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Abstract. Prostate cancer (PCa) is one of the most frequently
diagnosed malignancy. Although there have been many
advances in PCa diagnosis and therapy, the concrete mecha-
nism remains unknown. Long non-coding RNAs (IncRNAs)
are novel biomarkers associated with PCa, and their dysregu-
lated expression is closely associated with risk stratification,
diagnosis and carcinogenesis. Accumulating evidence has
suggested that IncRNAs play important roles in prostate
tumorigenesis through relevant pathways, such as androgen
receptor interaction and PI3K/Akt. The present review system-
atically summarized the potential clinical utility of IncRNAs
and provided a novel guide for their function in PCa.
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1. Introduction

Prostate cancer (PCa) is the second most common malignancy
in Western countries and accounts for 10% of cancer-related
deaths (1). Approximately 26,730 deaths occurred in 2017
due to PCa in the United States. The causes of this disease
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include age, functional testicles, and family heredity. Most
cases of PCa undergo a series of processes from androgen
sensitivity neoplasia to metastatic castration-resistant PCa
(mCRPC), which is presently incurable. Currently available
means for diagnosis depend on prostate specific antigen
(PSA) and pathological biopsy. Since PSA testing was
introduced, the incidence of localized PCa has increased
significantly; PSA testing can predict cancer risk and treat-
ment outcome (2). According to the literature, almost 240,000
individuals developed PCa in the United States yearly;
however, <15% of these patients eventually died; mortality
is largely dependent upon PSA testing and reasonable treat-
ment of PCa at an early stage (3-6). However, serum PSA is
not particular to PCa, and levels can be enhanced in benign
prostatic hyperplasia (BPH) (7) and prostatitis (8) even after
a digital rectal examination. Therefore, the lack of specificity
limits its further development. Low specificity has caused
unnecessary biopsies, thereby leading to the overtreatment
of indolent cancers. Pathological biopsy is the standard in
diagnosing PCa, but it is an invasive examination, which
will cause hemorrhage, infection, and even blood poisoning.
Hence, a novel biomarker for PCa diagnosis and therapy
should is urgently needed.

RNA plays a crucial part in the regulation of gene expres-
sion and genome organization (9,10). RNA serves as a template
for protein synthesis and exerts many functions (11). The
current research has concluded that only 10% of the genome is
made up of protein-coding genes. A large part of the genome
(~70%) is actively transcribed, which indicates that noncoding
RNAs (ncRNAs) account for an overwhelming percentage
of the human transcriptome (Fig. 1). At the start, NcRNAs,
which is viewed as ‘noisy RNAs,” have no transcriptional
function and account for almost 90% RNAs in humans (12).
ncRNAs can be divided into two major groups according to
their sizes, as follows: Long (IncRNA, >200 bp) and small
ncRNAs (<200 bp) (13). Small ncRNAs include termini-asso-
ciated short, transcription initiation, splice site, and antisense
termini-associated short RNAs (14). Most IncRNAs are
generated similar to other mRNAs, as emphasized by RNA
polymerase II activity and histone modifications associated
with transcription initiation and elongation (15). IncRNAs can
be divided into intragenic and intergenic IncRNAs according
to their locations in the genome relative to protein coding
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genes (16). IncRNAs also play a role as decoys for transcription
factors (17) and regulate protein activity (18,19). IncRNAs are
aberrantly expressed in a several human diseases, including
kidney cancer (20), colorectal cancer (21), endometrial
cancer (22), testicular cancer (23,24), breast cancer (25), and
hematological cancers (26,27). Bussemakers (28) first found
DD3P43 which is a IncRNA and is a potential diagnostic
biomarker for PCain 1999. This discovery started the research
on the involvement of IncRNAs in PCa. We summarized the
viewpoints, as follows (Fig. 1).

2. Key pathways dysregulated in prostate cancer by
IncRNAs

Androgen receptor (AR) interaction. The AR, as a protein
coding gene, is situated on the X chromosome, is approxi-
mately 110 kD and made up of four functional regions, namely,
(1) the hinge region, (2) ligand-binding domain, (3) N-terminal
transactivation domain, and (4) DNA-binding domain (29-31).
The AR is a nuclear transcription factor required for normal
prostate development and PCa; thus, it plays key roles in PCa
initiation and progression (32,33). PCa undergoes progression
from androgen-sensitive to resistance to castration. Androgen
deprivation therapy (ADT) is the frontline treatment for PCa
at the late stages. However, after 12 to 24 months of androgen
deprivation, PCa will eventually progress to the lethal form of
the disease known as castration-resistant PCa (CRPC), which
is eventually fatal for patients with PCa. The reactivation of
the AR is central to the progression of CRPC, and treatment
mechanisms may also be mediated by the AR signaling axis.
AR-dependent resistance mechanisms include AR enhance-
ment, AR single-base substitution, changed intratumoral
androgen biosynthesis, and the expression of constitutively
active AR splice variants (34-37). IncRNAs can function as
oncogenic and tumor suppressor in PCa through AR signaling
axis (Table I).

PCGEMI. PCGEMI, as the earliest prostate-specific
IncRNA, is located on chromosome 2q32 and overexpressed
in nearly 84% of patients with PCa. Recent studies revealed
the PRNCRI1 binding site to AR 549-623 location and the
PCGEMI combining site to the N-terminal location of AR.
PCGEMI and PRNCRI interact with AR (38) in a recently
published report. In various PCa cells, IncRNA cannot be
detected in AR-null cell lines, such as DU145 and PC3 (39,40).
The coalition of PRNCRI1 and AR leads to enrollment of
DOTIL methyltransferase methylating AR and allows the
subsequent interaction of PCGEMI1 with the methylated
AR. In turn, PCGEMI1 recruits PYGO2 (Pygopus 2), thereby
allowing the binding of AR to H3K4me3 chromatin marks to
the promoter regions of AR-regulated genes and leading to
their activation (38).

A positive correlation of PCGEM1 with AR3, which
is one of the most important splice variants that play a key
role in castration resistance, was observed (41-43). This
AD-PCGEMI1-AR3 axis can explain several reasons why the
effectiveness of ADT can only be sustained for a short time.
Heterogeneous nuclear ribonucleoprotein A1 (HnRNP Al)
and U2AF65, as splicing factors, play key roles in AR3 expres-
sion. When hnRNP A1 combines with PCGEM1, the coalition

activity of hnRNP Al to AR pre-mRNA is weakened. By
contrast, the binding activity of U2AF65 to AR pre-mRNA is
enhanced. A specific molecular mechanism does not explain
why interaction between U2AF65 and PCGEMI is dominant.
The binding of PCGEMI1 to U2AF65 is more competitive than
that of hnRNP Al to AR pre-mRNA 44).

HOX transcript antisense RNA (HOTAIR). HOTAIR IncRNA
is a 2.2 kb-long transcript and overexpressed in a variety
of cancer types, such as breast cancer, colorectal cancer,
lung cancer, and pancreatic cancer (45-48). HOTAIR is
sensitive to androgen and inhibited by androgen severely,
and its expression inhibits AR ubiquitination and avoids
AR protein degradation (49). HOTAIR IncRNA is entirely
abolished after AR target gene is knocked down via RNA
interference (49). Zhang et al (49) concluded that HOTAIR
overexpression enhances aggressivity in PCa and upregulates
in enzalutamide-resistant PCa cells. Therefore, attention
should be paid to HOTAIR as a potential therapy target in
enzalutamide-resistant patients with PCa in the future.

C-Terminal binding protein 1 antisense (CTBP1-AS)
CTBPI1-AS, which is situated in the AS region of C-terminal
binding protein 1 (CTBP1), is related to AR signaling pathway
and is overexpressed in both local PCa patients and metastatic
PCa patients, but not in Benign Prostatic Hyperplasia (BPH).
It is recruited to AR-binding sites. The CTBP1-AS IncRNA
directly inhibited the expression of CTBP1 (50), which acted
as the corepressor of AR by recruiting the RNA binding
transcriptional repressor PTB-associated splicing factor and
histone deacetylases. Thus, CTBP1-AS can enhance AR
transcriptional activity. Takayama et al (51) have reported that
upregulation of CTBP1-AS and downregulation of CTBP1
in PCa. CTBP1-AS knockdown inhibited cell proliferation
in hormone-depleted condition in both cell lines; in contrast,
CTBP1-AS overexpression induced tumor growth after
castration (51).

PCa gene 3 (PCA3). PCA3 is a IncRNA that was initially
named as DD3 and is located on chromosome 9q21-22 in
antisense direction within the intron 6 of the Prune homolog 2
gene (PRUNE2 or BMCC1) (52). PCA3 is overexpressed
in PCa cell lines (53,54) and modulates PCa cell survival
partly according to the AR pathway, which is involved in
the oncogenesis of PCa. Meanwhile, the positive rates of its
sensitivity and specificity are 82.3 and 89.0%, respectively,
compared with PSA, which showed only 57.4 and 53.8% (55).
Lemos et al (56) reported that PCA3 may regulate AR signal
pathway through AR cofactors (57), such as ARA 54, ARA
70, CBP, and P300, when PCA3 and ERK are silenced, and
Akt protein phosphorylation levels stayed the same. Thus, the
preferred method should be activate AR. Both AR cofactors,
including coactivators and corepressors, were upregulated,
which indicated that PCA3 may be a negative modulator to
AR and aberrant cofactor activity because altered or changed
expression levels may be factors to the progression to mCRPC.
A future potential therapy for PCa patients, especially mCRPC,
is the application of PCA3.

Phosphatidylinositol 3-kinase (PI3K)/Akt pathway. PI3K/Akt
pathway is one of the key signal transduction pathways regulating
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Table I. IncRNAs in prostate cancer.

IncRNA Location Expression Pathway (Refs.)
PCGEM1 2q32 1 AR interaction (39.,40)
HOTAIR 12q13.13 1 AR interaction (49)
CTBPI1-AS 4p16.3 1 AR interaction (51)
PCA3 9q21-22 1 AR interaction (56)
UCA1 19p13.12 1 PI3K/Akt pathway (67)
LINCO01296 14q11.2 1 PI3K/Akt pathway (68)
PCAT-1 8q24.21 1 by C-MYC protein (72)
SChLAP1 2q31.1 1 Interfering with SWI/SNF (75)

tumor-inhibiting complex

HI19 11p15.5 l Down-regulation of TGFBI (86)
TODRA 15q15.1 i Causing DSB repair by HR (88)

IncRNA, long non-coding RNA.

cellproliferation. PI3K/AKT/mTORsignaling, PTEN/PI3K/AKT
pathway, and PI3K/AKT/NF-kappaB/BMP-2-Smad axis play
important roles in cancer progression and development (58).
PI3K enzymes regulate cellular signal transduction. The
PI3K/Akt pathway mainly includes PI3K activation, recruiting
pleckstrin homology (PH) domain-containing proteins,
phosphorylation, activating AKT, and activating necessary
downstream targets (59). PI3K/AKT/mTOR is overexpressed in
30-50% of all prostate cancers (60), and its signal is regulated
in PCa cellular proliferation (61), apoptosis (62), invasion, and
migration (63).

IncRNA-ATB. IncRNA-ATB is first identified in hepatocel-
lular carcinoma (64). Xu et al (65) reported that IncRNA-ATB
is overexpressed in PCa tissues compared with normal tissues,
and it is related to high PSA level, high Gleason score, and
biochemical recurrence when the knockdown of IncRNA-ATB
and PI3K/Akt signaling pathways is inhibited. Meanwhile, the
roles of IncRNA-ATB in the invasion, migration, and tumor
growth remain unclear.

Urothelial carcinoma associated 1 (UCAI). UCA1 isalncRNA
that is related to various cancer types (66). Ghiam et al (67)
revealed that UCAI expression is high in PCa cells when
UCALI knockdown enhances radiosensitivity in classic PCa
cell lines and irradiation-resistant PCa cells due to PI3K/Akt
pathway downregulation.

LINCO01296. LINCO01296 is located at chromosome 14q11.2.
Wu er al (68) found that LINCO01296 is upregulated in
LNCaP cell lines but not in normal cell lines. Meanwhile,
when silencing LINCO01296, the protein expression level of
PI3K-Akt-mTOR signaling pathway significantly decreased
compared with that of normal cell. Therefore, the IncRNA
LOC400891 regulates cell proliferation through the PI3K-
Akt-mTOR signaling pathway (69).

Act as a tumorigenesis or a tumor-inhibiting gene. Genome
instability is the main factor in the promotion of cancer. The

aberrant expression of IncRNAs is related to the development
and progression of PCa and plays an important role in tumori-
genesis or tumor-inhibiting in patients with PCa. Several
IncRNAs are upregulated as oncogenes, whereas others are
downregulated in cancer.

PCa-associated IncRNA transcripts 1 (PCAT-1). PCAT-1,
which is located in the 8q24.21 gene desert with nearly 725 kb
upstream of the c-MYC oncogene (70), is overexpressed in
patients with PCa (71). C-MYC protein is upregulated by
PCAT-1, thereby resulting in specific gene expression programs
and cell proliferation (72). When PCAT-1 is knocked down
in LNCaP cells, cellular proliferation is diminished, thereby
indicating that it is a potential novel biomarker for colorectal
cancer metastasis.

Second chromosome locus associated with prostate-1
(SChLAPI). SChLAPI1 is a novel biomarker that is highly
upregulated in PCa (73-75) and associated with a high risk of
CRPC, thereby leading to tumor cell invasion and metastasis.
SChLAPI can interfere with the SWI/SNF tumor-inhibiting
complex (76) to promote tumor metastasis. SChLAP1 damages
genomic binding and SNF5-mediated gene expression regula-
tion. Similarly, Mehra et al (75) found that knocking down
SChLAPI1 can inhibit cell proliferation and migration in
bladder cancer cell lines.

Noncoding nuclear-enriched abundant transcript2 (NEAT2).
The IncRNA NEAT?2 is 7 kb long and is also known as
MALATI. NEAT?2 is highly overexpressed in a series of
cancers, including prostate cancer (77), osteosarcoma (78),
pancreatic cancer (79), breast cancer (80), bladder cancer (81),
and esophageal cancer (82,83). When NEAT?2 is knocked
down, cell hyperproliferation and metastasis are inhibited
in a PCa cell, thereby leading to cell cycle block in the
G,/G, phases (77). NEAT2 promotes the activation of PRC2 by
connecting to the polycomb protein enhancer of zeste homolog
2 (EZH2) and enhances the EZH2-mediated inhibition of
polycomb-dependent target gene E-cadherin in clear renal
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Figure 1. The construction of human genome. Human genome is mainly classified intoprotein-coding sequences and noncoding sequences. The ncRNAs are
composed of IncRNAs and small ncRNAs, depending on the size. Small ncRNAs consist of piRNAs, miRNAs, snoRNAs, tRNAs, snRNAs, scaRNAs, siRNAs
and rRNAs. IncRNAs are including IncRNA, macroRNA, lincRNA, PALR and vlincRNA. Adapted from St Laurent et al (95). ncRNA, non-coding RNA;
IncRNA, long non-coding RNA; piRNA, piwi-interacting RNA; miRNA, microRNA; snoRNA, small nucleolar RNA; tRNA, transfer RNA; snRNA, small
nuclear RNA; scaRNA, small Cajal body-specific RNA; siRNA, small interfering RNA; rRNA, ribosomal RNA; lincRNA, long-intergenic non-coding RNA;
PALR, promoter-associated long RNA; vlincRNA, very long intergenic non-coding RNA.

cancer (84). Meanwhile, NEAT2 controls cell cycle progres-
sion by regulating the oncogenic transcription factor B-MYB
(Mybl2) (85).

HI9. The H19 gene, which is transcribed from H19/Igf2 gene
cluster, is located on human chromosome 11p15.5. HI9 can
acts as a tumor suppressor gene. Zhu et al (86) found that
the decreased H19 expression is significant in metastatic
prostate cell compared with local prostate epithelial cell.
Hence, H19/miR-675 axis inhibits PCa metastasis according
to TGFBI downregulation.

Other genes. Double-strand DNA breaks (DSBs) are poten-
tially lethal DNA lesions. Homologous recombination (HR)
is an effective pathway for eliminating DSBs and repairing
injured DNA replication forks. RADS5]1 is the core recombi-
nase involved in HR, and increased RADS1 levels may cause
tumorigenesis. Prensner et al (87) found that IncRNA PCAT1
is involved in the DSB repair process in PCa. TODRA is a
novel IncRNA that is also known as RADS51 antisense RNA
1 and is located on 15q15.1. TODRA plays a role in RADS51
regulation. Gazy et al (88) reported that the overexpression
of TODRA causes DSB repair by HR and also enhances the
fraction of RADS5I1 foci formed after DNA damage.

Recent studies indicated that IncRNAs can recognize
miRNA elements that can be targeted by miRNAs (89). A
Zebrafish model where miR-125b regulates 7sl IncRNA expres-
sion is a typical example of the miRNA-IncRNA interaction (90).
Meanwhile, HOTAIR downregulation is targeted by the tumor
suppressor miR-34a, thereby inhibiting CRPC cell growth (91).

3. Therapeutic potential of IncRNAs in patients with cancer

IncRNAs has multiple functions and high cell-type
specificity. Thus, IncRNAs can provide an avenue for PCa
diagnosis, prognosis, and therapy. Currently, the use of
IncRNA for PCa patients is being explored.

IncRNA targeting strategy. The RNAI technology, which inter-
feres with RNA expression through antisense technologies, can
be widely used for the weak expression levels of IncRNAs with
oncology potential (92). The key cancer-associated genes with
therapeutic siRNAs have been suppressed in clinical trials.

Another method for inhibiting cancer-associated RNA
is by using catalytic nucleic acids, including antisense oligo-
nucleotides (ASOs) or by using small molecule inhibitors that
can also be used to modulate IncRNAs. The small molecule
inhibitors prevent the interaction of HOTAIR with LSDI or
PRC2 complexes, thereby restricting the metastatic potential
of breast cancer (93).

Targeting IncRNAs through the CRISPER/Cas system.
Currently, CRISPER/Cas (clustered regularly interspaced
short palindromicrepeats/CRISPER-associated system) take
advantage of knocking out targeting gene for treating PCa
patients. Meanwhile, Shechner et al (94) have ever reported of
using CRISPER/Cas system successfully.

4. Conclusions

IncRNAs are potential novel biomarkers as therapeutic targets
for patients with PCa. Considering the multiple and varied
processes of PCa, its treatment should be planned precisely
for each patient. At the same time, when modern technology
is used to kill tumors, the safety of normal tissues should be
ensured. However, in spite of its advantage over other thera-
peutic options, many questions need to be addressed.

The biggest challenge is that further research and
large-scale validation studies are imperative before the
successful application to clinical trials, because the molecular
mechanisms of IncRNAs and pathogenesis of PCa have not
been thoroughly understood. Nevertheless, the clearer the
IncRNA functions are, the better their field of therapeutic
usage will be. The next challenge is that the current IncRNA
marker candidates are mostly based on a small sample, and the
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lack of validity limits further development. Thus, the effec-
tiveness of IncRNA markers have to be prospectively verified
in large and varied datasets. Research in animal models and
clinical trials is needed to evaluate the potential side effects,
including toxicity, body distribution, pharmacokinetics, and
pharmacodynamics data.

Hence, IncRNAs are intriguing targets in treating
patients with PCa, and their potential in therapy can be
remarkable.
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