).

This model estimates ‘B’ for a specific group (in the
present analysis the group of patients with metastases), where

logit (Y) = XB and (X) = densitometric quantitative score
for each marker. To calculate the probability of classifying in
the correct category of outcome, the logit is transformed using
Prob = exp (-logit) / [1 + exp (-logit)] or Prob = exp (- XB)/
[1 + exp (-XB)].

Likewise for the ten-marker signature (quantitative scores
of 61 markers, that is all 64 minus ER, PR and HER-2):
Logit : -0.50965 + 3.2708E-02 x (p4E-BP1 QS) + 0.18267 x
(HIF-1· QS) + 3.7484E-02 x (Moesin QS) + 4.1069E-02 x
(P21 QS) + 8.4261E-02 x (pAKT QS) + 7.8838E-02 x (PI3K
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Table I. Continued
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Antibodies Supplier Sourcea Clone
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
54 JAK 1 Cell Signaling Rpab
55 MET Novocastra Mmab 8F11
56 Caveolin 1 Santa Cruz Rpab
57 CD-105 Dako Mmab SN6h
58 CD-146 Novocastra Mmab N1238
59 BCL-2 Dako Mmab 124
60 P53 Dako Mmab DO-7
61 P16 Neomarkers Mmab Ab7(16PO7)
62 HER-2 Novocastra Mmab CB11
63 PR Ventana Mmab 1E2
64 ER Ventana Mmab 6F11
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aMmab, mouse monoclonal antibody; Rpab, rabbit polyclonal antibody. bKindly provided by Pouyssegur et al (51).
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Figure 2. Kaplan-Meier curves (log-rank test) determining individual prognostic significance of markers (as shown for HIF-1·, Moesin, pmTOR and pAKT)
quantitative scores in 572 node-negative breast carcinomas (TMA, quantitative immunochemical assays).
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Table II. Prognostic predictive value of optimal combination of markers and groups of markers determined by logistic
regression, evaluated by quantitative IHC in 572 node negative breast carcinomas.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Signatures Immunohistochemical markers Logistic regression

% (a) Surface under ROC curve
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Optimal signature PI3K, pmTOR, pMAPKAPK-2, SHARP-2, P21, 91.6 0.95
(Independent of HIF-1·, Moesin, p4E-BP-1, pAKT, P27
ER, PR, HER-2)b

Angiogenesis HIF-1·, VEGF, CD146, CD34, FGFR-1, CA-IX 65 0.74

Angiogenesis + PI3K, pAKT, pMAPKAPK-2, pmTOR, P38 90.03 0.94
signaling pathwaysc MAPKinase, p4E-BP-1, ElF4E, FOXO3a, FAK,

JAK, FYN, STAT-1, STAT-3, SHARP-2, P42
MAPKinase, HIF-1·, VEGF, CD146, CD34,
FGFR-1, CA-IX

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aPercentages of well classified patients (series of 572 node negative patients with breast carcinoma, 102 months mean follow up); bn=10; cn=24.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Figure 3. Supervised hierarchical clustering of the markers (excluding ER, PR and HER-2) with prognostic significance in the log-rank test, established with
quantitative densitometry of immunohistochemical assays on TMA (n=572 patients with node-negative breast carcinomas) and quantitative score cut-points
for each marker, as determined by log-rank test.

889-898  23/2/2010  10:37 Ì  Page 6

894



QS) + 7.0824E-02 x (pMAPKAPK QS) + 0.3126 x (pmTOR
QS) + 4.4381E-02 x (SHARP2 QS) + 5.2845E-02 x (P27 QS).
and the probability was computed by the same procedure as
indicated above.

When a shortened list of preselected markers was analysed,
grouped into subsets according to their specific biological
functions based on literature data, two other combinations of
markers exhibited a similarly strong relevance for prediction
of prognosis. Thus the association of markers of angiogenesis,
or main signaling pathways properly classified 90% of the

patients (sensitivity 89.19% well classified patients 99/111,
specificity 90.24% well classified patients 416/461). But this
signature included many more markers (n=24) instead of 10, to
obtain a high predictive value (Table II).

Discussion

We used a high-throughput quantitative immunohistochemical
procedure as previously reported (42,43) to analyse samples
from a large series of patients with node-negative breast
carcinoma (n=572), in order to identify an optimal combination
of markers allowing the selection of patients who would not
benefit from adjuvant chemotherapy.

Marker screening. No previous study has been reported that
used this approach of quantitative immunocytochemical
tumour profiling for prediction of prognosis in node-negative
breast carcinomas, although some quantitative immunohisto-
chemical assays have been reported for smaller sets of markers
(17-21) with different study designs. Our selection of markers,
mainly including a panel of molecules involved in tumour
growth and progression, was based on a literature review
and also upon our previous experience of their reliable and
discriminative IHC in routine sections from frozen or fixed
tissue and TMAs (22-28,40,52,55). The final choice of anti-
bodies, as noted previously (42,43), thus relied on their
commercial availability, their suitability for use on paraffin-
embedded archival material, their potential clinical relevance
for breast cancer management, as reported in recent investi-
gations on gene expression profiles (4-13), and previous IHC
studies (29-39). This clearly implies that the signature proposed
here may evolve as the number of the markers tested increases,
but it is likely that it will be difficult to find a combination with
significantly stronger sensitivity and specificity, than those
described herein.

Most recent high-throughput immunohistochemical studies
have focused on tumours of poor prognosis that currently
lack tailored therapy, such as basal-like and triple-negative
breast carcinomas, in order to identify new molecular targets
for specific therapies (37,38). In contrast, our study was
designed to select patients with node-negative tumours
having the most favorable prognosis, who would not require
aggressive adjuvant chemotherapy. Other studies have similarly
assessed gene expression profiling in node-negative tumours
(10,12,13), but IHC procedures are much easier to conduct,
requiring sections of only 4 microns thick (40 microns for
10 markers) from formalin-fixed tissue in paraffin blocks
remaining available after diagnosis. Procedures can be per-
formed in 24-48 h in Pathology departments, and importantly
are much more cost-effective than genomic tests (about ten-
fold cheaper).

Statistical analysis. Choosing cut-off points for positive
staining of prognostic markers in semi-quantitative analyses
is a major issue that must be addressed prior to attempting
statistical analysis and correlation with the patient outcome
in order for this methodology to be usable in routine clinical
practice. In contrast, high-throughput quantification of
immunoprecipitates by densitometry, using dedicated compu-
terized devices properly and uniformly calibrated for immuno-
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Figure 4. First and second steps of logistic regression and ROC curves
determining the signature (PI3K, pmTOR, pMAPKAPK-2, SHARP-2, P21,
HIF-1·, Moesin, p4EBP-1, pAKT and P27) that correctly classified node-
negative patients (91.4 and 90% top and bottom respectively in the category
of favorable and unfavorable prognosis). A second regression assessed
independently of ER, PR and HER-2 status also correctly classified 91.6%
of the patients (middle). Quantitative immunohistochemical assays on TMA
of 572 node-negative breast carcinomas.
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histochemical detection with a large tumour series (TMAs),
provides an excellent method for comparison of subsets of
tumours in a given cohort. This method yields measurements
appropriate for statistical analysis using continuous variables.
Cut-point values of immunostaining can be determined
according to log-rank tests for determination of prognostic
values by splitting patients in a series into two categories or
more, those with tumours expressing the markers above or
below validated (45) thresholds predictive of disease-free
survival. However, the use of cut-points has been criticized
and a more sophisticated strategy can be proposed (44-47)
that keeps continuous the values of quantitative scores
measurements. According to this principle and recommen-
dation, we applied this multivariable model for quantifying the
expression of potential predictors of prognosis. Markers were
quantitatively evaluated in TMA tissue sections by image
analysis, using arbitrary units for densitometric measurements
that are suitable for comparative studies of marker expression
in variable clinical settings, particularly to correlate properly
the expression of markers with the outcome variables. In
this regard, using this multivariable fractional polynomial
method (44,46,47), we analysed the correlation between
marker expression and patient outcome without dichoto-
mising our tumour series into subsets by the use of a cut-point.
In other words, all the 64 markers (and subsets of markers)
were concomitantly analysed according a non-linear model,
in order to obtain the best combination of a limited number of
markers with optimal accuracy, sensitivity and specificity for
prognosis prediction. In this manner, we found that a ten-
marker signature (PI3K, pmTOR, pMAPKAPK-2, SHARP-2,
P21, HIF-1·, Moesin, 4EBP-1, pAKT and P27) was sufficient
to correctly classify patients in 91.43% of the cases, indepen-
dently of ER, PR and HER-2 status. However, validation of
this signature is now required in prospective studies using
routine sections of individual tumours.

Biological relevance. The markers included in the signature
include mainly molecules involved in the main signaling
pathways within abnormal tumour cells with altered cell
machinery. Most of these markers have been individually
reported as dysfunctional in tumours (40,42,43) and des-
cribed as potential targets for specific therapy. Interestingly,
among those included in our ten-marker signature, some are
involved in the mTOR pathway (PI3K, AKT, 4E-BP-1) and
other signaling networks. The mTOR (mammalian Target Of
Rapamycin) protein shows aberrant high activity in breast
cancers, as well as other gynecological malignancies, which
induces increased tumour cell metabolism and growth, and
has been proposed as an interesting target for specific therapy.
Phase I and II trials have shown that molecules such as the
rapamycin analogues tensirolimus (CCI 799), everolimus
(RAD CO1) and ARIAD (AP 23573), which specifically
inhibit the mTOR protein, have significant antitumour
activitya against gynecological cancers (48). Likewise, in
breast cancers, molecules blocking mTOR activity increase
sensitivity to anthracyclines and taxans (49) and show
synergistic action with letrozole (50).

Overexpression of Moesin in breast carcinomas has recently
been reported in basal-like carcinomas (35). It is therefore not
surprising that Moesin is indicative of prognosis, in asso-

ciation with the other markers of the signature that we have
also identified in node-negative tumours that are associated
with an unfavorable patient outcome, and so require more
aggressive treatment.

HIF-1· is a major transcriptional factor in nutrient stress
signaling, and is crucial for the development of anticancer
therapy (51). In a previous study (52), we have shown that
expression of HIF-1· in usual tissue sections of breast carci-
noma was prognostically predictive in univariate analysis in
node-negative tumours. HIF-1· has been found to up-regulate
mTOR through upstream mTOR activators including PI3K
and AKT (53), suggesting that the effects of HIF-1· on
tumour cell metabolism and growth can be blocked through
mTOR inactivation by PI3K and AKT inhibitors (54). HIF-1·
also mediates VEGF angiogenic machinery, acting on
tumour neoangiogenesis through PI3K, AKT and other
factors including the ras-MAPK pathways (51,55). Blockage
of VEGF by monoclonal antibodies or by anti-VEGF-R
molecules such as sunitinib, sorafenib or vatalanib may reduce
tumour growth due to overexpression of HIF-1· in tumour
cells (reviewed in 51,52,55).

In conclusion, using 1) a high-throughput procedure to
profile 572 node-negative tumours in TMAs, 2) computer-
assisted densitometric quantification, 3) non-linear fractional
polynomial logistic regression using continuous values of
quantitative immunohistochemical variables to identify the
combinations of a limited number of markers without any
categorisation through pre-defined cut-points, we found a
ten-marker signature that allowed correct classification of
91.6% of the patients, independently of hormone receptor and
HER-2 status, and that particularly identified patients with
low risk of early metastasis, who consequently should not
require adjuvant chemotherapy.
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