MOLECULAR AND CLINICAL ONCOLOGY 7: 515-520, 2017

The optimum marker for the detection
of lymphatic vessels (Review)

LING-LING KONG!", NIAN-ZHAO YANG'*, LIANG-HUI SHI', GUO-HAI ZHAO',
WENBIN ZHOU'?, QIANG DING'?, MING-HAI WANG' and YI-SHENG ZHANG'

1Departrnent of General Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College,
Wuhu, Anhui 241000; 2Depa.lrtment of Breast Surgery, The First Affiliated Hospital
of Nanjing Medical University, Nanjing, Jiangsu 210029, PR. China

Received February 22, 2017; Accepted July 22,2017

DOI: 10.3892/mc0.2017.1356

Abstract. Podoplanin, lymphatic vessel endothelial hyaluronic
acid receptor-1, prospero-related homeobox-1 and vascular
endothelial growth factor receptor 3 have been demonstrated to
have crucial roles in the development of the lymphatic system
and lymphangiogenesis process by combining with their
corresponding receptors. Thus, the four markers have been
widely used in labelling lymphatic vessels for the detection of
lymphangiogenesis and lymphatic vessel invasion. Numerous
authors have aimed to identify the roles of these four markers
in the lymphatic system and the mechanisms have been partly
clarified at the molecular level. The aim of the present review
was to comprehensively clarify the characteristics and latent
action modes of the four markers in order to determine which
is the best one for the detection of lymphangiogenesis and
Iymphatic vessel invasion.
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1. Introduction

As part of the circulatory system, lymphatic vessels have partic-
ular functions in fluid homeostasis, lipid absorption, immune cell
trafficking and causative agent filtration (1). Obviously disparate
from blood vessels, the lymphatic endothelial cells are ulteriorly
sorted in sub-compartments of the lymphatic vasculature (1-3).
The lymphatic vascular system consists of a compact network of
blind-ended, slight-walled lymphatic capillaries and collecting
lymph vessels that drain exudative protein-rich fluid from
the majority of tissues that transport the lymph by way of the
thoracic duct to the venous circulation (4). In addition, lymphatic
channels have a crucial role in the course of tumor development
and metastasis; however, the mechanism of tumor metastasis in
the lymphatic pathway remains unclear. Nevertheless, several
lymphatic endothelial markers, such as vascular endothelial
growth factor receptor 3 (VEGFR-3), lymphatic vessel endo-
thelial hyaluronic acid receptor-1 (LY VE-1), prospero-related
homeobox-1 (Prox-1) and podoplanin are widely used in the
detection of lymphangiogenesis and lymphatic vessel invasion
in a variety of cancer types (5-7). These markers interact with
each other in various physiological processes. During murine
embryogenesis, the first lymph sacs sprout from the cardinal
vein in response to elevating levels of homeobox domain-related
transcriptional factor, Prox-1, and the specific receptor of hyal-
uronan (HA), LYVE-1, around embryonic day 10.5 (E10.5).
Meanwhile, the level of lymphatic endothelium specific receptor,
VEGFR-3, remains high in lymphatic endothelial cells (LECs),
whereas its expression is decreased substantially in vascular
endothelial cells (8,9). Specific markers of LEC, VEGFR-3,
LYVE-1, Prox-1 and podoplanin, have provided novel insights
into the biology of malignant tumors. Other studies have demon-
strated the co-expression of podoplanin, VEGFR-3, Prox-1 and
LYVE-1 in LECs of normal adult and tumor tissues (8,10). The
present review aimed to determine which is the most effective
marker for the detection of lymphangiogenesis and lymphatic
vessel invasion.

2.D2-40

Podoplanin, first identified in rats, is a 43-kDa membrane
glycoprotein of podocytes (11). The podoplanin gene is a
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gene with 34.2 kb and eight exons that is responsible for
the synthesis of podoplanin. The plasma membrane is the
subcellular location of the encoded protein. Two species of
podoplanin mRNA, which most likely stem from alternative
splicing, have been verified by northern blotting (12).

Podoplanin is expressed specifically in lymphatic endothe-
lium, and does not exist in the blood vasculature (13). It has
a crucial role in preventing cellular adhesion and is involved
in regulating the formation of podocyte foot processes and
the maintenance of glomerular permeability (11,14,15).
Additionally, podoplanin is also expressed in a variety of
normal and neoplastic tissues (16-19). Podoplanin has been
identified in the development of tooth germ, implicating a
role in odontogenesis (20). Furthermore, its expression in
various odontogenic tumors implies a role in promoting tumor
invasiveness (20-22).

Podoplanin may increase the invasiveness of tumors
through its ability to alter actin in the cytoskeleton of tumor
cells, contributing to their intensive motility (23). The
association between podoplanin and the actin cytoskeleton
appears to be mediated by ezrin, whose phosphorylation is
notably increased when podoplanin is overexpressed (24-26).
Furthermore, podoplanin increases the activity of Rho
GTPases, predominantly RhoA, reflecting a different cyto-
skeletal organization in different cell types (19). Inhibition of
RhoA leads to a reduced motility of tumor cells (26).

D2-40 is a selective antibody to podoplanin, based on the
recognition of a mixed epitope, whose structure is determined
by the polypeptide core together with the O-linked carbo-
hydrate chain (27). Compared with anti-podoplanin, D2-40
is monoclonal and may be utilized immediately, whereas
anti-podoplanin requires prior affinity purification in nitrocel-
lulose strips containing recombinant protein (28). Additionally,
D2-40 may be used in staining paraffin sections without
the requirement of epitope retrieval, while anti-podoplanin
requires heat-dependent epitope retrieval (28).

As D2-40 is strongly expressed in the cytoplasm of LECs,
it has been widely used as a specific marker in detecting tumor
lymphovascular invasion (29). It has been demonstrated that
lymphovascular invasion was detected in 13.8-16% of cases of
invasive breast cancer on slides marked with hematoxylin and
eosin, and this detection rate increased to 28.5% when staining
for podoplanin was used (30,31). The results of multivariate
analyses in various tumors have suggested that the expression
of D2-40 was the strongest predictor of axillary lymph node
metastasis (30-32). Furthermore, patients with tumors lacking
podoplanin-positive vessels have been observed to have a
better prognosis (33). A previous study has demonstrated that
D2-40-positive lymphovascular invasion (LVI) correlates with
younger age, premenopausal status and micro-vessel density,
but not with tumor size or nuclear grade (34).

D2-40 appears to be an ideal marker for lymphatic vessels
on account of the aforementioned evidence. Nevertheless, it
should not be ignored that the myoepithelial cells of normal
and benign ducts and lobules of the breast are stained when
D2-40 is used to mark lymphatic vessels (29). A study by
Rabban and Chen (35) demonstrated that normal breast
myoepithelium surrounding solid ductal carcinoma in situ
express variable degrees of D2-40, which may be misinter-
preted as LVI. Therefore, they concluded that p63 should be
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synchronously used to stain myoepithelial cells when it is
difficult to distinguish between lymphangiovascular invasion
and stromal myoepithelial cells in close relation to neoplastic
cells (34).

3.LYVE-1

HA, an extracellular matrix glycosaminoglycan, is an
indispensable element of skin and mesenchymal tissues that
regulates cell migration in the course of wound healing,
inflammation and embryonic morphogenesis (36). LY VE-1 is a
specific receptor of HA, first identified by Banerji in 1999 (37).
It is a member of the Link protein superfamily, with a deduced
amino acid sequence of 322 residues, with 41% similarity to
the cluster of differentiation 44 HA receptor (38). However,
LYVE-I1 integrates with HA on the luminal face of lymph
vessels (Fig. 1), and is never present in blood vessels (37).

Interactions between LY VE-1 and the extracellular matrix
glycosaminoglycan, HA, may regulate leukocyte migration
through the lymphatic vasculature (38). The serum level
of LYVE-1 has been identified to be significantly lower in
patients with lung cancer with metastasis in comparison with
those without (6). It has been suggested that LYVE-1 could
be used in predicting cancer progression (6). The interac-
tion between LYVE-1 and HA was identified to be involved
in the adhesion of tumor cells to lymphatic vessels (39).
Furthermore, by using a novel approach such as reverse
transcription-quantitative polymerase chain reaction, it has
been demonstrated that the expression of LY VE-1 in breast
tissue implies that lymphangiogenesis is occurring in the
area (40). Furthermore, the expression of LY VE-1 was higher
in breast cancer cases with axillary lymph node metastasis
than those without (40). A study by Ramani ef al (7) indicated
that the upregulation of LY VE-1 may predict a poor prognosis
in neuroblastoma. Carcinoma-induced angiogenesis regulated
by cyclooxygenase (COX) is controlled via two mechanisms:
COX-2 modulates production of angiogenic factors by cancer
cells, while COX-1 regulates angiogenesis in endothelial
cells (41). Expression of LY VE-1 was demonstrated to be posi-
tively correlated with COX-2 or vascular endothelial growth
factor-C (VEGF-C) expression in breast cancer tissues (42).
Recent research may explain the feasible mechanism of this
phenomenon. The membrane type 1-matrix metalloproteinase,
an endogenous suppressor of lymphatic vessel growth, directly
sheds LYVE-1 on lymphatic endothelial cells to inhibit
LY VE-I-mediated lymphangiogenic reactions and suppresses
VEGEF-C production from pro-lymphangiogenic macrophages
through blocking the nuclear factor-xB signal path to restrain
lymphangiogenesis (43).

In order to determine the exact function of LY VE-1 in the
development of lymph vasculature, a murine model lacking the
LYVE-1 gene has been created. It has been reported that mice
lacking the LYVE-1 gene develop properly and establish a
functional network of lymphatic vessels and lymph nodes that
are thoroughly in accordance with the wild-type mice (44).
No disruption occurred in the process of HA metabolism, in
the development or differentiation of leukocyte subsets, or in
dendritic cell trafficking or tumor growth (44). This lack of
an obvious phenotype suggests that LYVE-1 does not have a
major structural, developmental or regulatory role and implies
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Figure 1. Possible relationship between markers of lymphatic vessels. The
aberrant expression of Prox-1 decreases the expression of VEGFR-3 and
D2-40. LY VE-1 integrates with HA on the luminal face of the lymph vessel.
Prox-1, prospero-related homeobox-1; VEGFR-3, vascular endothelial
growth factor receptor 3; LY VE-1, lymphatic vessel endothelial hyaluronic
acid receptor-1; ?7, currently unclear.

that the lack of LYVE-1 is compensated by an unidentified
module or that the role of LY VE-1 is much more specialized
than previously imagined (44). Furthermore, true endothelial
trans-differentiation vs. non-continuous endothelial-like
macrophages (LY VE-1* and stabilin-1*) cannot be clarified
completely, unless double markers are used in staining LY VE-1
for distinguishing clearly between LY VE-1* lymphatics and
LY VE-1* tumor-infiltrating macrophages (45).

4. Prox-1

The homeobox gene, Prox-1, was originally cloned by homology
to the Drosophila melanogaster gene, prospero (46). Analysis
of the expression pattern of Prox-1 suggested that it performs
different functions in a variety of tissues, including the lens,
heart, liver, pancreas and central nervous system (46).

It has been demonstrated that inactivation of the Prox-1
gene in mice results in embryonic lethality and phenotypic
alterations of the lens and liver (47). A study by Wigle and
Oliver (9) indicated that Prox-1 has an important function
during the early formation of the lymph sacs by endothelial
venous budding, and likely later during lymphatic growth by
endothelial sprouting from these primary lymph sacs. Prox-1
appears to function in a time-dependent manner, following
the formation of the lymphatic vasculature in each individual
embryonic structure (9). It was also demonstrated that Prox-1
merely had a role in the development of the lymphatic but not
the blood vascular system (9). At a similar time, a study by
Hong et al (48) indicated that Prox-1 regulated the procedure of
vascular phenotype conversion into a lymphatic phenotype. Its
activity is sufficient to override the blood vasculature pheno-
type in primary human dermal microvascular endothelial cells
by promoting a lymphatic endothelial phenotype instead (47).

Other research has demonstrated that the viability of
Prox-1 in a conservative subpopulation of embryonic vein
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endothelial cells is crucial not only to promote lymphan-
giogenesis but also to determine a lymphatic fate (8). Prox-1
activates transcription of a key cell cycle regulatory gene by
blocking it from binding to DNA, and regulates lymphatic
endothelial cell proliferation (49). In 2008, Dadras et al (50)
discovered that Prox] may be related to a more aggressive
vascular tumor phenotype with partial lymphatic differentia-
tion, with characteristics of Kaposi's sarcoma. Following this,
Prox-1 was indicated to be correlated with the pathogenesis
of oral Kaposi's sarcoma, as there is a gradual increase in the
number of positive spindle cells from patch/plaque to nodular
stages (51). Therefore, Prox-1 may be used as a novel diagnostic
biomarker to discriminate between oral Kaposi's sarcoma and
benign oral vascular lesions (51).

5. VEGFR-3

VEGFR-3 (also denoted Flt4) is a protein compound of
195 kDa. The compound is primarily cleaved in the fifth
immunoglobulin (Ig)-like domain, producing an N-terminal
peptide, which remains attached to the original protein via a
disulfide bond (52). VEGFR-3 is sensitized through binding
with VEGF-C and VEGF-D (53). Proteolytic processing of
VEGF-C and VEGF-D results in increased affinity for binding
to both VEGFR-2 and VEGFR-3 (54,55). It is easier for
VEGF-C to combine with VEGFR-3 than to VEGFR-2 (56).
VEGF-C binding requires Ig-loops 1 and 2 in VEGFR-3 (57),
while binding to VEGFR-2 requires loops 2 and 3 (58). Human
VEGF-D demonstrates analogical affinity for both VEGFR-2
and VEGFR-3, conversely, murine VEGF-D integrates only
with VEGFR-3 (59). Furthermore, N-terminal residues in
VEGEF-D are a prerequisite for the activation of VEGFR-3, but
not VEGFR-2 (60).

A study by Kaipainen et al (61) demonstrated that the
expression of VEGFR-3 is restricted to lymphatic vessels
during murine development. Also, VEGFR-3 is specifically
expressed in lymphatic vessels by cloning the human fms-like
tyrosine kinase (FLT)4 gene, in human adult tissues (62).
Knockout of the VEGFR-3 gene leads to defectiveness of
blood vessel development only in the early embryonic period
of mice, which implies that VEGFR-3 has a vital role in the
formation of the embryonic cardiovascular system before
the emergence of lymphatic vessels (63). VEGFR-3 is also
expressed weakly in capillary endothelium of normal breast
tissue, but expressed strongly in intraductal carcinomas (53).

In an experimental model with VEGF-D-expressing
tumors, administration of VEGF-D monoclonal antibody
reduced the growth of primary tumors and the rate of lymph
node metastases (64,65). A similar result was obtained
with anti-VEGFR-3; however, no effect was observed on
the development of lung metastasis (66). Other studies have
indicated that both VEGF-C and VEGF-D, which are ligands
for VEGFR-3, may promote tumor lymphangiogenesis and
lymphatic metastasis (64,67-69). Furthermore, VEGFR-3 has
been reported to stimulate the proliferation of angiogenic
blood vessel endothelium in breast cancer (53).

Therapeutic agents that block VEGF signaling have been
developed with the aim of retarding angiogenesis in diseases
involved in tissue growth and inflammation, such as cancer.
Sunitinib, an oral multiple-receptor tyrosine kinase inhibitor,
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has been authorized to be used in different types of solid
tumors and targets VEGF receptors, stem cell factor receptor,
platelet-derived growth factor receptor and FLT3 (70). It has
been demonstrated to be biochemically active against urothe-
lial carcinoma cells in vitro and in vivo (71,72).

Furthermore, there are many other kinds of biomarkers,
such as 5'-nucleotidase, the second lymphatic chemokines,
desmoplakin and 3-chemotactic factor D6, that may be used in
the detection of lymphatic vasculature (73-75). However, these
markers have not been widely used in tumor lymph vessel
examination due to the lack of reliability.

6. Conclusion

The aforementioned markers bind to their own specific
binding site in different modes. They all function in diverse
ways at different stages of growth and development. At
E9.5-E10.0, LY VE-1 is expressed uniformly in the endothe-
lial cells of the cardinal vein, whereas Prox-1 is only able
to be detected in a rigorous subpopulation of endothelial
cells around this stage (8). These markers may also regulate
each other in unclarified ways. The aberrant expression of
Prox-1 in differentiated blood vessel endothelial cells leads
to lymphatic endothelial regrouping, which is associated with
increasing blood vascular-specific gene expression and the
decreased expression of a large number of lymphatic-specific
genes, such as VEGFR-3 and D2-40 (48,76). However,
the intrinsic mechanism remains unclear. Not all of these
markers are detected in all cancer types. For instance,
LYVE-1 cannot be detected in MDA-MB-231 breast cancer
cells (40). Therefore, it is essential that the combined appli-
cation of lymphatic endothelium markers is used to detect
lymphatic vessels for improving the sensitivity and veracity
of detection.
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