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Prediction of the response to chemotherapy in advanced
esophageal cancer by gene expression profiling of biopsy samples
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Abstract. To improve the prognosis of advanced esophageal
cancer, neoadjuvant chemotherapy (NACT) followed by
surgery is a promising treatment strategy. NACT has been
shown to improve the prognosis of responders. However,
non-responders not only suffer from side-effects, but they
also lose precious time to take advantage of other possible
treatments. Therefore, it is crucial to establish a reliable method
that allows prediction of response before chemotherapy. A
biopsy sample can provide valuable information on the
biological characteristics of an individual esophageal cancer,
which can affect chemosensitivity. Comprehensive gene
expression profiling (GEP) using oligonucleotide microarray
covering 30,000 human probes was performed in 50 pre-
treatment endoscopic biopsy samples from 25 patients with
esophageal squamous cell cancer (ESCC) who underwent
cisplatin-based chemotherapy (two samples per patient).
Chemotherapeutic responses were evaluated by the reduction
rate of the tumor area on CT scans. Responders were defined
as patients with reduction rates of =50% and non-responders
were defined as patients with <50% decrease. The diagnostic
system, that predicts responses to chemotherapy, was con-
structed with the 199 most informative genes, and showed
82% of accuracy. Furthermore, the predictive performance of
this system was confirmed using an additional ten samples
with an accuracy of 80%. This study shows that GEP of pre-
treatment ESCC biopsy samples has the potential to predict
responses to chemotherapy.
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Introduction

Despite recent advances in surgical techniques and peri-
operative management, surgery alone has not been satisfac-
torily able to improve the prognosis of advanced esophageal
cancer. Even after curative resection by esophagectomy with
extended lymphadenectomy, about 50% of patients show
recurrence, (1) suggesting that micrometastasis may exist
outside the surgical field at the time of diagnosis. Neo-
adjuvant chemotherapy (NACT), which is expected to
eradicate systemic micrometastasis, followed by surgery is a
promising treatment strategy that improves prognoses for
advanced esophageal cancer patients. The significance of
NACT is controversial, but there has been a consistent
observation that survival is significantly prolonged in
responders (2,3). While, non-responders not only suffer from
side-effects but also lose a precious time to take advantage of
other possible treatments, like chemoradiotherapy. Therefore,
a reliable method that allows prediction of response before
chemotherapy is considered to be crucial for the future use of
NACT in treating advanced esophageal cancer.

It has not been possible to predict a patient's response to
chemotherapy based on pretreatment clinical parameters.
However, a tumor's biological characteristics are one of
the most important factors that affect chemosensitivity.
Molecular analyses of pretreatment biopsy samples, such as
RT-PCR and immunohistochemistry, have been performed
to understand biological characteristics of esophageal cancer
(4-7). However, only one or a few genes have been addressed
in these reports. Multiple genetic alterations are involved in
the development and progression of esophageal cancer, and
these aberrations may affect the expression of large number
of genes (8,9). Moreover, numerous molecular pathways
may contribute to the sensitivity of a tumor to chemotherapy
or radiotherapy. Gene expression profiling (GEP) allows
assessment of expression of thousands of genes simultaneously,
making it one of the powerful tools for understanding the
biological characteristics of a tumor. In fact, this approach
has already been used to identify genes that could serve as
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molecular markers of cancer classification and outcome
prediction (10-14). Recently, GEP has been successfully
performed not only using surgically resected samples but
also biopsy samples (15-18). Our previous study found that
biopsy esophageal squamous cell cancer (ESCC) samples
were distinguishable from normal esophageal epithelia using
GEP and intratumor heterogeneity of GEP was smaller than
intertumor heterogeneity. This means that GEP of ESCC
biopsy samples has the potential to represent the biological
properties of the entire esophageal cancer (19). In this study,
we performed comprehensive GEP of pretreatment biopsy
samples to predict response to chemotherapy.

Patients and methods

Patients and clinical samples. We performed chemotherapy
on ESCC patients with ¢cN1 or cM1(lym) with any cT stage
as neoadjuvant therapy or on patients with any cM1 other than
lymph node metastasis. The first line chemotherapy protocol
was cisplatin combined with adriamycin and 5-fluorouracil
(FAP therapy) (20,21). The treatment regimen of FAP therapy
was as follows: cisplatin (70 mg/m?) and doxorubicin hydro-
chroride (adriamycin, 35 mg/m?) were administered by
drip infusion on day 1, and 5-fluorouracil (700 mg/m?) was
administered by continuous infusion on days 1-7. Two cycles
of chemotherapy were given, separated by a 3-week interval.
Before treatment, we obtained a couple of endoscopic biopsy
samples from each of the 25 patients and assayed them
separately. We assigned these patients to an estimation set.
Tissue specimens were disrupted in RNAlater (Ambion,
Austin, TX) and stored at 4°C for 1-2 h, then at -80°C until
use. For each biopsy specimen, an adjacent cancer tissue
biopsy was given to a pathologist to assess the presence of
cancer and its histology. Characteristics of the estimation
set are listed in Table I. None of the patients received any
treatment before the endoscopy.

As an independent validation set, we obtained endoscopic
biopsy samples from 10 patients (one each) before chemo-
therapy. Characteristics of the validation set are also listed in
Table I. The treatment regimen in the validation set was
the same as in the estimation set. All aspects of our study
protocol were performed according to the ethical guidelines
set by the committee of the three Ministries of the Japanese
Government and a signed consent form was obtained from
each subject.

Evaluation of chemotherapeutic responses. Patients underwent
CT scan before and two weeks after each cycle of chemo-
therapy. The largest tumor area of the primary tumor was
measured bidimensionally, using the greatest diameter and
the greatest perpendicular distance before and after chemo-
therapy. When the primary tumor could not be detected in
CT scan, the largest area of the metastatic lymph node was
measured. Responders were defined as patients with reduction
rates of >50%; non-responders were defined as patients with
<50% decrease.

Preparation of fluorescent-labeled aRNA targets and
hybridization. Total RNA was purified from clinical samples
utilizing TRIzol reagent (Invitrogen, San Diego, CA). For
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control reference, 15 RNAs from normal esophageal
epithelia were mixed. Extracted RNAs were amplified with
T7 RNA polymerase using Amino Allyl MessageAmp™
aRNA kit (Ambion). Five ug of conrol- and experimental-
aRNA samples were labeled with Cy3 and CyS5, respectively,
mixed and hybridized on an oligonucleotide microarray
covering 30,000 human probes (AceGene Human 30K; DNA
Chip Research Inc. and Hitachi Software Engineering Co.,
Ltd., Yokohama, Japan). The experimental protocol is
available at http://www.dna-chip.co.jp/thesis/AceGeneProtocol.
pdf. Then, the microarrays were scanned using ScanArray
4000 (GSI Lumonics, Billerica, MA).

Analysis of microarray data. Signal values were calculated
by DNASISArray software (Hitachi Software Inc. Tokyo,
Japan). Following background subtraction, data with low
signal intensities were excluded from additional investigation.
In each sample, Cy5/Cy3 ratio values were log-transformed
and global equalization to remove a deviation of the signal
intensity between whole Cy3- and Cy5-fluorescence was
performed by subtracting a median of all log(Cy5/Cy3) values
from each log(Cy5/Cy3) value. Genes with missing values in
>10% of samples were excluded from further analysis.

Hierarchical cluster analysis (HCA) with Euclidean distance
as a similarity coefficient and Ward as a clustering algorithm
was performed using GeneMath 2.0 software (Applied Maths,
Inc., Austin, TX). To predict response in an unknown test
sample, we adopted a weighted voting (WV) algorithm,
which is a method for making classifications between two
classes (10); in this work class 1 refers to the responder
group and class 2 refers to the non-responder group. First, we
calculated the signal-to-noise ratio (SNR), S; = (u,-u,)/(0,+0,)
where ¢ and o denote mean and standard deviation values of
expression levels of a gene in each of the two classes. Each
gene was assigned a ‘vote’, which was the weighted difference
between the gene expression level in a test sample and the
average of the two classes: v, = S; x(X;-(u ;+14,)/2). The ultimate
vote for a particular class assignment was computed by
summing all weighted votes made by the genes used in the
class discrimination. The prediction strength (PS) was defined
as PS = (V-IV,D/(V+IV,]), where V, is summed votes
exceeding the threshold (here 0), and V, is those less than
the threshold, respectively. When PS was =0, we determined
the test sample belonged to class 1. When PS was <0, we
determined the test sample belonged to class 2. This model
was evaluated by leave-one-out cross-validation, whereby
one sample was withheld, a gene expression based model
was trained using the remaining samples, and then the model
was used to predict the class of the withheld sample (10).
The process was repeated to cover the entire samples, and the
cumulative accuracy was recorded. The leave-one-out cross-
validation used in this study repeats the entire model-
building process in each of the cross-validation sets without
information leakage, including the selection of genes used in
the class discrimination.

To select genes potentially contributing to chemo-
sensitivity, random permutation test, which involves randomly
permuting class labels to determine gene-class correlations,
was used (10). The original score, So =lu,-u,|, of each gene
was calculated without permuting the labels (responder or
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Table I. Characteristics of the estimation set and the validation set.

Estimation set

Gender Age Cycles of Tumor size T Lymph node M Stage Response
chemotherapy (mm) metastasis (other than LYM)
M 63 2 40 3 N1 0 I R
M 67 2 49 3 N1 0 1 R
F 76 2 41 4 MI1(LYM) 1 v R
M 65 2 20 3 MI1(LYM) 0 v R
F 68 2 49 2 N1 1 v R
M 52 2 22 2 MI1(LYM) 0 v R
M 75 2 16 1 MI1(LYM) 0 v R
M 72 2 43 3 N1 0 11 R
M 66 2 36 3 N1 0 11 R
M 76 2 19 2 N1 0 1B R
M 68 2 63 4 N1 0 I R
F 69 2 49 3 N1 0 I NR
M 63 2 39 3 MI(LYM) 0 v NR
F 53 2 51 3 MI1(LYM) 1 v NR
F 65 1 32 2 N1 0 1IB NR
M 69 2 69 3 N1 0 1 NR
M 61 2 40 3 N1 1 v NR
F 50 2 36 2 MI1(LYM) 0 v NR
M 55 1 47 3 MI(LYM) 0 v NR
M 74 2 48 3 N1 0 I NR
M 73 1 30 3 N1 0 I NR
F 62 2 37 4 MI1(LYM) 0 10Y NR
M 72 2 48 4 MI1(LYM) 0 v NR
M 60 1 52 4 MI(LYM) 1 v NR
M 67 1 40 4 MI(LYM) 0 v NR
Validation set
Gender Age Cycles of Tumor size T Lymph node M Stage Response
chemotherapy (mm) metastasis (other than LYM)

M 68 2 42 3 N1 0 1 R
M 58 2 26 3 MI1(LYM) 1 v R
M 57 2 32 3 MI1(LYM) 0 v R
M 62 2 31 3 N1 0 11 R
M 66 2 54 3 N1 1 v NR
M 58 1 34 2 N1 0 1B NR
M 58 1 29 2 N1 0 1IB NR
F 63 2 37 3 N1 0 I NR
M 59 2 40 3 MI1(LYM) 0 v NR
M 56 1 34 3 MI1(LYM) 0 v NR

Clinical diagnosis of tumor depth, lymph node metastasis, distant metastasis, and stage were classified according to TNM classification
(6th edition). R, responder; NR, non-responder.

non-responder). The labels of all the samples were randomly ~ permutation 10,000 times provides a score number (No)
permuted, and the scores were recalculated between two  larger than the original score (So). For each gene, the
groups consisting of the new members. Repetition of this  permutation P-value was determined by P=No/10,000.
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Statistical analyses were performed using StatView 5.0J
software. Relationships between responses and variable
clinicopathological characteristics were evaluated by the ¥?
test. Differences were considered to be significant at P<0.05.

Real-time quantitative RT-PCR. To verify our microarray
data, we randomly chose five genes (PRDX6, SRF PERP,
DADI, SELPINB6) out of predictive genes and performed
real-time quantitative RT-PCR (qRT-PCR) on 20 biopsy
ESCC specimens (responder: 10, non-responder: 10) and
the control reference. Complementary DNA (cDNA) was
generated using the Reverse Transcription System (Promega,
Madison, WI). Quantification of mRNA expression was
performed using a real-time thermal cycler, the LightCycler,
and detection system (Roche Diagnostics, Mannheim,
Germany). For detection of amplification products, Light-
Cycler-DNA master SYBR green I (Boehringer-Mannheim,
Mannheim, Germany) was used. Briefly, a 20-ul reaction
volume containing 2 ul of cDNA and 0.2 gmol/l of each
primer was applied to a glass capillary. PCR conditions were as
follows: one cycle of denaturing at 95°C for 10 min, followed
by 40 cycles of 95°C for 15 sec, 62°C for 5 sec and 72°C for
10 sec. The fluorescence intensity was calculated at each
cycle and the standard curve was constructed with 3-fold
serial dilutions of cDNA of the control reference. Quantitative
analysis of mRNA was performed using LightCycler analysis
software (Roche Diagnostics). The relative expression level
of a candidate gene was computed with respect to an internal
standard glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) mRNA to normalize for variations in the amount
of input cDNA.

Results

Clinicopathological characteristics. Characteristics of both
the estimation and validation set are shown in Table I. In the
estimation set, 20 patients received two cycles of chemo-
therapy and five patients received one cycle because tumor
size reduction was not observed. Seventeen patients underwent
surgery, and eight patients were not indicated for surgery
because of cM1 other than lymph node metastasis or disease
that had advanced too far. Eleven patients (44%) were
classified as responders, and the remaining fourteen patients
(56%) were classified as non-responders. In the validation
set, seven patients received two cycles of chemotherapy, and
three patients received one cycle because tumor size reduction
was not observed. Six patients underwent surgery and four
patients were not indicated for surgery because of cM1 other
than lymph node metastasis or too far advanced disease.
Four patients (40%) were classified as responders, and the
remaining six patients (60%) were classified as non-responders.
Clinicopathological characteristics of both the estimation and
validation set are shown in Table II. There were no significant
differences in any factors between the two groups.

Construction of a diagnostic system to predict response.
After gene processing described previously, 19,166 genes
were used for further analysis. Unsupervised HCA using all
19,166 genes is shown in Fig. 1. A couple of biopsy samples
obtained from the same case were most closely clustered
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Table II. Clinical characteristics between responders and
non-responders.

Estimation set

Characteristics ~ Responder ~ Non-responder P-value
(n=11) (n=14)

Gender
M 9 9 NS
F 2 5

Age (mean) 65.6 64 NS

Tumor size
<40 mm 5 5 NS
>40 mm 6 9

T
1,2 4 2 NS
3,4 7 12

Lymph node

metastasis
N1 4 6 NS
MI(LYM) 7 8

M (other than

LYM)
MO 9 11 NS
Ml 2 3

Stage
I, I 6 5 NS
v 5 9

Validation set
Characteristics ~ Responder ~ Non-responder  P-value
(n=4) (n=6)

Gender
M 4 NS
F 0 1

Age (mean) 60.5 58.5 NS

Tumor size
<40 mm 3 5 NS
>40 mm 1 1

T
1,2 0 2 NS
3,4 4 4

Lymph node

metastasis
N1 2 3 NS
MI(LYM) 2 2

M (other than

LYM)
MO 3 5 NS
Ml 1 1

Stage
I, 111 2 3 NS
v 2 3

Clinical diagnosis of tumor depth, lymph node metastasis, distant
metastasis, and stage were classified according to TNM classification
(6th edition).
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Figure 1. Hierarchical cluster analysis with whole genes in 50 biopsy ESCC samples from 25 patients of the estimation set. The rows and columns represent
genes and samples, respectively. The color scale at the bottom indicates the relative expression levels in terms of standard deviations from the median. A
couple of biopsy samples obtained from the same case were most closely clustered together.

together. When all 19,166 genes were used for prediction of
response, the accuracy was 72% by the complete leave-
one-out cross-validation. Then, we tried to reduce the number
of genes used for prediction for clinical setting. First, we
eliminated genes whose expression data differed by >1.5-fold
between pairs of samples from the same case in at least 20%
of the cases, to remove genes that had a wide variation in
the same case. Next, we defined significant genes as those
with P<0.001 by random permutation test. The leave-one-
out cross-validation using significant genes showed the
accuracy was 82%. The positive and negative predictive values
were 88.2% (15/17) and 78.8% (26/33), respectively. We
therefore defined these 199 genes with P<0.001 between the
22 responder samples and 28 non-responder samples as
predictive genes and constructed a diagnostic system using WV
algorithm. Top 55 of predictive genes are listed in Table III.
The expression patterns of 199 predictive genes showed distinct
profiles between the two groups (Fig. 2).

Evaluation of the diagnostic system using an additional data
set. Next, we validated the diagnostic system in the validation
set to confirm its predictive performance. Our diagnostic
system correctly predicted responses in 8 of 10 (80.0%) cases.
The positive and negative predictive values were 75.0% (3/4)
and 83.3% (5/6), respectively.

Real-time quantitative RT-PCR analysis. The relative
expression values of PERP were lower in non-responders,
and those of PRDX6, DADI, SELPINBG6, and SRF were

199 genes

responder
non-responder

Figure 2. Hierarchical cluster analysis with predictive genes in 50 biopsy
ESCC samples from 25 patients of the estimation set. The rows and columns
represent genes and samples, respectively. The color scale at the bottom
indicates the relative expression levels in terms of standard deviations from
the median. The expression patterns of predictive genes showed distinct
profiles between the two groups.
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Table III. List of predictive genes (top 55).

Rank AceGene Probe ID RefSeq accession no.  Rep. gene symbol P-value? Up or down in non-responder
1 AGhsPSID01001654 NM_016258 YTHDEF2 0 Down
2 AGhsPSID01001734 NM_024949 wWwC2 0 Down
3 AGhsPSID01001773 FBX031 0 Down
4 AGhsPSID01006730 0 Down
5 AGhsPSID01007687 NM_004568 SERPINB6 0 Up
6 AGhsPSID01010465 NR_002139 HCG4 0 Up
7 AGhsPSID01011257 PTFIA 0 Down
8 AGhsPSID01011870 XM_001720619 0 Up
9 AGhsPSID01015510 NM_006836 GCNIL1 0 Up

10 AGhsPSID01015629 XR_017723 0 Up

11 AGhsPSID01015781 NM_003196 TCEA3 0 Up

12 AGhsPSID01016693 NM_052925 LENGS8 0 Up

13 AGhsPSID01018176 NM_199265 THSD3 0 Up

14 AGhsPSID01018214 NM_032569 0 Up

15 AGhsPSID01018230 XR_041827 0 Up

16 AGhsPSID01019416 0 Up

17 AGhsPSID01020366 0 Up

18 AGhsPSID01020754 0 Up

19 AGhsPSID01021895 NM_181784 SPRED2 0 Up

20 AGhsPSID01023047 0 Up

21 AGhsPSID01023680 0 Up

22 AGhsPSID01024546 0 Up

23 AGhsPSID01024757 0 Up

24 AGhsPSID01025093 0 Up

25 AGhsPSID01025691 0 Up

26 AGhsPSID01027780 0 Up

27 AGhsPSID01028294 0 Up

28 AGhsPSID01028399 0 Up

29 AGhsPSID01029206 0 Up

30 AGhsPSID01003661 NM_006869 CENTA1 0 Down

31 AGhsPSID01005792 NM_014300 SECI11A 0 Up

32 AGhsPSID01006241 NM_016615 SLC6A13 0 Down

33 AGhsPSID01007421 NM_004279 PMPCB 0 Down

34 AGhsPSID01009369 XR_019355 PRDX6 0 Up

35 AGhsPSID01015604 NM_024744 ALS2CR8 0 Up

36 AGhsPSID01015949 0 Up

37 AGhsPSID01019141 NM_018648 NOLA3 0 Up

38 AGhsPSID01020673 XR_042052 C2orf59 0 Up

39 AGhsPSID01021333 0 Up

40 AGhsPSID01022139 NM_001080458 EVX2 0 Up

41 AGhsPSID01024824 0 Up

42 AGhsPSID01026968 0 Down

43 AGhsPSID01008409 NM_001008390 CGGBP1 0 Down

44 AGhsPSID01013314 JNM_003145 SSR2 0 Up

45 AGhsPSID01015920 NM_014874 MFN2 0 Down

46 AGhsPSID01016024 NM_203477 RPL23AP7 0 Up

47 AGhsPSID01020259 0 Up

48 AGhsPSID01027568 0 Up

49 AGhsPSID01027956 NM_001002911 GPR139 0 Up

50 AGhsPSID01000407 NM_175609 ARFGAPI 0 Down

51 AGhsPSID01000584 NM_022873 IFI6 0 Down

52 AGhsPSID01004314 NM_018196 TMLHE 0 Down

53 AGhsPSID01014324 NM_173630 RTTN 0 Up

54 AGhsPSID01007495 NM_172057 KCNH2 0 Down

55 AGhsPSID01000660 NM_025087 0 Down

4P-value was calculated by random permutation test.
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Figure 3. Real-time quantitative RT-PCR expression levels of five genes
(PERP, PRDX6, DADI, SELPINBG, and SRF) in 20 biopsy samples (10
non-responders and 10 responders).

higher in non-responders (Fig. 3). The expression patterns of
qRT-PCR of these five genes were in agreement with their
expressions on the microarray.

Discussion

Prediction of the response to chemotherapy or chemo-
radiotherapy is one of the most desirable achievements in the
clinical field. There are several qualities of a tumor that can
help to predict its response to therapy, such as its metabolic
activity and biological characteristics. Recently, positron
emission tomography (PET) has been introduced to assess
tumor metabolic activity. In case of neoadjuvant therapy in
esophageal cancer, several investigators reported that PET
might be useful for predicting responses early during or
after neoadjuvant therapy (22-24). Another approach for
predicting responses to therapy is to analyze the biological
characteristics of a tumor, which can be grasped before the
administration of therapy by molecular analysis of pre-
treatment biopsy samples. Weber et al suggested that PET
allows quantitative assessment of the entire tumor mass,
whereas molecular analysis of pretherapeutic biopsies may
not be representative for the entire tumor mass because of
tumor heterogeneity (22). However, we previously found
that the intratumor heterogeneity of GEP of ESCC biopsies
is smaller than the intertumor heterogeneity and the GEP
of ESCC biopsies may potentially represent the GEP of
whole tumors (19). In contrast, since PET evaluates changes
in metabolic activity before and after treatment, this approach
is unable to predict a response prior to administration of
therapy. Molecular analysis of pretherapeutic biopsies has
this principal advantage over PET in that unnecessary therapy
may be avoided.

Several studies regarding the predictions of treatment
response by GEP in esophageal cancer have been reported.
Luthra et al performed GEP of 19 pretreatment endoscopic
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biopsy samples and found that HCA segregated the cancers
into two groups that correlated with the response to chemo-
radiotherapy (17). Duong et al performed GEP of 46
pretreatment endoscopic biopsy samples and identified a
32-gene classifier that can be used to predict the response to
chemoradiotherapy in ESCC (25). These studies showed the
potential of GEP of biopsies for pretreatment prediction of
chemoradiotherapy responses. In this study, we performed
GEP of 60 ESCC biopsies, and successfully predicted the
responses to chemotherapy. To our knowledge, this is the
first report concerning the prediction of a chemotherapeutic
response of esophageal cancer by GEP using biopsies.

There are several methods to assess the response to
chemotherapy and to divide it into two response groups. In
ESCC patients who underwent NACT and surgery, clinical
responders, defined by >50% regression in the area of
primary tumor, had a better prognosis than non-responders
(21,26). Hence, in this study, patients with a reduction rate
of >50% of the primary site were classified as responders,
and patients with <50% decrease were classified as non-
responders.

In the estimation set, although HCA with all 19,166 genes
showed that a couple of biopsy samples obtained from the
same case were most closely clustered together and genes
that had a wide variation in the same case were removed, in
three cases one of the sample pairs predicted the patient
would respond while the other predicted the patient would not.
This is partly because genes that had wide variation between
a pair of samples were not able to be completely removed
and the cut-off criteria of genes may be determined using a
larger set of samples. In the validation set, the diagnostic
system correctly predicted the response in eight of ten cases.
Though further analysis should be done, these results would
allow for individualized treatment for advanced ESCC, which
is especially important for reducing the number of non-
responders, whose prognosis seems to be worse than that
of patients treated by surgery alone (2,27). This is partly
because of therapy-induced side-effects, selection of chemo-
therapy-resistant, biologically more aggressive tumor cells,
and delay of surgical treatment. Failure to respond to chemo-
therapy may be a marker of a biologically aggressive tumor,
which is associated with a poor prognosis irrespective of the
applied therapy.

Indeed, predictive 199 genes contained some genes that
had previously been reported to be associated with drug
sensitivity or malignant potential. PERP is a novel type of
effector involved in p53-dependent apoptosis (28). In both
the study of Luthra er al and our own, expression values of
PERP were significantly higher in responders, even though
the treatment regimens differed (17). PRDX6 is one of the
molecules involved in redox metabolism. Castagna et al
reported that PRDX6 was strongly up-regulated in cervix
squamous cell carcinoma cell line after cisplatin exposure by
proteomic approach (29). SRF encodes a ubiquitous nuclear
protein that stimulates both cell proliferation and
differentiation. Chai et al reported that SRF is a downstream
mediator of VEGF signaling in endothelial cells and is
critically required for VEGF-induced angiogenesis, which is
essential for cancer growth (30). Defender against apoptotic
cell death (DAD1) was initially identified as a negative
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regulator of programmed cell death in a mutant hamster cell
line. The expression of DAD1 was higher in hepatocellular
carcinoma (HCC) tissues than in adjacent non-tumorous
tissues by Northern blot analysis. High expression of DAD1
in HCC cells can block apoptosis, thereby enhancing tumor
cell survival (31).

The expression patterns of five genes among the predictive
199 genes were confirmed by qRT-PCR, and were in agree-
ment with their expressions on the microarray. This result
indicates that combination of biomarkers analyzed by
gqRT-PCR which is less complicated in manner than microarray
has the potential to prediction of chemosensitivity.

In conclusion, this study shows that GEP of pretreatment
ESCC biopsy samples can classify tumors according to their
future response to chemotherapy. The encouraging results of
this study warrant validation of the predictive genes with a
larger number of patients and eventually in a prospective trial
to evaluate its utility.
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