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Adrenergic receptor system as a pharmacological
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Abstract. Epilepsy is a complex and common neurological
disorder characterized by spontaneous and recurrent seizures,
affecting ~75 million individuals worldwide. Numerous
studies have been conducted to develop new pharmacological
drugs for the effective treatment of epilepsy. In recent years,
numerous experimental and clinical studies have focused on
the role of the adrenergic receptor (AR) system in the regula-
tion of epileptogenesis, seizure susceptibility and convulsions.
a,-ARs (0,4, 0,5 and o,p), 0,-ARS (0,4, 0,5 and a,-) and
B-ARs (B, B, and P5), known to have convulsant or anticon-
vulsant effects, have been isolated. Norepinephrine (NE), the
key endogenous agonist of ARs, is considered to play a crucial
role in the pathophysiology of epileptic seizures. However,
the effects of NE on different ARs have not been fully eluci-
dated. Although the activation of some AR subtypes produces
conflicting results, the activation of a,, o, and 3 receptor
subtypes, in particular, produces anticonvulsant effects. The
present review focuses on NE and ARs involved in epileptic
seizure formation and discusses therapeutic approaches.
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Introduction

Epilepsy is a brain disorder characterized by recurrent seizures,
which is diagnosed in 4 to 10 out of every 1,000 individuals
in developed countries and affects 75 million individuals
worldwide (1-3). The etiology of epileptic disorders is complex
and may be of genetic, developmental or acquired origin (4,5).
There is a balance between excitatory and inhibitory synaptic
mediators [glutamate and gamma-aminobutyric acid (GABA)]
in the healthy brain, and a shift of this balance towards
excitation is considered the primary cause of epilepsy (6).
In addition, serotonergic receptors (7,8), neuroinflamma-
tion (9-11), nitric oxide pathway (12) and various ion channels,
such as calcium ions (13) may also play a critical role in the
mechanism of epilepsy.

There is ample evidence to indicate that the noradrenergic
system plays a key role in the regulation of epileptogenesis
and convulsions (14,15). Norepinephrine (NE) is generally
synthesized and released from noradrenergic nerve endings
in the locus coeruleus (LC) (16,17). Abnormal NE secretion
causes an increase in tonic/clonic seizures in mice genetically
prone to epileptic seizures (18). Although the LC is a small
brainstem nucleus, it is the sole source of NE in the neocortex,
hippocampus and cerebellum. NE is a potent neuromodulator
involved in regulating the excitability of large-scale brain
regions. NE concentrations have been reported to increase
at seizure onset and decrease during or shortly following the
seizure (19).

The inhibition of NE release by gabapentin and pregabalin
has an anticonvulsant effect. These drugs exert their effects by
binding to the a28 subunit of voltage-sensitive Ca** channels.
Similarly, gabapentin and pregabalin cause a decrease in NE
release through an increase in the extracellular K* concentra-
tion (20). In another study, blocking voltage-sensitive Ca**
channels with melatonin exerted an anti-epileptic effect by
inhibiting NE release (21). In addition, the density of adren-
ergic receptors (ARs) in various brain areas decreases during
seizures (22,23). NE exerts a pronounced suppressive effect
on the development of epileptic seizures. Consistent with
this, a decrease in the NE concentration or the administra-
tion of AR antagonists causes an increase in the frequency
of seizures (24,25). However, there is evidence to suggest that
increased NE levels under certain conditions activate seizures,
possibly via different ARs (15,26,27). Furthermore, exposure
to specific [3,-adrenergic agonist drugs poses a significant risk
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for epilepsy (28). Conversely, the §-AR antagonist, propranolol,
has been shown to reduce pentylenetetrazole (PTZ)-induced
tonic/clonic seizures (29).

The hippocampus plays a crucial role in the pathogenesis
of epilepsy and the activation of the a,,-AR increases the
inhibitory tone in the CA1 region of the hippocampus (30).
Selective a,,-AR activation increases action potential firing
in a subpopulation of hippocampal CAl interneurons. In
response to this, Na* influx is initiated independently of
second messenger signaling. In addition, a,,-AR activation
decreases activity due to increased pre-synaptic GABA in
CA1l pyramidal cells (30). Furthermore, blockade of the
o, adrenoceptor subtype exerts both neuroprotective and
anti-epileptic effects (31).

The a,-adrenoceptor subtype has been reported to modu-
late seizure susceptibility in different seizure patterns. For
example, a,-adrenoceptor agonist, clonidine, has been shown
to suppress the development of PTZ-induced seizures (32,33).
By contrast, the a,-adrenoceptor antagonist, yohimbine, has
been found to have proconvulsive properties at relatively
high doses in the PTZ-induced seizure model (34). Using
the a,-adrenoceptor pathway, lithium chloride exhibits
anticonvulsant properties in the PTZ-induced clonic seizure
model (35). Adenosine exerts antiepileptic activity in animals
by increasing the seizure threshold induced by PTZ through
a,-adrenoceptors (36). The B-AR is distributed in the central
nervous system (CNS), particularly in the amygdala (37). The
decreased expression of $-AR in the amygdala of epileptic
animals leads to facilitating seizures (38).

Evidently, the activation of different ARs leads to complex
effects on epileptic seizures that have not yet been fully
elucidated. In the present review, the role of the adrenergic
system in epilepsy and the therapeutic potential of AR agonists
are discussed.

2. Adrenergic receptor types and subtypes

ARs are membrane-bound G protein-coupled receptors
(GPCRs) that mediate the peripheral and central effects of NE.
ARs are first divided into two major groups: a- and $-ARs (39).
In recent years, the development of new pharmacological tools
has revealed nine different subtypes of ARs: Three a,-ARs
(045, 04 and o), three a,-ARS (0 p, 0o and o) and three
B-ARs (B, B, and ;) (40) (Fig. 1).

In total, three subtypes of a,-AR have been identified in
the CNS, and o, ,-ARs are the most abundant (~55%) receptor
type. The a,5- (35%) and a,, (10%) subtype receptors exhibit
a lower distribution (41-43). In particular, a,-ARs are abun-
dantly isolated in neurons of the thalamus and cortex, and in
interneurons containing GABA (44). a,,-AR has a more wide-
spread distribution than o,5-AR in the entorhinal cortex and
amygdala. Of note, a,,-AR is also detected in the cortex, but
not in a homogeneous distribution (41). Both a,-AR subtypes
have been demonstrated in similar cell types, such as neurons,
interneurons and progenitors (45,46). Experimental research
has demonstrated that o, ,-AR activation by phenylephrine can
significantly reduce hyperexcitability in the hippocampal CA1
region via GABA , receptors (33).

0,-ARs have been shown to have both presynaptic and
postsynaptic functions. The a,,-AR is the main inhibitory

presynaptic receptor that regulates NE release from sympa-
thetic neurons as part of a feedback loop (40,47). However, in
some tissues, a,-ARs are considered to be inhibitory presyn-
aptic receptors (48). a,53-ARs are located on postsynaptic cells
and mediate the vasoconstrictive effects of catecholamines
released from sympathetic nerves (39).

p-ARs are essential components of the sympathetic
nervous system and belong to the superfamily of GPCRs (49).
Subsequently, adenylate cyclase (AC) activation causes
an increase in cAMP, the main modulator of intracellular
events (50). B;-AR subtypes constitute 70-80% of cardiac
B-ARs (49). B,-ARs are mostly found in airway smooth muscle.
In addition, 3,-AR are detected in alveolar type II cells, uterine
muscle, mast cells, mucous glands, skeletal muscle, epithelial
cells and vascular endothelium (51).

B;-ARs are abundantly found in adipose tissue and partici-
pate in the regulation of lipolysis and thermogenesis. It has
been shown that some [3; agonists have anti-stress effects. This
suggests that 3;-ARs also play a role in the CNS. Furthermore,
B5-ARs have been found in the urinary bladder, gallbladder
and brown adipose tissue (52). f;-ARs are Gs-type G protein
receptors and are involved in norepinephrine-induced AC
activation (53).

3. Effects of a,-adrenergic receptors on epilepsy

Changes in a,,-AR intensity have been found in animals with
seizures (54,55) and in patients with epilepsy (22). a,,-ARs
are usually found in postsynaptic neurons and are activated by
NE (56). The activation of these receptors specifically inhibits
seizures of the limbic system (57). In general, the activation
of a-ARs attenuates the rate of epileptiform discharges (58).
a,-ARs frequently increase the activity of GABAergic
interneurons, and GABA released from interneurons plays a
key role in the inhibitory effects of these receptors (59,60).
By contrast, the overactivity of a,5-AR causes spontaneous
epileptic seizures in mice overexpressing o,53-AR (61),
while a deficiency in a,5-AR results in the reduction of
pilocarpine-induced seizures (31) (Table I) (30,31,62-73).

In the prefrontal cortex, a,;-ARs are also expressed in
both glutamatergic pyramidal cells and GABAergic interneu-
rons (74). The stimulation of a,-ARs depolarizes GABAergic
interneurons, resulting in enhanced GABAergic transmission
in prefrontal cortex cells (75). In addition, the activation of
the alA-AR subtype by NE also causes the depolarization of
hippocampal CALl interneurons (30). These interneurons are
GABAergic and express the neuropeptide somatostatin, and
when activated, somatostatin is released to nearby pyramidal
neurons. Moreover, the stimulation of a,,-AR by NE increases
the pre-synaptic release of GABA and somatostatin, thereby
reducing CA1 pyramidal activity (76). Furthermore, new
pyrrolidin-2-one derivatives with affinity for a,-ARs cause a
decrease in seizure susceptibility by exhibiting GABAergic
activity (77). In addition, it has been shown that seizures
originating from the medial prefrontal cortex and caused by
acute stress are induced by NE stimulation of a,-ARs (65).
Electrophysiological recordings have revealed that NE
promotes epileptiform activity induction through o, AR stim-
ulation in medial prefrontal cortex pyramidal cells. Similarly,
ao,p-AR antagonism decreases hippocampal glutamate levels
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Figure 1. The three adrenoceptor subfamilies and their subtypes. G proteins
have a heterotrimeric structure consisting of 3 subunits (a, f and v). The a
subunit can bind guanosine diphosphate and guanosine triphosphate. § and
v subunits mediate the attachment of a to the membrane. -, a,-, and f-ARs
mainly couple to Gq, Gi, and Gs proteins, respectively. a,,-adrenoceptor
subtype agonists often exert their effects by binding to Gi proteins.
B-adrenoceptors fundamentally bind to Gs proteins. Gs protein receptors are
stimulatory, while Gi proteins are inhibitory.

and produces potent anticonvulsant effects (78). By contrast,
0,,-AR stimulation suppresses epileptiform activity in
hippocampal interneurons (30).

4. Effects of o,-adrenergic receptors on epilepsy

a,,-ARs are widely distributed in various brain regions, and
their activation suppresses the epileptiform activity of areas
associated with seizure formation, such as the amygdala (79)
and hippocampus (59). Different study data have revealed
conflicting results regarding the effects of a, agonists on
epileptic seizures. Some data report proconvulsant (27),
while others anticonvulsant effects (66,80). In different areas
of the brain, a,,- and a,--ARs function as both pre- and
post-synaptic receptors. It exerts the proconvulsant effects
of a,-AR agonists through presynaptic a,-ARs (81). These
agonists reduce NE release in noradrenergic neuron termi-
nals (82). However, the anticonvulsant effect of a,-ARs occurs
as a result of the released NE activating postsynaptic receptors
in target neurons (83). There is also evidence to suggest that
post-synaptic a,,-receptors are primarily responsible for the
anticonvulsant effect of a,-adrenoreceptor agonists (59,70).
The anticonvulsant mechanism of action of NE is briefly
summarized in Fig. 2.

Increasing extracellular hippocampal dopamine and GABA
secretions plays a critical role in the anticonvulsant effect of the
NE reuptake inhibitor maprotiline. Moreover, the anticonvul-
sant effect of maprotiline is potentiated by the administration
of a selective a,- and f,-agonists. On the other hand, o,
receptor agonists reduce the anticonvulsant effect (78). The
0,-AR selective agonist, dexmedetomidine, exerts anticon-
vulsant effects on PTZ-induced seizures, whereas the o,-AR
antagonist ATI facilitates epileptic seizures in rats (60).
Furthermore, dexmedetomidine significantly reduced the
number of c-Fos positive cells in the rat brain (66). However,
another study demonstrated a pro-epileptic effect of dexme-
detomidine in spike-wave epilepsy in WAG/Rij rats (84). In
previous a study on the rat hippocampus, the a2-AR antagonist

was implicated in the NE-mediated anti-epileptic effect in the
CA3 domain (85). Electrical brain stimulation in the rat hippo-
campus exerts an inhibitory effect on epileptiform activity via
a, and a, ARs (86,87). Moreover, the a,-AR agonist, yohim-
bine, and adenosine provide an additive effect to increase the
seizure threshold induced by pentylenetetrazole in mice (36).
Experimental evidence has revealed that the specific canna-
binoid CB, agonist, ACEA, is involved in its anticonvulsant
properties by functionally interacting with a,-adrenoceptors
in PTZ-induced seizures in mice (32).

The effects of a,-AR agonists on epileptic seizure activity
vary depending on the dose. Clonidine, an a,-AR agonist,
exerts anticonvulsant effects at high doses, while it is procon-
vulsant at low doses (88). The difference in this effect may be
partly related to the different signaling pathways initiated by
the activation of a,-ARs. The dose of a,, agonist used and
the adenylate cyclase isoform found in different neurons can
determine this effect (89).

5. Effects of f-adrenergic receptors on epilepsy

B-ARs are low affinity receptors for NE and are activated
during periods of intense LC activation with a high NE
release. The prolonged stimulation of B-ARs leads to a
decrease in their sensitivity (90). 3-AR is extensively distrib-
uted in the amygdala (37). Long-term antidepressant treatment
downregulates [-receptors in the amygdala and leads to an
increase in epileptic seizures in rats (24). Similarly, reductions
in the concentration of 3-ARs in the amygdala of epileptic
animals may contribute to facilitating seizures (38). The
administration of [3,-AR agonists to mice also causes a reduc-
tion in PTZ-induced seizures (82). In addition, the [3,-agonist,
salbutamol, has been shown to exhibit anti-epileptic activity in
maximal electroshock-induced seizures in mice (91).

The role of B-ARs in epileptic seizure susceptibility is
largely unclear, and there are conflicting findings in different
studies. An increase in seizures may be an expected result in
studies using B-AR blockers (92). By contrast, there are different
studies demonstrating that B-AR antagonists exert anticon-
vulsant effects in various animal models of seizures (93,94).
The non-selective $-AR antagonist, propranolol, exerts an
anticonvulsant effect by blocking the sodium channel rather
than its hippocampal effects (95). However, it is stated that a
similar mechanism is responsible for the anticonvulsant effect
of clenbuterol, which is a 3,-AR agonist (1). Moreover, the
stimulation of ,-ARs reduces limbic seizures by increasing
hippocampal dopamine levels (78). The a-receptor antagonist,
phentolamine, selectively reduces anticonvulsant effects,
while the B-receptor antagonist, timolol, blocks proconvulsant
activity (96). These results suggest that there are different
mechanisms in seizure formation in various animal models.
Nevertheless, these results clearly indicate that 3,-AR activa-
tion plays a critical role in the anticonvulsant effect of NE.

6. Adrenergic modulation of GABA and glutamate

NE exerts excitatory and inhibitory effects on neuronal
excitability, depending on receptor subtypes and locations.
However, there is evidence to suggest that the dominant
effect of NE suppresses excitability in a number of brain
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Table I. Proconvulsant/anticonvulsant activities of adrenergic receptors.

Receptor Compound/ Mode of Proconvulsant/
subtypes expression action anti-convulsant Mechanism of action (Refs.)
Oyp Phenylephrine Agonist Anti-convulsant Activation of the a,,-AR prompts (30)
release of GABA onto CAl
pyramidal cells
o4 Prazosin Antagonist Proconvulsant a, receptor blockade (62)
Oyp Receptor - Proconvulsant Overexpression of a,z-adrenergic (63)
overexpression receptor in an animal model of
epilepsy
O Receptor deficiency - Anti-convulsant a,g-adrenergic receptor deficiency in (€20
KO mice
o, Terazosin Antagonist Proconvulsant Adrenergic o, AR blockade in PTZ (64)
model epilepsy
o, Terazosin Antagonist Anti-convulsant It delays seizures caused by acute (65)
restraint stress.
a, Dexmedetomidine Agonist Anti-convulsant Activation of the a,-AR in PTZ (66)
model epilepsy
o, Atipamezole Selective Proconvulsant Prevents post-traumatic epilepsy (67)
antagonist
a, 6-Fluoronorepi- Agonist Anti-convulsant Inhibits epileptiform activity in the (68)
nephrine rat hippocampal CA3 region
o, Clonidine Non-selective Proconvulsant Clonidine acts on presynaptic (69)
agonist autoreceptors to reduce NE release
o, Guanfacine Selective Anti-convulsant Guanfacine exerts its anticonvulsant (69)
agonist effect on the postsynaptic receptors
of NE
a, Atipamezole Selective Anti-convulsant Alters CaMKII and suppresses (70)
antagonist seizures in rats with genetic absence
epilepsy (GAERS)
o, Yohimbine Antagonist Anti-convulsant Enhancement of the (36)
pentylenetetrazole-induced
seizure threshold in mice
o, Clonidine Agonist Proconvulsant Inhibited the anticonvulsant effects (36)
of N6-cyclohexyl-adenosine
§ 2-Floronoradrena- Selective Anti-convulsant Activation of the noradrenergic locus (71)
lin (2-FNA) agonist coeruleus system
B Propranolol (icv) Non-selective Anti-convulsant ~ Anticonvulsant effect through central (72)
antagonist [2-adrenoceptors.
B Propranolol (icv) Non-selective Anti-convulsant Increases the threshold for (73)
antagonist lidocaine-induced convulsions

KO, knockout; PTZ, pentylenetetrazole; icv, intracerebroventricular; CaMKII, Ca*/calmodulin dependent protein kinase II; GABA,

gamma-aminobutyric acid.

regions (83,97). It is a known fact that the pathogenesis of
epileptic seizures is associated with the hyperexcitability of
brain neurons. Therefore, it is important that NE reduces excit-
ability in its anti-epileptic effect. The effect of NE on neuronal
excitability may be via modulation of the conductivity of ion
channels or indirectly, usually through GABAergic and gluta-
matergic transmission (83). Evidence has shown that activating
the noradrenergic system facilitates the presynaptic release of

GABA (68). In addition, GABA induces NE release by acti-
vating GABA , receptors at noradrenergic nerve terminals (98).
NE has the ability to alter the excitability of GABAergic cells
in certain brain regions (99). For example, the chronic use of
certain antidepressant drugs (e.g., citalopram and fluoxetine)
that increase NE levels causes the downregulation of ARs
and GABA , receptors (100). This regulation may be one of
the possible reasons for the proconvulsant effect of chronic



MEDICINE INTERNATIONAL 4: 20, 2024 5

Thalamus

Hypothalamus

Hippocampus

Pre-synaptic
adrenoreceptor

L-tyrosine

NE

Epileptic
activity

Pyramidal cell

Post-synaptic

@ Norepinephrine
® Glutamate

O GABA

@ Dopamine

Post-synaptic
adrenoreceptor

Interneuron

Figure 2. The proposed mechanism of action of the adrenergic receptor system in epileptic seizures. Increased hippocampal NE levels suppress seizures
through the activation of a,,-AR and f$,-ARs. Hippocampal NE levels are under negative feedback control of a,-ARs. NE controls hippocampal DA, GABA
and Glu levels via 3,-, o, ,- and a,,-ARs, respectively. Activation of 3,-AR by NE increases hippocampal DA levels and suppresses epileptic seizures. Activation
of a,,-AR and postsynaptic a,-ARs increases GABA levels in interneurons and inhibits seizures. Glu secretion by presynaptic a2-AR is suppressed and
produces potent anticonvulsant effects. AR, adrenoceptor; NE, norepinephrine DA, dopamine; GABA, gamma-aminobutyric acid; Glu, glutamate; PLC,

phospholipase C; ER, endoplasmic reticulum.

antidepressant therapy. The activation of al-ARs can cause
epileptic seizures by increasing GABAergic transmission in
various brain limbic regions, including the hippocampus (101),
piriform cortex (100) and amygdala (102). The activation
of a,-ARs through a decrease in potassium conductivity
decreases epileptic seizures in the hippocampus by depolar-
izing inhibitory interneurons (30,101). In a previous study on
the medial prefrontal cortex, it was found that the stimulation
of a,-ARs with phenylephrine facilitated GABAergic trans-
mission to pyramidal neurons (75).

Numerous noradrenergic neurons from the LC make
synaptic connections with GABAergic interneurons in the
basolateral amygdala. Through the activation of a,-ARs, NE
depolarizes GABAergic interneurons in the amygdala and
increases GABA transmission. This causes the inhibition
of pyramidal glutamatergic cells (103). Stress suppresses
NE-mediated GABAergic transmission. Therefore, it is
suggested that this is a possible mechanism underlying the
increase in stress-induced seizure activity (102). A signifi-
cant association has been found between the decrease in the
density of a,-ARs in the amygdala of mice and epileptic
seizures (64).

There is evidence to suggest strong associations between the
adrenergic and glutamatergic systems in the brain. NE secre-
tion also exerts prominent effects on the neuronal excitatory
glutamate system (104). NE plays a key role in regulating the
sensitivity of specific postsynaptic glutamate receptors (105).
It has been stated that ionotropic glutamate receptors play a
critical role in the regulation of NE release, and the activation

of glutamate receptors reduces NE levels in the rat hippo-
campus (104). An increase in glutamatergic activity in the
entorhinal cortex leads to the induction of seizures. However, the
administration of NE blocks seizure activity in this area (105).
NE increases epileptiform activity in the hippocampal dentate
gyrus (DG) through N-methyl-D-aspartate (NMDA) receptor
activation (106). A significant downregulation in 3,-ARs sensi-
tivity in the DG can reduce the stimulating effect of NE and
may thus prevent seizures (105). Furthermore, the epileptic
seizures observed in transgenic mice overexpressing a,5-AR
are considered to result from an increased NMDA receptor
number via a,z3-ARs (107).

7. Conclusion and future perspectives

There is ample evidence to suggest that the endogenous neuro-
mediator, NE, is involved in the modulation of different types
of epileptic seizures. Depending on the activated AR subtype
and brain region, NE sometimes has an anti-convulsant and
sometimes a convulsant effect. In addition, NE may modulate
seizures through affecting various neurotransmitter systems,
particularly GABA and glutamate, or voltage-gated Ca?*
and/or K* channels. The seizure activity control activity of NE
may be impaired in some cases of increased susceptibility to
seizures, such as exposure to high levels of NE due to stress.
The results of various studies demonstrated that abnormal
increases or decreases in NE levels in the brain may cause an
impairment in NE-related functions, which may contribute to
an increased seizure susceptibility. In conclusion, recent data
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indicate that the activation of a,_, a,_ and 3, AR subtypes with
selective receptor agonists produces anticonvulsant effects in
epileptic seizures. Fully elucidating the effects of AR subtypes
on epileptic seizures may be an important target for the
pharmacological treatment of epilepsy.
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